Skip to main content
Top
Published in: Inflammation 1/2015

01-02-2015

Protective Effect of 1,25-Dihydroxyvitamin D3 on Lipopolysaccharide-Induced Intestinal Epithelial Tight Junction Injury in Caco-2 Cell Monolayers

Authors: Shan-wen Chen, Peng-yuan Wang, Jing Zhu, Guo-wei Chen, Jun-ling Zhang, Zi-yi Chen, Shuai Zuo, Yu-cun Liu, Yi-sheng Pan

Published in: Inflammation | Issue 1/2015

Login to get access

Abstract

Lipopolysaccharide was found to be elevated in the plasma of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) patients and may play an important role in the pathogenesis and propagation of these intestinal diseases. To illustrate the destructive effect of lipopolysaccharide (LPS) and to test the protective effect of 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) on LPS-induced barrier injury, an in vitro intestinal epithelia barrier model was established with Caco-2 monolayers and treated with clinically relevant concentrations (1–10 ng/ml) of LPS with or without 1,25(OH)2D3. Transepithelial electrical resistance (TEER) and FITC-Dextran 40kda (FD-40) flux were measured to reflect monolayer permeability. We found that LPS at clinically relevant concentrations increased intestinal permeability by downregulating and redistributing tight junction (TJ) proteins. 1,25(OH)2D3 added at baseline or at day 4 abrogated the destructive effect of LPS on monolayer permeability by restoring the expression and localization of TJ proteins. LPS, at clinically relevant concentrations, also downregulated the expression of vitamin D receptor (VDR); 1,25 (OH)2D3, however, could restore the expression of VDR. Our findings illustrate the mechanism underlying the destructive effect of clinically relevant concentrations of LPS on intestinal TJ barrier and provide evidence for the clinical application of vitamin D in LPS-related intestinal barrier dysfunction.
Literature
1.
go back to reference Turner, J.R. 2009. Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology 9(11): 799–809.CrossRefPubMed Turner, J.R. 2009. Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology 9(11): 799–809.CrossRefPubMed
2.
go back to reference Clark, J.A., S.M. Doelle, M.D. Halpern, T.A. Saunders, H. Holubec, K. Dvorak, S.A. Boitano, and B. Dvorak. 2006. Intestinal barrier failure during experimental necrotizing enterocolitis: protective effect of EGF treatment. American Journal of Physiology. Gastrointestinal and Liver Physiology 291(5): G938–G949.CrossRefPubMed Clark, J.A., S.M. Doelle, M.D. Halpern, T.A. Saunders, H. Holubec, K. Dvorak, S.A. Boitano, and B. Dvorak. 2006. Intestinal barrier failure during experimental necrotizing enterocolitis: protective effect of EGF treatment. American Journal of Physiology. Gastrointestinal and Liver Physiology 291(5): G938–G949.CrossRefPubMed
3.
go back to reference Arrieta, M.C., K. Madsen, J. Doyle, and J. Meddings. 2009. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58(1): 41–48.CrossRefPubMed Arrieta, M.C., K. Madsen, J. Doyle, and J. Meddings. 2009. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58(1): 41–48.CrossRefPubMed
4.
go back to reference Berman, L., and R.L. Moss. 2011. Necrotizing enterocolitis: an update. Seminars in Fetal and Neonatal Medicine 16(3): 145–150.CrossRefPubMed Berman, L., and R.L. Moss. 2011. Necrotizing enterocolitis: an update. Seminars in Fetal and Neonatal Medicine 16(3): 145–150.CrossRefPubMed
5.
go back to reference Mennigen, R., K. Nolte, E. Rijcken, M. Utech, B. Loeffler, N. Senninger, and M. Bruewer. 2009. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 296(5): G1140–G1149.CrossRefPubMed Mennigen, R., K. Nolte, E. Rijcken, M. Utech, B. Loeffler, N. Senninger, and M. Bruewer. 2009. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 296(5): G1140–G1149.CrossRefPubMed
6.
go back to reference Ammori, B.J., P.C. Leeder, R.F. King, G.R. Barclay, I.G. Martin, M. Larvin, and M.J. McMahon. 1999. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 3(3): 252–262.CrossRef Ammori, B.J., P.C. Leeder, R.F. King, G.R. Barclay, I.G. Martin, M. Larvin, and M.J. McMahon. 1999. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 3(3): 252–262.CrossRef
