Skip to main content
Top
Published in: Inflammation 6/2014

01-12-2014

Effects of PPAR-γ Agonist Treatment on LPS-Induced Mastitis in Rats

Authors: Ding Mingfeng, Ming Xiaodong, Liu Yue, Piao Taikui, Xiao Lei, Liu Ming

Published in: Inflammation | Issue 6/2014

Login to get access

Abstract

PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.
Literature
1.
go back to reference Bradley, A.J. 2002. Bovine mastitis: an evolving disease. Veterinary Journal 164: 116–128.CrossRef Bradley, A.J. 2002. Bovine mastitis: an evolving disease. Veterinary Journal 164: 116–128.CrossRef
2.
go back to reference Janzen, J.J. 1970. Economic losses resulting from mastitis. a review. Journal of Dairy Science 53: 1151–1161.PubMedCrossRef Janzen, J.J. 1970. Economic losses resulting from mastitis. a review. Journal of Dairy Science 53: 1151–1161.PubMedCrossRef
3.
go back to reference Larsen, T., C.M. Rontved, K.L. Ingvartsen, L. Vels, and M. Bjerring. 2010. Enzyme activity and acute phase proteins in milk utilized as indicators of acute clinical E. coli LPS-induced mastitis. Animal 4: 1672–1679.PubMedCrossRef Larsen, T., C.M. Rontved, K.L. Ingvartsen, L. Vels, and M. Bjerring. 2010. Enzyme activity and acute phase proteins in milk utilized as indicators of acute clinical E. coli LPS-induced mastitis. Animal 4: 1672–1679.PubMedCrossRef
4.
go back to reference Agarwal, S., N.P. Piesco, L.P. Johns, and A.E. Riccelli. 1995. Differential expression of IL-1 beta, TNF-alpha, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. Journal of Dental Research 74: 1057–1065.PubMedCrossRef Agarwal, S., N.P. Piesco, L.P. Johns, and A.E. Riccelli. 1995. Differential expression of IL-1 beta, TNF-alpha, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. Journal of Dental Research 74: 1057–1065.PubMedCrossRef
5.
go back to reference Barlow, J. 2011. Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. Journal of Mammary Gland Biology and Neoplasia 16: 383–407.PubMedCrossRef Barlow, J. 2011. Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. Journal of Mammary Gland Biology and Neoplasia 16: 383–407.PubMedCrossRef
6.
go back to reference Oliver, S.P., B.M. Jayarao, and R.A. Almeida. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathogens and Disease 2: 115–129.PubMedCrossRef Oliver, S.P., B.M. Jayarao, and R.A. Almeida. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathogens and Disease 2: 115–129.PubMedCrossRef
7.
go back to reference Cho, M.C., K. Lee, S.G. Paik, and D.Y. Yoon. 2008. Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders. PPAR Research 2008: 679137.PubMedCentralPubMedCrossRef Cho, M.C., K. Lee, S.G. Paik, and D.Y. Yoon. 2008. Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders. PPAR Research 2008: 679137.PubMedCentralPubMedCrossRef
8.
go back to reference Kadegowda, A.K.G., M. Bionaz, L.S. Piperova, R.A. Erdman, and J.J. Loor. 2009. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science 92: 4276–4289.PubMedCrossRef Kadegowda, A.K.G., M. Bionaz, L.S. Piperova, R.A. Erdman, and J.J. Loor. 2009. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. Journal of Dairy Science 92: 4276–4289.PubMedCrossRef
9.
go back to reference Bocher, V., I. Pineda-Torra, J.C. Fruchart, and B. Staels. 2002. PPARs: transcription factors controlling lipid and lipoprotein metabolism. Lipids and Insulin Resistance: The Role of Fatty Acid Metabolism and Fuel Partitioning 967: 7–18. Bocher, V., I. Pineda-Torra, J.C. Fruchart, and B. Staels. 2002. PPARs: transcription factors controlling lipid and lipoprotein metabolism. Lipids and Insulin Resistance: The Role of Fatty Acid Metabolism and Fuel Partitioning 967: 7–18.
