Skip to main content
Top
Published in: Heart Failure Reviews 6/2020

01-11-2020 | Heart Failure

Long non-coding RNAs in cardiac hypertrophy

Authors: Jinghui Sun, Chenglong Wang

Published in: Heart Failure Reviews | Issue 6/2020

Login to get access

Abstract

Cardiac hypertrophy (CH) is generally considered adaptive responses that may occur after myocardial infarction, pressure overload, volume overload, inflammatory heart muscle disease, or idiopathic dilated cardiomyopathy, whereas long-term stimulation eventually leads to heart failure (HF). However, the current molecular mechanisms involved in CH are unclear. Recently, increasing evidences reveal that long non-coding RNAs (lncRNAs) play vital roles in CH. Different lncRNAs can promote or inhibit the pathological process of CH by different mechanisms, while the regulation of lncRNAs expression can improve CH. Thus, CH-related lncRNAs may become a novel field of research on CH.
Literature
1.
go back to reference Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62:365–383PubMed Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62:365–383PubMed
2.
go back to reference Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMed Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMed
3.
go back to reference Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DJ, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMed Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DJ, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:1810–1852PubMed
4.
go back to reference Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476PubMedPubMedCentral Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476PubMedPubMedCentral
5.
go back to reference Dunham IKAAS (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74 Dunham IKAAS (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74
6.
go back to reference Da SL, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13:97–114 Da SL, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13:97–114
7.
go back to reference Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X (2015) A global view of network of lncRNAs and their binding proteins. Mol BioSyst 11:656–663PubMed Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X (2015) A global view of network of lncRNAs and their binding proteins. Mol BioSyst 11:656–663PubMed
8.
go back to reference Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726PubMedPubMedCentral Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726PubMedPubMedCentral
9.
go back to reference Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470:284–288PubMedPubMedCentral Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470:284–288PubMedPubMedCentral
10.
go back to reference Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM (2006) A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A 103:5781–5786PubMedPubMedCentral Ginger MR, Shore AN, Contreras A, Rijnkels M, Miller J, Gonzalez-Rimbau MF, Rosen JM (2006) A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A 103:5781–5786PubMedPubMedCentral
11.
go back to reference Kanduri C (2011) Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol 22:343–350PubMed Kanduri C (2011) Kcnq1ot1: a chromatin regulatory RNA. Semin Cell Dev Biol 22:343–350PubMed
12.
go back to reference Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369PubMedPubMedCentral Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369PubMedPubMedCentral
13.
go back to reference Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159PubMed Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159PubMed
14.
go back to reference Li X, Zhang L, Liang J (2016) Unraveling the expression profiles of long noncoding RNAs in rat cardiac hypertrophy and functions of lncRNA BC088254 in cardiac hypertrophy induced by transverse aortic constriction. Cardiology 134:84–98PubMed Li X, Zhang L, Liang J (2016) Unraveling the expression profiles of long noncoding RNAs in rat cardiac hypertrophy and functions of lncRNA BC088254 in cardiac hypertrophy induced by transverse aortic constriction. Cardiology 134:84–98PubMed
15.
go back to reference Sun L, Zhang Y, Zhang Y, Gu Y, Xuan L, Liu S et al (2014) Expression profile of long non-coding RNAs in a mouse model of cardiac hypertrophy. Int J Cardiol 177:73–75PubMed Sun L, Zhang Y, Zhang Y, Gu Y, Xuan L, Liu S et al (2014) Expression profile of long non-coding RNAs in a mouse model of cardiac hypertrophy. Int J Cardiol 177:73–75PubMed
16.
go back to reference Zhang Y, Su L, Zhang K (2016) Transcriptional Effects of E3 Ligase Nrdp1 on Hypertrophy in neonatal rat cardiomyocytes by microarray and integrated gene network analysis. Cardiology 135:203–215PubMed Zhang Y, Su L, Zhang K (2016) Transcriptional Effects of E3 Ligase Nrdp1 on Hypertrophy in neonatal rat cardiomyocytes by microarray and integrated gene network analysis. Cardiology 135:203–215PubMed