7.
go back to reference Marshall, J.C., P.M. Walker, D.M. Foster, D. Harris, M. Ribeiro, J. Paice, A.D. Romaschin, and A.N. Derzko. 2002. Measurement of endotoxin activity in critically ill patients using whole blood neutrophil dependent chemiluminescence. Critical Care (London, England) 6(4): 342–348.CrossRef Marshall, J.C., P.M. Walker, D.M. Foster, D. Harris, M. Ribeiro, J. Paice, A.D. Romaschin, and A.N. Derzko. 2002. Measurement of endotoxin activity in critically ill patients using whole blood neutrophil dependent chemiluminescence. Critical Care (London, England) 6(4): 342–348.CrossRef
8.
go back to reference Guo, S., R. Al-Sadi, H.M. Said, and T.Y. Ma. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. The American Journal of Pathology 182(2): 385–388.CrossRef Guo, S., R. Al-Sadi, H.M. Said, and T.Y. Ma. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. The American Journal of Pathology 182(2): 385–388.CrossRef
9.
go back to reference Kong, J., Z. Zhang, M.W. Musch, G. Ning, J. Sun, J. Hart, M. Bissonnette, and Y.C. Li. 2008. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology 294(1): G208–G216.CrossRefPubMed Kong, J., Z. Zhang, M.W. Musch, G. Ning, J. Sun, J. Hart, M. Bissonnette, and Y.C. Li. 2008. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology 294(1): G208–G216.CrossRefPubMed
10.
go back to reference Liu, W., Y. Chen, M.A. Golan, M.L. Annunziata, J. Du, U. Dougherty, J. Kong, M. Musch, Y. Huang, J. Pekow, C. Zheng, M. Bissonnette, S.B. Hanauer, and Y.C. Li. 2013. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. The Journal of Clinical Investigation 123(9): 3983–3996.CrossRefPubMedCentralPubMed Liu, W., Y. Chen, M.A. Golan, M.L. Annunziata, J. Du, U. Dougherty, J. Kong, M. Musch, Y. Huang, J. Pekow, C. Zheng, M. Bissonnette, S.B. Hanauer, and Y.C. Li. 2013. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. The Journal of Clinical Investigation 123(9): 3983–3996.CrossRefPubMedCentralPubMed
11.
go back to reference Zhao, H., H. Zhang, H. Wu, H. Li, L. Liu, J. Guo, C. Li, D.Q. Shih, and X. Zhang. 2012. Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterology 12: 58.CrossRef Zhao, H., H. Zhang, H. Wu, H. Li, L. Liu, J. Guo, C. Li, D.Q. Shih, and X. Zhang. 2012. Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterology 12: 58.CrossRef
12.
go back to reference Ye, D., S. Guo, R. Al-Sadi, and T.Y. Ma. 2011. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141(4): 1323–1333.CrossRefPubMedCentralPubMed Ye, D., S. Guo, R. Al-Sadi, and T.Y. Ma. 2011. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141(4): 1323–1333.CrossRefPubMedCentralPubMed
13.
go back to reference Xu, L.F., X. Teng, J. Guo, and M. Sun. 2012. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. Inflammation 35(1): 308–315.CrossRefPubMed Xu, L.F., X. Teng, J. Guo, and M. Sun. 2012. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. Inflammation 35(1): 308–315.CrossRefPubMed
14.
go back to reference Puthia, M.K., S.W. Sio, J. Lu, and K.S. Tan. 2006. Blastocystis ratti induces contact-independent apoptosis, F-actin rearrangement, and barrier function disruption in IEC-6 cells. Infection and Immunity 74(7): 4114–4123.CrossRefPubMedCentralPubMed Puthia, M.K., S.W. Sio, J. Lu, and K.S. Tan. 2006. Blastocystis ratti induces contact-independent apoptosis, F-actin rearrangement, and barrier function disruption in IEC-6 cells. Infection and Immunity 74(7): 4114–4123.CrossRefPubMedCentralPubMed
15.
go back to reference Ma, T.Y., N. Hoa, D. Tran, V. Bui, A. Pedram, S. Mills, and M. Merryfield. 2000. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. American Journal of Physiology. Gastrointestinal and Liver Physiology 279(5): G875–G885.PubMed Ma, T.Y., N. Hoa, D. Tran, V. Bui, A. Pedram, S. Mills, and M. Merryfield. 2000. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. American Journal of Physiology. Gastrointestinal and Liver Physiology 279(5): G875–G885.PubMed