10.
go back to reference Shi, H.B., J. Luo, J.J. Zhu, J. Li, Y.T. Sun, X.Z. Lin, L.P. Zhang, D.W. Yao, and H.P. Shi. 2013. PPAR gamma regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. PPAR Research 2013, 310948.PubMedCentralPubMedCrossRef Shi, H.B., J. Luo, J.J. Zhu, J. Li, Y.T. Sun, X.Z. Lin, L.P. Zhang, D.W. Yao, and H.P. Shi. 2013. PPAR gamma regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. PPAR Research 2013, 310948.PubMedCentralPubMedCrossRef
11.
go back to reference Daynes, R.A., and D.C. Jones. 2002. Emerging roles of PPARs in inflammation and immunity. Nature Reviews Immunology 2: 748–759.PubMedCrossRef Daynes, R.A., and D.C. Jones. 2002. Emerging roles of PPARs in inflammation and immunity. Nature Reviews Immunology 2: 748–759.PubMedCrossRef
12.
go back to reference Zhao, W., C.C. Berthier, E.E. Lewis, W.J. McCune, M. Kretzler, and M.J. Kaplan. 2013. The peroxisome-proliferator activated receptor-gamma agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus. Clinical Immunology 149: 119–132.PubMedCentralPubMedCrossRef Zhao, W., C.C. Berthier, E.E. Lewis, W.J. McCune, M. Kretzler, and M.J. Kaplan. 2013. The peroxisome-proliferator activated receptor-gamma agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus. Clinical Immunology 149: 119–132.PubMedCentralPubMedCrossRef
13.
go back to reference Bassaganya-Riera, J., R. Song, P.C. Roberts, and R. Hontecillas. 2010. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunology 23: 343–352.PubMedCrossRef Bassaganya-Riera, J., R. Song, P.C. Roberts, and R. Hontecillas. 2010. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunology 23: 343–352.PubMedCrossRef
14.
go back to reference Andersen, V., J. Christensen, A. Ernst, B.A. Jacobsen, A. Tjonneland, H.B. Krarup, and U. Vogel. 2011. Polymorphisms in NF-kappaB, PXR, LXR, PPARgamma and risk of inflammatory bowel disease. World Journal of Gastroenterology 17: 197–206.PubMedCentralPubMedCrossRef Andersen, V., J. Christensen, A. Ernst, B.A. Jacobsen, A. Tjonneland, H.B. Krarup, and U. Vogel. 2011. Polymorphisms in NF-kappaB, PXR, LXR, PPARgamma and risk of inflammatory bowel disease. World Journal of Gastroenterology 17: 197–206.PubMedCentralPubMedCrossRef
15.
go back to reference Koufany, M., D. Chappard, P. Netter, C. Bastien, G. Weryha, J.Y. Jouzeau, and D. Moulin. 2013. The peroxisome proliferator-activated receptor gamma agonist pioglitazone preserves bone microarchitecture in experimental arthritis by reducing the interleukin-17-dependent osteoclastogenic pathway. Arthritis and Rheumatism 65: 3084–3095.PubMedCrossRef Koufany, M., D. Chappard, P. Netter, C. Bastien, G. Weryha, J.Y. Jouzeau, and D. Moulin. 2013. The peroxisome proliferator-activated receptor gamma agonist pioglitazone preserves bone microarchitecture in experimental arthritis by reducing the interleukin-17-dependent osteoclastogenic pathway. Arthritis and Rheumatism 65: 3084–3095.PubMedCrossRef
16.
go back to reference Narala VR, Ranga R, Smith MR, Berlin AA, Standiford TJ, Lukacs NW, Reddy RC: Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma. Respiratory Research 2007, 8. Narala VR, Ranga R, Smith MR, Berlin AA, Standiford TJ, Lukacs NW, Reddy RC: Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma. Respiratory Research 2007, 8.
17.
