Skip to main content
Top
Published in: Inflammation 6/2009

01-12-2009

Association of Ang-2 with Integrin β2 Controls Ang-2/PDGF-BB-Dependent Upregulation of Human Peripheral Blood Monocyte Fibrinolysis

Authors: Louise Bezuidenhout, Peter Zilla, Neil Davies

Published in: Inflammation | Issue 6/2009

Login to get access

Abstract

Angiopoietin-2 (Ang-2), an angiogenic factor that is generally considered an autocrine factor for endothelial cells was shown in a previous study to upregulate peripheral blood monocyte fibrinolysis in concert with platelet-derived growth factor-BB (PDGF-BB). This upregulation of fibrinolysis was demonstrated to be due to upregulation of elements of the matrix metalloproteinase and serine protease fibrinolytic pathways. The manner in which Ang-2 interacts with monocytes was not elucidated though no expression of the angiopoietin receptor tyrosine kinase Tie-2 was found for monocytes. In this study Ang-2 was found to bind to integrin β2, and functional inhibition of integrin β2 eliminated Ang-2/PDGF-BB-mediated upregulation of monocyte fibrin invasion. Additionally, integrin β2 blockade significantly inhibited the Ang-2/PDGF-BB based increase in matrix metalloproteinase-9 (MMP-9) and membrane type-1-MMP (MT1-MMP). Furthermore, Ang-2/PDGF-BB-upregulated urokinase plasminogen-activator receptor (uPAR) was shown to be associated in complexes with integrin β2. In addition, Ang-2 was shown to upregulate PDGFR-β expression in monocytes. Therefore several components of the mechanism via which the novel interaction of Ang-2 and PDGF-BB with monocytes occurs have been identified.
Literature
1.
go back to reference Maisonpierre, P. C., C. Suri, P. F. Jones, S. Bartunkova, S. J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T. H. Aldrich, N. Papadopolouss, T. J. Daly, S. Davis, T. N. Sato, and G. D. Yancopolous. 1997. Angiopoietin-2, a natural antagonist for Tie-2 that disrupts in vivo angiogenesis. Science 277:55–60.CrossRefPubMed Maisonpierre, P. C., C. Suri, P. F. Jones, S. Bartunkova, S. J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T. H. Aldrich, N. Papadopolouss, T. J. Daly, S. Davis, T. N. Sato, and G. D. Yancopolous. 1997. Angiopoietin-2, a natural antagonist for Tie-2 that disrupts in vivo angiogenesis. Science 277:55–60.CrossRefPubMed
2.
go back to reference Holash, J. M. P. C., D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand. 1999. Vessel cooption, regression and growth in tumours mediated by angiopoietins and VEGF. Science 284:1994–1998.CrossRefPubMed Holash, J. M. P. C., D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopoulos, and S. J. Wiegand. 1999. Vessel cooption, regression and growth in tumours mediated by angiopoietins and VEGF. Science 284:1994–1998.CrossRefPubMed
3.
go back to reference Dvorak, H. F., L. F. Brown, M. Detmar, and A. M. Dvorak. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am. J. Pathol. 146:1029–1039.PubMed Dvorak, H. F., L. F. Brown, M. Detmar, and A. M. Dvorak. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am. J. Pathol. 146:1029–1039.PubMed
4.
go back to reference Fiedler, U., M. Scharpfenecker, S. Koidl, A. Hegen, V. Grunow, J. M. Schmidt, W. Kriz, G. Thurston, and H. G. Augustin. 2004. The Tie-2 ligand Angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103:4150–4156.CrossRefPubMed Fiedler, U., M. Scharpfenecker, S. Koidl, A. Hegen, V. Grunow, J. M. Schmidt, W. Kriz, G. Thurston, and H. G. Augustin. 2004. The Tie-2 ligand Angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103:4150–4156.CrossRefPubMed
5.
go back to reference Fiedler, U., et al 2006. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat. Med. 12:235–239.CrossRefPubMed Fiedler, U., et al 2006. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat. Med. 12:235–239.CrossRefPubMed
6.
go back to reference Bezuidenhout, L., M. Bracher, G. Davison, P. Zilla, and N. Davies. 2007. Ang-2 and PDGF-BB cooperatively stimulate human peripheral blood monocyte fibrinolysis. J. Leukoc. Biol. 81:1496–1503.CrossRefPubMed Bezuidenhout, L., M. Bracher, G. Davison, P. Zilla, and N. Davies. 2007. Ang-2 and PDGF-BB cooperatively stimulate human peripheral blood monocyte fibrinolysis. J. Leukoc. Biol. 81:1496–1503.CrossRefPubMed
7.