16.
go back to reference Ma, T.Y., D. Nguyen, V. Bui, H. Nguyen, and N. Hoa. 1999. Ethanol modulation of intestinal epithelial tight junction barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology 276(4 Pt 1): G965–G974. Ma, T.Y., D. Nguyen, V. Bui, H. Nguyen, and N. Hoa. 1999. Ethanol modulation of intestinal epithelial tight junction barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology 276(4 Pt 1): G965–G974.
17.
go back to reference Qiu, B., G. Zhao, Y. Aoki, L. Shi, A. Uyei, S. Nazarian, J.C. Ng, and P.N. Kao. 1999. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. The Journal of Biological Chemistry 274(19): 13443–13450.CrossRefPubMed Qiu, B., G. Zhao, Y. Aoki, L. Shi, A. Uyei, S. Nazarian, J.C. Ng, and P.N. Kao. 1999. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. The Journal of Biological Chemistry 274(19): 13443–13450.CrossRefPubMed
18.
go back to reference Schlegel, N., M. Meir, V. Spindler, C.T. Germer, and J. Waschke. 2011. Differential role of RhoGTPases in intestinal epithelial barrier regulation in vitro. Journal of Cellular Physiology 226(5): 1196–1203.CrossRefPubMed Schlegel, N., M. Meir, V. Spindler, C.T. Germer, and J. Waschke. 2011. Differential role of RhoGTPases in intestinal epithelial barrier regulation in vitro. Journal of Cellular Physiology 226(5): 1196–1203.CrossRefPubMed
19.
go back to reference Schliwa, M. 1982. Action of cytochalasin D on cytoskeletal networks. The Journal of Cell Biology 92(1): 79–91.CrossRefPubMed Schliwa, M. 1982. Action of cytochalasin D on cytoskeletal networks. The Journal of Cell Biology 92(1): 79–91.CrossRefPubMed
20.
go back to reference Ma, T.Y., G.K. Iwamoto, N.T. Hoa, V. Akotia, A. Pedram, M.A. Boivin, and H.M. Said. 2004. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. American journal of physiology Gastrointestinal and Liver Physiology 286(3): G367–G376.CrossRefPubMed Ma, T.Y., G.K. Iwamoto, N.T. Hoa, V. Akotia, A. Pedram, M.A. Boivin, and H.M. Said. 2004. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. American journal of physiology Gastrointestinal and Liver Physiology 286(3): G367–G376.CrossRefPubMed
21.
go back to reference Andreasen, A.S., K.S. Krabbe, R. Krogh-Madsen, S. Taudorf, B.K. Pedersen, and K. Moller. 2008. Human endotoxemia as a model of systemic inflammation. Current Medical Chemistry 15(17): 1697–1705.CrossRef Andreasen, A.S., K.S. Krabbe, R. Krogh-Madsen, S. Taudorf, B.K. Pedersen, and K. Moller. 2008. Human endotoxemia as a model of systemic inflammation. Current Medical Chemistry 15(17): 1697–1705.CrossRef
22.
go back to reference Sharma, R., J.J. Tepas 3rd, M.L. Hudak, D.L. Mollitt, P.S. Wludyka, R.J. Teng, and B.R. Premachandra. 2007. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. Journal of Pediatric Surgery 42(3): 454–461.CrossRefPubMed Sharma, R., J.J. Tepas 3rd, M.L. Hudak, D.L. Mollitt, P.S. Wludyka, R.J. Teng, and B.R. Premachandra. 2007. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. Journal of Pediatric Surgery 42(3): 454–461.CrossRefPubMed
23.
go back to reference Lambert, G.P. 2008. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Medicine and Sport Science 53: 61–73.CrossRefPubMed Lambert, G.P. 2008. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Medicine and Sport Science 53: 61–73.CrossRefPubMed
24.
go back to reference Gardiner, K.R., M.I. Halliday, G.R. Barclay, L. Milne, D. Brown, S. Stephens, R.J. Maxwell, and B.J. Rowlands. 1995. Significance of systemic endotoxaemia in inflammatory bowel disease. Gut 36(6): 897–901.CrossRefPubMedCentralPubMed Gardiner, K.R., M.I. Halliday, G.R. Barclay, L. Milne, D. Brown, S. Stephens, R.J. Maxwell, and B.J. Rowlands. 1995. Significance of systemic endotoxaemia in inflammatory bowel disease. Gut 36(6): 897–901.CrossRefPubMedCentralPubMed
25.
