Skip to main content
Top
Published in: Inflammation 6/2012

01-12-2012

CD4+CD25+CD127low/− T Cells: A More Specific Treg Population in Human Peripheral Blood

Authors: Ning Yu, Xiaomei Li, Weiya Song, Dongmei Li, Daliang Yu, Xiaofeng Zeng, Mengtao Li, Xiaomei Leng, Xiangpei Li

Published in: Inflammation | Issue 6/2012

Login to get access

Abstract

The quantitative identification and enrichment of viable regulatory T cells (Treg) requires reliable surface markers that are selectively expressed on Treg. Foxp3 is the accepted marker of nTreg, but it cannot be used to isolate cells for functional studies. In this study, we compared four staining profiles of Treg, including CD4+CD25high T cells, CD4+CD39+ T cells, CD4+CD73+ T cells, and CD4+CD25+CD127low/− T cells. We found that CD4+CD25+CD127low/− T cells expressed the highest level of Foxp3 and had the strongest correlation with CD4+CD25+Foxp3+ T cells, the accepted identifying characteristics for “real” nTreg cells. Moreover, functional data showed that CD4+CD25+CD127low/− T cells could effectively suppress the proliferation of CD4+CD25 T cells, suggesting that compared with the other three populations, CD4+CD25+CD127low/− T cells best fit the definition of naturally occurring regulatory T cells in human peripheral blood. Finally, we showed that CD4+CD25+CD127low/− can be used to quantitate Treg cells in individuals with systemic lupus erythematosus supporting the use of CD4+CD25+CD127low/− to identify human Treg cells.
Literature
1.
go back to reference Rouse, B.T. 2007. Regulatory T cells in health and disease. Journal of International Medocine 262: 78–95.CrossRef Rouse, B.T. 2007. Regulatory T cells in health and disease. Journal of International Medocine 262: 78–95.CrossRef
2.
go back to reference Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2001. CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology 167: 1245–1253. Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2001. CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology 167: 1245–1253.
3.
go back to reference Takahashi, T., Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh, M. Iwata, J. Shimizu, and S. Sakaguchi. 1998. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology 10: 1969–1980.PubMedCrossRef Takahashi, T., Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh, M. Iwata, J. Shimizu, and S. Sakaguchi. 1998. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology 10: 1969–1980.PubMedCrossRef
4.
go back to reference Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology 4: 330–336.PubMedCrossRef Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology 4: 330–336.PubMedCrossRef
5.
go back to reference Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.PubMedCrossRef Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.PubMedCrossRef
6.
go back to reference Zheng, Y., and A.Y. Rudensky. 2007. Foxp3 in control of the regulatory T cell lineage. Nature Immunology 8: 457–462.PubMedCrossRef Zheng, Y., and A.Y. Rudensky. 2007. Foxp3 in control of the regulatory T cell lineage. Nature Immunology 8: 457–462.PubMedCrossRef
7.
go back to reference Sitkovsky, M.V., and A. Ohta. 2005. The ‘danger’ sensors that STOP the immune response: The A2 adenosine receptors? Trends in Immunology 26: 299–304.PubMedCrossRef Sitkovsky, M.V., and A. Ohta. 2005. The ‘danger’ sensors that STOP the immune response: The A2 adenosine receptors? Trends in Immunology 26: 299–304.PubMedCrossRef
8.
go back to reference Huang, S., S. Apasov, M. Koshiba, and M. Sitkovsky. 1997. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90: 1600–1610.PubMed Huang, S., S. Apasov, M. Koshiba, and M. Sitkovsky. 1997. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90: 1600–1610.PubMed
9.
go back to reference Armstrong, J.M., J.F. Chen, M.A. Schwarzschild, S. Apasov, P.T. Smith, C. Caldwell, P. Chen, H. Figler, G. Sullivan, S. Fink, J. Linden, and M. Sitkovsky. 2001. Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: Studies of cells from A2A-receptor-gene-deficient mice. Biochemical Journal 354: 123–130.PubMedCrossRef Armstrong, J.M., J.F. Chen, M.A. Schwarzschild, S. Apasov, P.T. Smith, C. Caldwell, P. Chen, H. Figler, G. Sullivan, S. Fink, J. Linden, and M. Sitkovsky. 2001. Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: Studies of cells from A2A-receptor-gene-deficient mice. Biochemical Journal 354: 123–130.PubMedCrossRef
10.