go back to reference Hu, B., M. J. Jarzynka, P. Guo, Y. Imanishi, D. D. Schlaepfer, and S. Y. Cheng. 2006. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res. 66:775–783.CrossRefPubMed Hu, B., M. J. Jarzynka, P. Guo, Y. Imanishi, D. D. Schlaepfer, and S. Y. Cheng. 2006. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res. 66:775–783.CrossRefPubMed
8.
go back to reference Carlson, T. R., Y. Feng, P. C. Maisonpierre, M. Mrksich, and A. O. Morla. 2001. Direct cell adhesion to the angiopoietins mediated by integrins. J. Biol. Chem. 276:26516–26525.CrossRefPubMed Carlson, T. R., Y. Feng, P. C. Maisonpierre, M. Mrksich, and A. O. Morla. 2001. Direct cell adhesion to the angiopoietins mediated by integrins. J. Biol. Chem. 276:26516–26525.CrossRefPubMed
9.
go back to reference Dallabrida, S. M., N. Ismail, J. R. Oberle, B. E. Himes, and M. A. Rupnick. 2005. Angiopoietin-1 promotes cardiac and skeletal myocyte surival through integrins. Circulation Res. 96:e8–e24.CrossRefPubMed Dallabrida, S. M., N. Ismail, J. R. Oberle, B. E. Himes, and M. A. Rupnick. 2005. Angiopoietin-1 promotes cardiac and skeletal myocyte surival through integrins. Circulation Res. 96:e8–e24.CrossRefPubMed
10.
go back to reference Guo, P., et al 2005. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5g2 correlates with the invasiveness of human glioma. Am. J. Pathol. 166:877–890.PubMed Guo, P., et al 2005. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5g2 correlates with the invasiveness of human glioma. Am. J. Pathol. 166:877–890.PubMed
11.
go back to reference Hu, B., P. Guo, Q. Fang, H.-Q. Tao, D. Wang, M. Nagane, H.-J. S. Huang, Y. Gunji, R. Nishikawa, K. Alitalo, W. K. Cavenee, and S.-Y. Cheng. 2003. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloproteinase-2. PNAS 100:8904–8909.CrossRefPubMed Hu, B., P. Guo, Q. Fang, H.-Q. Tao, D. Wang, M. Nagane, H.-J. S. Huang, Y. Gunji, R. Nishikawa, K. Alitalo, W. K. Cavenee, and S.-Y. Cheng. 2003. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloproteinase-2. PNAS 100:8904–8909.CrossRefPubMed
12.
go back to reference Simon, D. I. R. N. K., H. Xu, Y. Wei, O. Majdic, E. Ronne, L. Kobzik, and H. A. Chapman. 1996. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood 88:3185–3194.PubMed Simon, D. I. R. N. K., H. Xu, Y. Wei, O. Majdic, E. Ronne, L. Kobzik, and H. A. Chapman. 1996. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood 88:3185–3194.PubMed
13.
go back to reference Sitrin, R. G. T. R. F., H. R. Petty, T. G. Brock, S. B. Shollenberger, E. Albrecht, and M. R. Gyetko. 1996. The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J. Clin. Invest. 97:1942–1951.CrossRefPubMed Sitrin, R. G. T. R. F., H. R. Petty, T. G. Brock, S. B. Shollenberger, E. Albrecht, and M. R. Gyetko. 1996. The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J. Clin. Invest. 97:1942–1951.CrossRefPubMed
14.
go back to reference Zhang, H., R. W. Colman, and N. Sheng. 2003. Regulation of CD11b/CD18 (Mac-1) adhesion to fibrinogen by urokinase receptor (uPAR). Inflamm. Res. 52:86–93.CrossRefPubMed Zhang, H., R. W. Colman, and N. Sheng. 2003. Regulation of CD11b/CD18 (Mac-1) adhesion to fibrinogen by urokinase receptor (uPAR). Inflamm. Res. 52:86–93.CrossRefPubMed
15.
go back to reference Gea, C. 2002. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin avb3 and induces blood vessel formation in vivo. J. Biol. Chem. 277:17281–17290.CrossRef Gea, C. 2002. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin avb3 and induces blood vessel formation in vivo. J. Biol. Chem. 277:17281–17290.CrossRef
16.
go back to reference Yokoyama, K., H. P. Erickson, Y. Ikeda, and Y. Takada. 2000. Identification of amino acid sequences in fibrinogen gamma-chain and tenascin C C-terminal domains critical for binding to integrin alphav beta3. J. Biol. Chem. 275:16891–16898.CrossRefPubMed Yokoyama, K., H. P. Erickson, Y. Ikeda, and Y. Takada. 2000. Identification of amino acid sequences in fibrinogen gamma-chain and tenascin C C-terminal domains critical for binding to integrin alphav beta3. J. Biol. Chem. 275:16891–16898.CrossRefPubMed
17.
go back to reference Ploplis, V. A., P. Carmeliet, S. Vazirzadeh, I. Vlaenderen, L. Moons, E. F. Plow, and D. Collen. 1995. Effects of disruption of the plasminogen gene on thrombosis, growth and health in mice. Circulation 92:2585–2893.PubMed Ploplis, V. A., P. Carmeliet, S. Vazirzadeh, I. Vlaenderen, L. Moons, E. F. Plow, and D. Collen. 1995. Effects of disruption of the plasminogen gene on thrombosis, growth and health in mice. Circulation 92:2585–2893.PubMed