go back to reference Pastor Rojo, O., A. Lopez San Roman, E. Albeniz Arbizu, A. de la Hera Martinez, E. Ripoll Sevillano, and A. Albillos Martinez. 2007. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflammatory Bowel Disease 13(3): 269–277.CrossRef Pastor Rojo, O., A. Lopez San Roman, E. Albeniz Arbizu, A. de la Hera Martinez, E. Ripoll Sevillano, and A. Albillos Martinez. 2007. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflammatory Bowel Disease 13(3): 269–277.CrossRef
26.
go back to reference Poritz, L.S., K.I. Garver, C. Green, L. Fitzpatrick, F. Ruggiero, and W.A. Koltun. 2007. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. The Journal of Surgical Research 140: 12–19.CrossRefPubMed Poritz, L.S., K.I. Garver, C. Green, L. Fitzpatrick, F. Ruggiero, and W.A. Koltun. 2007. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. The Journal of Surgical Research 140: 12–19.CrossRefPubMed
27.
go back to reference Camilleri, M., K. Madsen, R. Spiller, B. Greenwood-Van Meerveld, and G.N. Verne. 2012. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and Motility: the Official Journal of the European Gastrointestinal Motility Society 24(6): 503–512.CrossRef Camilleri, M., K. Madsen, R. Spiller, B. Greenwood-Van Meerveld, and G.N. Verne. 2012. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and Motility: the Official Journal of the European Gastrointestinal Motility Society 24(6): 503–512.CrossRef
28.
go back to reference Wu, S., A.P. Liao, Y. Xia, Y.C. Li, J.D. Li, R.B. Sartor, and J. Sun. 2010. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. The American Journal of Pathology 177(2): 686–697.CrossRefPubMedCentralPubMed Wu, S., A.P. Liao, Y. Xia, Y.C. Li, J.D. Li, R.B. Sartor, and J. Sun. 2010. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. The American Journal of Pathology 177(2): 686–697.CrossRefPubMedCentralPubMed
29.
go back to reference Loftus Jr., E.V. 2004. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6): 1504–1517.CrossRefPubMed Loftus Jr., E.V. 2004. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6): 1504–1517.CrossRefPubMed
30.
go back to reference Lim, W.C., S.B. Hanauer, and Y.C. Li. 2005. Mechanisms of disease: vitamin D and inflammatory bowel disease. Nature clinical practice. Gastroenterology and Hepatology 2(7): 308–315.CrossRefPubMed Lim, W.C., S.B. Hanauer, and Y.C. Li. 2005. Mechanisms of disease: vitamin D and inflammatory bowel disease. Nature clinical practice. Gastroenterology and Hepatology 2(7): 308–315.CrossRefPubMed
31.
go back to reference Haussler, M.R., G.K. Whitfield, C.A. Haussler, J.C. Hsieh, P.D. Thompson, S.H. Selznick, C.E. Dominguez, and P.W. Jurutka. 1998. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. Journal of Bone and Mineral Research 13(3): 325–349.CrossRefPubMed Haussler, M.R., G.K. Whitfield, C.A. Haussler, J.C. Hsieh, P.D. Thompson, S.H. Selznick, C.E. Dominguez, and P.W. Jurutka. 1998. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. Journal of Bone and Mineral Research 13(3): 325–349.CrossRefPubMed
32.
go back to reference Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof EO, Claud EC, Chen D, Chang EB, Carmeliet G, Sun J. 2014. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut. Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof EO, Claud EC, Chen D, Chang EB, Carmeliet G, Sun J. 2014. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut.
33.
go back to reference Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. 2014. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. The Journal of Infectious Diseases. Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. 2014. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. The Journal of Infectious Diseases.
Metadata
Title
Protective Effect of 1,25-Dihydroxyvitamin D3 on Lipopolysaccharide-Induced Intestinal Epithelial Tight Junction Injury in Caco-2 Cell Monolayers
Authors
Shan-wen Chen
Peng-yuan Wang
Jing Zhu
Guo-wei Chen
Jun-ling Zhang
Zi-yi Chen
Shuai Zuo
Yu-cun Liu
Yi-sheng Pan
Publication date
01-02-2015
Publisher
Springer US
Published in
Inflammation / Issue 1/2015
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0041-9

Other articles of this Issue 1/2015

Inflammation 1/2015 Go to the issue