go back to reference Fu Y, Zhou E, Wei Z, Liang D, Wang W, Wang T, Guo M, Zhang N, Yang Z: Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and mouse mastitis model. FEBS J 2014. Fu Y, Zhou E, Wei Z, Liang D, Wang W, Wang T, Guo M, Zhang N, Yang Z: Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and mouse mastitis model. FEBS J 2014.
18.
go back to reference Liu, D., B.X. Zeng, S.H. Zhang, and S.L. Yao. 2005. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces pulmonary inflammatory response in a rat model of endotoxemia. Inflammation Research 54: 464–470.PubMedCrossRef Liu, D., B.X. Zeng, S.H. Zhang, and S.L. Yao. 2005. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces pulmonary inflammatory response in a rat model of endotoxemia. Inflammation Research 54: 464–470.PubMedCrossRef
19.
go back to reference Miao, J.F., Y.M. Zhu, B.B. Gu, X.B. Wang, S.X. Zou, and Y.E. Deng. 2007. Evaluation of the changes of immune cells during lipopolysaccharide-induced mastitis in rats. Cytokine 40: 135–143.PubMedCrossRef Miao, J.F., Y.M. Zhu, B.B. Gu, X.B. Wang, S.X. Zou, and Y.E. Deng. 2007. Evaluation of the changes of immune cells during lipopolysaccharide-induced mastitis in rats. Cytokine 40: 135–143.PubMedCrossRef
20.
go back to reference Chawla, A., Y. Barak, L. Nagy, D. Liao, P. Tontonoz, and R.M. Evans. 2001. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine 7: 48–52.PubMedCrossRef Chawla, A., Y. Barak, L. Nagy, D. Liao, P. Tontonoz, and R.M. Evans. 2001. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine 7: 48–52.PubMedCrossRef
21.
go back to reference Lee, C.H., P. Olson, and R.M. Evans. 2003. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144: 2201–2207.PubMedCrossRef Lee, C.H., P. Olson, and R.M. Evans. 2003. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144: 2201–2207.PubMedCrossRef
22.
go back to reference Liu, D., B.X. Zeng, S.H. Zhang, Y.L. Wang, L. Zeng, Z.L. Geng, and S.F. Zhang. 2005. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, reduces acute lung injury in endotoxemic rats. Critical Care Medicine 33: 2309–2316.PubMedCrossRef Liu, D., B.X. Zeng, S.H. Zhang, Y.L. Wang, L. Zeng, Z.L. Geng, and S.F. Zhang. 2005. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, reduces acute lung injury in endotoxemic rats. Critical Care Medicine 33: 2309–2316.PubMedCrossRef
23.
go back to reference Jiang, C., A.T. Ting, and B. Seed. 1998. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82–86.PubMedCrossRef Jiang, C., A.T. Ting, and B. Seed. 1998. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82–86.PubMedCrossRef
24.
go back to reference Lohuis, J.A., W. Van Leeuwen, J.H. Verheijden, A.S. Van Miert, and A. Brand. 1988. Effect of dexamethasone on experimental Escherichia coli mastitis in the cow. Journal of Dairy Science 71: 2782–2789.PubMedCrossRef Lohuis, J.A., W. Van Leeuwen, J.H. Verheijden, A.S. Van Miert, and A. Brand. 1988. Effect of dexamethasone on experimental Escherichia coli mastitis in the cow. Journal of Dairy Science 71: 2782–2789.PubMedCrossRef
25.
go back to reference Akers, R.M., and S.C. Nickerson. 2011. Mastitis and its impact on structure and function in the ruminant mammary gland. Journal of Mammary Gland Biology and Neoplasia 16: 275–289.PubMedCrossRef Akers, R.M., and S.C. Nickerson. 2011. Mastitis and its impact on structure and function in the ruminant mammary gland. Journal of Mammary Gland Biology and Neoplasia 16: 275–289.PubMedCrossRef
26.