17.
go back to reference Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao YG et al (2016) Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget 7:10827–10840PubMedPubMedCentral Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao YG et al (2016) Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget 7:10827–10840PubMedPubMedCentral
18.
go back to reference Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388PubMed Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388PubMed
19.
go back to reference Ha T, Hua F, Li Y, Ma J, Gao X, Kelley J et al (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290:H985–H994PubMed Ha T, Hua F, Li Y, Ma J, Gao X, Kelley J et al (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290:H985–H994PubMed
20.
go back to reference Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432PubMed Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen RE, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MP, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B (2013) Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 128:1420–1432PubMed
21.
go back to reference Wo Y, Guo J, Li P, Yang H, Wo J (2018) Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc Pathol 35:29–36PubMed Wo Y, Guo J, Li P, Yang H, Wo J (2018) Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc Pathol 35:29–36PubMed
22.
go back to reference Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMed Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600PubMed
23.
24.
go back to reference Taniyama Y, Ito M, Sato K, Kuester C, Veit K, Tremp G, Liao R, Colucci WS, Ivashchenko Y, Walsh K, Shiojima I (2005) Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol 38:375–385PubMed Taniyama Y, Ito M, Sato K, Kuester C, Veit K, Tremp G, Liao R, Colucci WS, Ivashchenko Y, Walsh K, Shiojima I (2005) Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol 38:375–385PubMed
25.
go back to reference Yu X, Zou T, Zou L, Jin J, Xiao F, Yang J (2017) Plasma long noncoding RNA urothelial carcinoma associated 1 predicts poor prognosis in chronic heart failure patients. Med Sci Monit 23:2226–2231PubMedPubMedCentral Yu X, Zou T, Zou L, Jin J, Xiao F, Yang J (2017) Plasma long noncoding RNA urothelial carcinoma associated 1 predicts poor prognosis in chronic heart failure patients. Med Sci Monit 23:2226–2231PubMedPubMedCentral
26.
go back to reference Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8:130–139PubMedPubMedCentral Zhou G, Li C, Feng J, Zhang J, Fang Y (2018) lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8:130–139PubMedPubMedCentral
27.
go back to reference Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, Vaudo G, Mannarino MR, Mannarino E (2007) Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens 25:2093–2099PubMed Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, Vaudo G, Mannarino MR, Mannarino E (2007) Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens 25:2093–2099PubMed
28.
go back to reference Wen ZQ, Li SH, Shui X, Tang LL, Zheng JR, Chen L (2019) LncRNA PEG10 aggravates cardiac hypertrophy through regulating HOXA9. Eur Rev Med Pharmacol Sci 23:281–286PubMed Wen ZQ, Li SH, Shui X, Tang LL, Zheng JR, Chen L (2019) LncRNA PEG10 aggravates cardiac hypertrophy through regulating HOXA9. Eur Rev Med Pharmacol Sci 23:281–286PubMed
29.
go back to reference Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11:e152767 Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11:e152767
30.
go back to reference Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618PubMed Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618PubMed
31.
go back to reference Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:322r–326r Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:322r–326r
32.
go back to reference McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, Kirchof A, Gatti E, Helfrich MH, Wakatsuki S, Behrends C, Pierre P, Dikic I (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54PubMed McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, Kirchof A, Gatti E, Helfrich MH, Wakatsuki S, Behrends C, Pierre P, Dikic I (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54PubMed
33.
go back to reference Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600–606PubMed Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Takuji Shirasawa TS, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600–606PubMed
34.
go back to reference Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S et al (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078PubMed Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S et al (2012) The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3:1078PubMed
35.
go back to reference Wang Y, Cao R, Yang W, Qi B (2019) SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 234:14319–14329PubMed Wang Y, Cao R, Yang W, Qi B (2019) SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 234:14319–14329PubMed