18.
go back to reference Moldovan, N. I., P. J. Goldschmist-Clermont, J. Parker-Thornburg, S. D. Shapiro, and P. E. Kolattukudy. 2000. Contribution of monocytes/macrophages to compensatory neovascularization. Circulation Res. 87:387–384. Moldovan, N. I., P. J. Goldschmist-Clermont, J. Parker-Thornburg, S. D. Shapiro, and P. E. Kolattukudy. 2000. Contribution of monocytes/macrophages to compensatory neovascularization. Circulation Res. 87:387–384.
19.
20.
go back to reference Estreicher, A., J. Muhlhauser, J. L. Carpentier, L. Orci, and J. D. Vassalli. 1990. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge fo migrating monocytes and promotes degradation of enzyme inhibitor complexes. J. Cell Biol. 111:783–792.CrossRefPubMed Estreicher, A., J. Muhlhauser, J. L. Carpentier, L. Orci, and J. D. Vassalli. 1990. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge fo migrating monocytes and promotes degradation of enzyme inhibitor complexes. J. Cell Biol. 111:783–792.CrossRefPubMed
21.
go back to reference Matias-Roman, S., B. G. Galavez, L. Genis, M. Yanez-Mo, G. de la Rosa, S. Sanchez-Mateos, F. Sanchez-Madrid, and A. G. Arroyo. 2005. Membrane type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium. Blood 105:3656–3964.CrossRef Matias-Roman, S., B. G. Galavez, L. Genis, M. Yanez-Mo, G. de la Rosa, S. Sanchez-Mateos, F. Sanchez-Madrid, and A. G. Arroyo. 2005. Membrane type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium. Blood 105:3656–3964.CrossRef
22.
go back to reference Menshikov, M. Y., E. P. Elizarova, E. Kudryashova, A. V. Timofeyeva, Y. Khaspekov, R. S Beabealashvilly, and A. Bobik. 2004. Plasmin-independent gelatinase B (matrix metalloproteinase-9) release by monocytes under the influence of urokinase. Biochemistry (Moscow) 66:954–959.CrossRef Menshikov, M. Y., E. P. Elizarova, E. Kudryashova, A. V. Timofeyeva, Y. Khaspekov, R. S Beabealashvilly, and A. Bobik. 2004. Plasmin-independent gelatinase B (matrix metalloproteinase-9) release by monocytes under the influence of urokinase. Biochemistry (Moscow) 66:954–959.CrossRef
23.
go back to reference Menshikov, M. Y., E. P. Elizarova, K. Plakida, A. Timofeeva, G. Khaspekov, R. Beabealashvilli, A. Bobik, and V. Tkachuk. 2002. Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis. Biochem. J. 367:833–839.CrossRefPubMed Menshikov, M. Y., E. P. Elizarova, K. Plakida, A. Timofeeva, G. Khaspekov, R. Beabealashvilli, A. Bobik, and V. Tkachuk. 2002. Urokinase upregulates matrix metalloproteinase-9 expression in THP-1 monocytes via gene transcription and protein synthesis. Biochem. J. 367:833–839.CrossRefPubMed
24.
go back to reference Blasi, F., and P. Carmeliet. 2002. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3:932–943.CrossRefPubMed Blasi, F., and P. Carmeliet. 2002. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol. 3:932–943.CrossRefPubMed
25.
go back to reference Tang, M. L., A. Vararattanavech, and S. M. Tan. 2008. Urokinase-type plasminogen activator receptor induces conformational changes in the integrin alphaMbeta2 headpiece and reorientation of its transmembrane domains. J. Biol. Chem. 283:25392–25403.CrossRefPubMed Tang, M. L., A. Vararattanavech, and S. M. Tan. 2008. Urokinase-type plasminogen activator receptor induces conformational changes in the integrin alphaMbeta2 headpiece and reorientation of its transmembrane domains. J. Biol. Chem. 283:25392–25403.CrossRefPubMed
26.
go back to reference Lobov, I. B., P. C. Brooks, and R. A. Lang. 2002. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. PNAS 99:11205–11210.CrossRefPubMed Lobov, I. B., P. C. Brooks, and R. A. Lang. 2002. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. PNAS 99:11205–11210.CrossRefPubMed
Metadata
Title
Association of Ang-2 with Integrin β2 Controls Ang-2/PDGF-BB-Dependent Upregulation of Human Peripheral Blood Monocyte Fibrinolysis
Authors
Louise Bezuidenhout
Peter Zilla
Neil Davies
Publication date
01-12-2009
Publisher
Springer US
Published in
Inflammation / Issue 6/2009
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-009-9148-9

Other articles of this Issue 6/2009

Inflammation 6/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.