go back to reference Borsellino, G., M. Kleinewietfeld, D. Di Mitri, A. Sternjak, A. Diamantini, R. Giometto, S. Hopner, D. Centonze, G. Bernardi, M.L. Dell'Acqua, P.M. Rossini, L. Battistini, O. Rotzschke, and K. Falk. 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.PubMedCrossRef Borsellino, G., M. Kleinewietfeld, D. Di Mitri, A. Sternjak, A. Diamantini, R. Giometto, S. Hopner, D. Centonze, G. Bernardi, M.L. Dell'Acqua, P.M. Rossini, L. Battistini, O. Rotzschke, and K. Falk. 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.PubMedCrossRef
11.
go back to reference Kobie, J.J., P.R. Shah, L. Yang, J.A. Rebhahn, D.J. Fowell, and T.R. Mosmann. 2006. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. Journal of Immunology 177: 6780–6786. Kobie, J.J., P.R. Shah, L. Yang, J.A. Rebhahn, D.J. Fowell, and T.R. Mosmann. 2006. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. Journal of Immunology 177: 6780–6786.
12.
go back to reference Mizumoto, N., T. Kumamoto, S.C. Robson, J. Sevigny, H. Matsue, K. Enjyoji, and A. Takashima. 2002. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness. Nature Medicine 8: 358–365.PubMedCrossRef Mizumoto, N., T. Kumamoto, S.C. Robson, J. Sevigny, H. Matsue, K. Enjyoji, and A. Takashima. 2002. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness. Nature Medicine 8: 358–365.PubMedCrossRef
13.
go back to reference Mandapathil, M., S. Lang, E. Gorelik, and T.L. Whiteside. 2009. Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. Journal of Immunological Methods 346: 55–63.PubMedCrossRef Mandapathil, M., S. Lang, E. Gorelik, and T.L. Whiteside. 2009. Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. Journal of Immunological Methods 346: 55–63.PubMedCrossRef
14.
go back to reference Alam, M.S., C.C. Kurtz, R.M. Rowlett, B.K. Reuter, E. Wiznerowicz, S. Das, J. Linden, S.E. Crowe, and P.B. Ernst. 2009. CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and Helicobacter felis-induced gastritis in mice. Journal of Infectious Diseases 199: 494–504.PubMedCrossRef Alam, M.S., C.C. Kurtz, R.M. Rowlett, B.K. Reuter, E. Wiznerowicz, S. Das, J. Linden, S.E. Crowe, and P.B. Ernst. 2009. CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and Helicobacter felis-induced gastritis in mice. Journal of Infectious Diseases 199: 494–504.PubMedCrossRef
15.
go back to reference Liu, W., A.L. Putnam, Z. Xu-Yu, G.L. Szot, M.R. Lee, S. Zhu, P.A. Gottlieb, P. Kapranov, T.R. Gingeras, B. Fazekas de St Groth, C. Clayberger, D.M. Soper, S.F. Ziegler, and J.A. Bluestone. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. The Journal of Experimental Medicine 203: 1701–1711.PubMedCrossRef Liu, W., A.L. Putnam, Z. Xu-Yu, G.L. Szot, M.R. Lee, S. Zhu, P.A. Gottlieb, P. Kapranov, T.R. Gingeras, B. Fazekas de St Groth, C. Clayberger, D.M. Soper, S.F. Ziegler, and J.A. Bluestone. 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. The Journal of Experimental Medicine 203: 1701–1711.PubMedCrossRef
16.
go back to reference Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, A. Kelleher, and B. Fazekas de St Groth. 2006. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. The Journal of Experimental Medicine 203: 1693–1700.PubMedCrossRef Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, A. Kelleher, and B. Fazekas de St Groth. 2006. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. The Journal of Experimental Medicine 203: 1693–1700.PubMedCrossRef
17.
go back to reference Hartigan-O'Connor, D.J., C. Poon, E. Sinclair, and J.M. McCune. 2007. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. Journal of Immunological Methods 319: 41–52.PubMedCrossRef Hartigan-O'Connor, D.J., C. Poon, E. Sinclair, and J.M. McCune. 2007. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. Journal of Immunological Methods 319: 41–52.PubMedCrossRef
18.
go back to reference Miyara, M., Z. Amoura, C. Parizot, C. Badoual, K. Dorgham, S. Trad, D. Nochy, P. Debre, J.C. Piette, and G. Gorochov. 2005. Global natural regulatory T cell depletion in active systemic lupus erythematosus. Journal of Immunology 175: 8392–8400. Miyara, M., Z. Amoura, C. Parizot, C. Badoual, K. Dorgham, S. Trad, D. Nochy, P. Debre, J.C. Piette, and G. Gorochov. 2005. Global natural regulatory T cell depletion in active systemic lupus erythematosus. Journal of Immunology 175: 8392–8400.
19.
go back to reference Valencia, X., C. Yarboro, G. Illei, and P.E. Lipsky. 2007. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. Journal of Immunology 178: 2579–2588. Valencia, X., C. Yarboro, G. Illei, and P.E. Lipsky. 2007. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. Journal of Immunology 178: 2579–2588.
20.
