Skip to main content
Top
Published in: Inflammation 3/2015

01-06-2015

The Effects of Cordycepin on Ovalbumin-Induced Allergic Inflammation by Strengthening Treg Response and Suppressing Th17 Responses in Ovalbumin-Sensitized Mice

Authors: Zhang Tianzhu, Yang Shihai, Du Juan

Published in: Inflammation | Issue 3/2015

Login to get access

Abstract

The aim of the current study was to use a mouse model of allergic asthma to investigate whether cordycepin has antiasthmatic effects, and if so, to determine the mechanism of these effects. A total of 50 mice were randomly assigned to five experimental groups: control, model, dexamethasone (Dex, 2 mg/kg), and cordycepin (20–40 mg/kg). Histological studies were evaluated by the hematoxylin and eosin staining, OVA-specific serum and BALF IgE levels and Treg/Th17 cytokines were evaluated by enzyme-linked immunosorbent assay, and RORγt and Foxp3 were evaluated by western blot. Our study demonstrated that cordycepin inhibited OVA-induced increases in eosinophil count; IL-17A levels were recovered and increased IL-10 levels in bronchoalveolar lavage fluid. Histological studies demonstrated that cordycepin substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot study demonstrated that cordycepin increased Foxp3 and inhibited RORγt. These findings suggest that cordycepin may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma.
Literature
1.
go back to reference Schuijs, M.J., M.A. Willart, H. Hammad, and B.N. Lambrecht. 2013. Cytokine targets in airway inflammation. Current Opinion in Pharmacology 13: 351–361.CrossRefPubMed Schuijs, M.J., M.A. Willart, H. Hammad, and B.N. Lambrecht. 2013. Cytokine targets in airway inflammation. Current Opinion in Pharmacology 13: 351–361.CrossRefPubMed
2.
go back to reference Greenfeder, S., S.P. Umland, F.M. Cuss, R.W. Chapman, and R.W. Egan. 2001. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respiratory Research 2: 71–79.CrossRefPubMedCentralPubMed Greenfeder, S., S.P. Umland, F.M. Cuss, R.W. Chapman, and R.W. Egan. 2001. Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respiratory Research 2: 71–79.CrossRefPubMedCentralPubMed
3.
go back to reference Romagnani, S. 2000. The role of lymphocytes in allergic disease. The Journal of Allergy and Clinical Immunology 105: 399–408.CrossRefPubMed Romagnani, S. 2000. The role of lymphocytes in allergic disease. The Journal of Allergy and Clinical Immunology 105: 399–408.CrossRefPubMed
4.
go back to reference Mosmann, T.R., and K.W. Moore. 1991. The role of IL-10 in cross regulation of TH1 and TH2 responses. Immunology Today 12: A49–A53.CrossRefPubMed Mosmann, T.R., and K.W. Moore. 1991. The role of IL-10 in cross regulation of TH1 and TH2 responses. Immunology Today 12: A49–A53.CrossRefPubMed
5.
go back to reference Brewer, J.M., M. Conacher, and C.A. Hunter. 1999. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. Journal of Immunology 163: 6448–6454. Brewer, J.M., M. Conacher, and C.A. Hunter. 1999. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. Journal of Immunology 163: 6448–6454.
6.
go back to reference Weaver, C.T., and R.D. Hatton. 2009. Interplay between the TH17 and TReg cell lineages:a (co-)evolutionary perspective. Nature Reviews Immunology 12: 883–889.CrossRef Weaver, C.T., and R.D. Hatton. 2009. Interplay between the TH17 and TReg cell lineages:a (co-)evolutionary perspective. Nature Reviews Immunology 12: 883–889.CrossRef
7.
go back to reference Sakaguchi, S., M. Ono, and R. Setoguchi. 2006. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews 212: 8–27.CrossRefPubMed Sakaguchi, S., M. Ono, and R. Setoguchi. 2006. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews 212: 8–27.CrossRefPubMed
8.
go back to reference Yoo, H.S., J.W. Shin, J.H. Cho, C.G. Son, Y.W. Lee, S.Y. Park, and C.K. Cho. 2004. Effect of cordyceps militarisextract on angiogenesis and tumor growth. Acta Pharmacologica Sinica 25: 657–665.PubMed Yoo, H.S., J.W. Shin, J.H. Cho, C.G. Son, Y.W. Lee, S.Y. Park, and C.K. Cho. 2004. Effect of cordyceps militarisextract on angiogenesis and tumor growth. Acta Pharmacologica Sinica 25: 657–665.PubMed
9.
go back to reference Yun, Y.H., S.H. Han, S.J. Lee, S.K. Ko, C.K. Lee, N.J. Ha, and K.J. Kim. 2003. Anti-diabetic effects of CCCA, cmESS, and cordycepin from Cordyceps militaris and the immune responses in streptozotocin-induced diabetic mice. Natural Product Sciences 9: 291–298. Yun, Y.H., S.H. Han, S.J. Lee, S.K. Ko, C.K. Lee, N.J. Ha, and K.J. Kim. 2003. Anti-diabetic effects of CCCA, cmESS, and cordycepin from Cordyceps militaris and the immune responses in streptozotocin-induced diabetic mice. Natural Product Sciences 9: 291–298.
10.