go back to reference Ormrod, D.J., G.L. Harrison, and T.E. Miller. 1987. Inhibition of neutrophil myeloperoxidase activity by selected tissues. Journal of Pharmacological Methods 18: 137–142.PubMedCrossRef Ormrod, D.J., G.L. Harrison, and T.E. Miller. 1987. Inhibition of neutrophil myeloperoxidase activity by selected tissues. Journal of Pharmacological Methods 18: 137–142.PubMedCrossRef
27.
go back to reference Shuster, D.E., M.E. Kehrli Jr., and M.G. Stevens. 1993. Cytokine production during endotoxin-induced mastitis in lactating dairy cows. American Journal of Veterinary Research 54: 80–85.PubMed Shuster, D.E., M.E. Kehrli Jr., and M.G. Stevens. 1993. Cytokine production during endotoxin-induced mastitis in lactating dairy cows. American Journal of Veterinary Research 54: 80–85.PubMed
28.
go back to reference Yamamoto, Y., and R.B. Gaynor. 2004. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends in Biochemical Sciences 29: 72–79.PubMedCrossRef Yamamoto, Y., and R.B. Gaynor. 2004. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends in Biochemical Sciences 29: 72–79.PubMedCrossRef
29.
go back to reference Gilmore, T.D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680–6684.PubMedCrossRef Gilmore, T.D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25: 6680–6684.PubMedCrossRef
30.
go back to reference Xie, X., S. Sun, W. Zhong, L.W. Soromou, X. Zhou, M. Wei, Y. Ren, and Y. Ding. 2014. Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. International Immunopharmacology 19: 103–109.PubMedCrossRef Xie, X., S. Sun, W. Zhong, L.W. Soromou, X. Zhou, M. Wei, Y. Ren, and Y. Ding. 2014. Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. International Immunopharmacology 19: 103–109.PubMedCrossRef
31.
go back to reference Jing, Y., Q. Ai, L. Lin, J. Dai, M. Jia, D. Zhou, Q. Che, J. Wan, R. Jiang, and L. Zhang. 2014. Protective effects of garcinol in mice with lipopolysaccharide/D-galactosamine-induced apoptotic liver injury. International Immunopharmacology 19: 373–380.PubMedCrossRef Jing, Y., Q. Ai, L. Lin, J. Dai, M. Jia, D. Zhou, Q. Che, J. Wan, R. Jiang, and L. Zhang. 2014. Protective effects of garcinol in mice with lipopolysaccharide/D-galactosamine-induced apoptotic liver injury. International Immunopharmacology 19: 373–380.PubMedCrossRef
32.
go back to reference Gu, B., J. Miao, Y. Fa, J. Lu, and S. Zou. 2010. Retinoic acid attenuates lipopolysaccharide-induced inflammatory responses by suppressing TLR4/NF-kappaB expression in rat mammary tissue. International Immunopharmacology 10: 799–805.PubMedCrossRef Gu, B., J. Miao, Y. Fa, J. Lu, and S. Zou. 2010. Retinoic acid attenuates lipopolysaccharide-induced inflammatory responses by suppressing TLR4/NF-kappaB expression in rat mammary tissue. International Immunopharmacology 10: 799–805.PubMedCrossRef
33.
go back to reference Pascual, G., A.L. Fong, S. Ogawa, A. Gamliel, A.C. Li, V. Perissi, D.W. Rose, T.M. Willson, M.G. Rosenfeld, and C.K. Glass. 2005. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437: 759–763.PubMedCentralPubMedCrossRef Pascual, G., A.L. Fong, S. Ogawa, A. Gamliel, A.C. Li, V. Perissi, D.W. Rose, T.M. Willson, M.G. Rosenfeld, and C.K. Glass. 2005. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437: 759–763.PubMedCentralPubMedCrossRef
Metadata
Title
Effects of PPAR-γ Agonist Treatment on LPS-Induced Mastitis in Rats
Authors
Ding Mingfeng
Ming Xiaodong
Liu Yue
Piao Taikui
Xiao Lei
Liu Ming
Publication date
01-12-2014
Publisher
Springer US
Published in
Inflammation / Issue 6/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9924-z

Other articles of this Issue 6/2014

Inflammation 6/2014 Go to the issue