go back to reference Barath, S., P. Soltesz, E. Kiss, M. Aleksza, M. Zeher, G. Szegedi, and S. Sipka. 2007. The severity of systemic lupus erythematosus negatively correlates with the increasing number of CD4+CD25(high)FoxP3+ regulatory T cells during repeated plasmapheresis treatments of patients. Autoimmunity 40: 521–528.PubMedCrossRef Barath, S., P. Soltesz, E. Kiss, M. Aleksza, M. Zeher, G. Szegedi, and S. Sipka. 2007. The severity of systemic lupus erythematosus negatively correlates with the increasing number of CD4+CD25(high)FoxP3+ regulatory T cells during repeated plasmapheresis treatments of patients. Autoimmunity 40: 521–528.PubMedCrossRef
21.
go back to reference Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 2005. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology 155: 1151–1164. Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 2005. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology 155: 1151–1164.
22.
go back to reference Shimizu, J., S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi. 2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology 3: 135–142.PubMedCrossRef Shimizu, J., S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi. 2002. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology 3: 135–142.PubMedCrossRef
23.
go back to reference Salomon, B., and J.A. Bluestone. 2001. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annual Review of Immunology 19: 225–252.PubMedCrossRef Salomon, B., and J.A. Bluestone. 2001. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annual Review of Immunology 19: 225–252.PubMedCrossRef
24.
go back to reference Kataoka, H., S. Takahashi, K. Takase, S. Yamasaki, T. Yokosuka, T. Koike, and T. Saito. 2005. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. International Immunology 17: 421–427.PubMedCrossRef Kataoka, H., S. Takahashi, K. Takase, S. Yamasaki, T. Yokosuka, T. Koike, and T. Saito. 2005. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. International Immunology 17: 421–427.PubMedCrossRef
25.
go back to reference Ronchetti, S., O. Zollo, S. Bruscoli, M. Agostini, R. Bianchini, G. Nocentini, E. Ayroldi, and C. Riccardi. 2004. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. European Journal of Immunology 34: 613–622.PubMedCrossRef Ronchetti, S., O. Zollo, S. Bruscoli, M. Agostini, R. Bianchini, G. Nocentini, E. Ayroldi, and C. Riccardi. 2004. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. European Journal of Immunology 34: 613–622.PubMedCrossRef
26.
go back to reference Tang, Q., E.K. Boden, K.J. Henriksen, H. Bour-Jordan, M. Bi, and J.A. Bluestone. 2004. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. European Journal of Immunology 34: 2996–3005.PubMedCrossRef Tang, Q., E.K. Boden, K.J. Henriksen, H. Bour-Jordan, M. Bi, and J.A. Bluestone. 2004. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. European Journal of Immunology 34: 2996–3005.PubMedCrossRef
27.
go back to reference Ndhlovu, L.C., F.E. Leal, I.G. Eccles-James, A.R. Jha, M. Lanteri, P.J. Norris, J.D. Barbour, D.J. Wachter, J. Andersson, K. Tasken, E.A. Torheim, E.M. Aandahl, E.G. Kallas, and D.F. Nixon. 2010. A novel human CD4+ T-cell inducer subset with potent immunostimulatory properties. European Journal of Immunology 40: 134–141.PubMedCrossRef Ndhlovu, L.C., F.E. Leal, I.G. Eccles-James, A.R. Jha, M. Lanteri, P.J. Norris, J.D. Barbour, D.J. Wachter, J. Andersson, K. Tasken, E.A. Torheim, E.M. Aandahl, E.G. Kallas, and D.F. Nixon. 2010. A novel human CD4+ T-cell inducer subset with potent immunostimulatory properties. European Journal of Immunology 40: 134–141.PubMedCrossRef
28.
go back to reference Klein, S., C.C. Kretz, P.H. Krammer, and A. Kuhn. 2010. CD127(low/-) and FoxP3(+) expression levels characterize different regulatory T-cell populations in human peripheral blood. Journal of Investigative Dermatology 130: 492–499.PubMedCrossRef Klein, S., C.C. Kretz, P.H. Krammer, and A. Kuhn. 2010. CD127(low/-) and FoxP3(+) expression levels characterize different regulatory T-cell populations in human peripheral blood. Journal of Investigative Dermatology 130: 492–499.PubMedCrossRef
Metadata
Title
CD4+CD25+CD127low/− T Cells: A More Specific Treg Population in Human Peripheral Blood
Authors
Ning Yu
Xiaomei Li
Weiya Song
Dongmei Li
Daliang Yu
Xiaofeng Zeng
Mengtao Li
Xiaomei Leng
Xiangpei Li
Publication date
01-12-2012
Publisher
Springer US
Published in
Inflammation / Issue 6/2012
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-012-9496-8

Other articles of this Issue 6/2012

Inflammation 6/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.