go back to reference Cho, M.A., D.S. Lee, M.J. Kim, J.M. Sung, and S.S. Ham. 2003. Antimutagenicity and cytotoxicity of cordycepin isolated from Cordyceps militaris. Food Science and Biotechnology 12: 472–475. Cho, M.A., D.S. Lee, M.J. Kim, J.M. Sung, and S.S. Ham. 2003. Antimutagenicity and cytotoxicity of cordycepin isolated from Cordyceps militaris. Food Science and Biotechnology 12: 472–475.
11.
go back to reference Choi, S.B., C.H. Park, M.K. Choi, D.W. Jun, and S.M. Park. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipesin 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry 68: 2257–2264.CrossRefPubMed Choi, S.B., C.H. Park, M.K. Choi, D.W. Jun, and S.M. Park. 2004. Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipesin 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry 68: 2257–2264.CrossRefPubMed
12.
go back to reference Sugar, A.M., and R.P. McCaffrey. 1998. Antifungal activity of 3′-deoxyadenosine (cordycepin). Antimicrobial Agents and Chemotherapy 42: 1424–1427.PubMedCentralPubMed Sugar, A.M., and R.P. McCaffrey. 1998. Antifungal activity of 3′-deoxyadenosine (cordycepin). Antimicrobial Agents and Chemotherapy 42: 1424–1427.PubMedCentralPubMed
13.
go back to reference De Julian-Ortiz, J.V., J. Galvez, C. Munoz-Collado, R. Garcia-Domenech, and C. Gimeno-Cardona. 1999. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. Journal of Medicinal Chemistry 42: 3308–3314.CrossRefPubMed De Julian-Ortiz, J.V., J. Galvez, C. Munoz-Collado, R. Garcia-Domenech, and C. Gimeno-Cardona. 1999. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. Journal of Medicinal Chemistry 42: 3308–3314.CrossRefPubMed
14.
go back to reference Zhou, X., C.U. Meyer, P. Schmidtke, and F. Zepp. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. European Journal of Pharmacology 453(2–3): 309–317.CrossRefPubMed Zhou, X., C.U. Meyer, P. Schmidtke, and F. Zepp. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. European Journal of Pharmacology 453(2–3): 309–317.CrossRefPubMed
15.
go back to reference Oh, S.R., M.Y. Lee, K. Ahn, B.Y. Park, O.K. Kwon, H. Joung, J. Lee, D.Y. Kim, S. Lee, J.H. Kim, and H.K. Lee. 2006. Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. International Immunopharmacology 6: 978–986.CrossRefPubMed Oh, S.R., M.Y. Lee, K. Ahn, B.Y. Park, O.K. Kwon, H. Joung, J. Lee, D.Y. Kim, S. Lee, J.H. Kim, and H.K. Lee. 2006. Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. International Immunopharmacology 6: 978–986.CrossRefPubMed
16.
go back to reference Djukanovic, R., W.R. Roche, J.W. Wilson, et al. 1990. Mucosal inflammation in asthma. American Review of Respiratory Disease 142: 434–457.CrossRefPubMed Djukanovic, R., W.R. Roche, J.W. Wilson, et al. 1990. Mucosal inflammation in asthma. American Review of Respiratory Disease 142: 434–457.CrossRefPubMed
17.
go back to reference Duan, W., J.H. Chan, C.H. Wong CH, et al. 2004. Anti inflammatory effects of mitogen-activated protein kinase inhibitor U0126 in an asthma mouse model. Journal of Immunology 172: 7053–7059.CrossRef Duan, W., J.H. Chan, C.H. Wong CH, et al. 2004. Anti inflammatory effects of mitogen-activated protein kinase inhibitor U0126 in an asthma mouse model. Journal of Immunology 172: 7053–7059.CrossRef
18.
go back to reference Jain, V.V., K. Kitagaki, T. Businga, et al. 2002. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. Journal of Allergy and Clinical Immunology 110(6): 867–872.CrossRefPubMed Jain, V.V., K. Kitagaki, T. Businga, et al. 2002. CpG-oligodeoxynucleotides inhibit airway remodeling in a murine model of chronic asthma. Journal of Allergy and Clinical Immunology 110(6): 867–872.CrossRefPubMed
19.
go back to reference Elsner, J., and A. Kapp. 1999. Regulation and modulation of eosinophil effector functions. Allergy 54: 15–26.CrossRefPubMed Elsner, J., and A. Kapp. 1999. Regulation and modulation of eosinophil effector functions. Allergy 54: 15–26.CrossRefPubMed
20.
go back to reference Doganci, A., T. Eigenbrod, and N. Krug. 2005. The IL-6R alpha chain controls lung CD4+CD25+Treg development and function during allergic airway inflammation in vivo. Journal of Clinical Investigation 115: 313–325.CrossRefPubMedCentralPubMed Doganci, A., T. Eigenbrod, and N. Krug. 2005. The IL-6R alpha chain controls lung CD4+CD25+Treg development and function during allergic airway inflammation in vivo. Journal of Clinical Investigation 115: 313–325.CrossRefPubMedCentralPubMed
Metadata
Title
The Effects of Cordycepin on Ovalbumin-Induced Allergic Inflammation by Strengthening Treg Response and Suppressing Th17 Responses in Ovalbumin-Sensitized Mice
Authors
Zhang Tianzhu
Yang Shihai
Du Juan
Publication date
01-06-2015
Publisher
Springer US
Published in
Inflammation / Issue 3/2015
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0068-y

Other articles of this Issue 3/2015

Inflammation 3/2015 Go to the issue