36.
go back to reference Dong ZX, Wan L, Wang RJ, Shi YQ, Liu GZ, Zheng SJ, Hou HL, Han W, Hai X (2017) (-)-Epicatechin Suppresses angiotensin II-induced cardiac hypertrophy via the activation of the SP1/SIRT1 signaling pathway. Cell Physiol Biochem 41:2004–2015PubMed Dong ZX, Wan L, Wang RJ, Shi YQ, Liu GZ, Zheng SJ, Hou HL, Han W, Hai X (2017) (-)-Epicatechin Suppresses angiotensin II-induced cardiac hypertrophy via the activation of the SP1/SIRT1 signaling pathway. Cell Physiol Biochem 41:2004–2015PubMed
37.
go back to reference Hu X, Li T, Zhang C, Liu Y, Xu M, Wang W, Jia Z, Ma K, Zhang Y, Zhou C (2011) GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model. J Cell Mol Med 15:1865–1877PubMedPubMedCentral Hu X, Li T, Zhang C, Liu Y, Xu M, Wang W, Jia Z, Ma K, Zhang Y, Zhou C (2011) GATA4 regulates ANF expression synergistically with Sp1 in a cardiac hypertrophy model. J Cell Mol Med 15:1865–1877PubMedPubMedCentral
38.
go back to reference Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T et al (2018) SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 9:982PubMedPubMedCentral Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T et al (2018) SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis 9:982PubMedPubMedCentral
39.
go back to reference Dong H, Wang W, Mo S, Chen R, Zou K, Han J et al (2018) SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res 37:202PubMedPubMedCentral Dong H, Wang W, Mo S, Chen R, Zou K, Han J et al (2018) SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J Exp Clin Cancer Res 37:202PubMedPubMedCentral
40.
go back to reference Zhang J, Liang Y, Huang X, Guo X, Liu Y, Zhong J et al (2019) STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci Rep 9:460PubMedPubMedCentral Zhang J, Liang Y, Huang X, Guo X, Liu Y, Zhong J et al (2019) STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci Rep 9:460PubMedPubMedCentral
41.
go back to reference Zhang Z, Zhang L, Zhou Y, Li L, Zhao J, Qin W et al (2019) Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis 10:552PubMedPubMedCentral Zhang Z, Zhang L, Zhou Y, Li L, Zhao J, Qin W et al (2019) Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis 10:552PubMedPubMedCentral
42.
go back to reference Lino CC, Kessinger CW, Cheng Y, MacDonald C, MacGillivray T, Ghoshhajra B et al (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9:1009 Lino CC, Kessinger CW, Cheng Y, MacDonald C, MacGillivray T, Ghoshhajra B et al (2018) An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun 9:1009
43.
go back to reference Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139PubMedPubMedCentral Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139PubMedPubMedCentral
44.
go back to reference Joh RI, Palmieri CM, Hill IT, Motamedi M (2014) Regulation of histone methylation by noncoding RNAs. Biochim Biophys Acta 1839:1385–1394PubMedPubMedCentral Joh RI, Palmieri CM, Hill IT, Motamedi M (2014) Regulation of histone methylation by noncoding RNAs. Biochim Biophys Acta 1839:1385–1394PubMedPubMedCentral
45.
go back to reference Gould A (1997) Functions of mammalian Polycomb group and trithorax group related genes. Curr Opin Genet Dev 7:488–494PubMed Gould A (1997) Functions of mammalian Polycomb group and trithorax group related genes. Curr Opin Genet Dev 7:488–494PubMed
46.
go back to reference Zhu XH, Yuan YX, Rao SL, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660PubMed Zhu XH, Yuan YX, Rao SL, Wang P (2016) LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 20:3653–3660PubMed
47.
go back to reference Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H (2015) MicroRNA-150 Protects against pressure overload-induced cardiac hypertrophy. J Cell Biochem 116:2166–2176PubMed Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H (2015) MicroRNA-150 Protects against pressure overload-induced cardiac hypertrophy. J Cell Biochem 116:2166–2176PubMed
48.
go back to reference Deng P, Chen L, Liu Z, Ye P, Wang S, Wu J, Yao Y, Sun Y, Huang X, Ren L, Zhang A, Wang K, Wu C, Yue Z, Xu X, Chen M (2016) MicroRNA-150 inhibits the activation of cardiac fibroblasts by regulating c-Myb. Cell Physiol Biochem 38:2103–2122PubMed Deng P, Chen L, Liu Z, Ye P, Wang S, Wu J, Yao Y, Sun Y, Huang X, Ren L, Zhang A, Wang K, Wu C, Yue Z, Xu X, Chen M (2016) MicroRNA-150 inhibits the activation of cardiac fibroblasts by regulating c-Myb. Cell Physiol Biochem 38:2103–2122PubMed
49.
go back to reference Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116:1143–1156PubMed Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116:1143–1156PubMed
50.
go back to reference Shen Y, Dong LF, Zhou RM, Yao J, Song YC, Yang H et al (2016) Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. J Cell Mol Med 20:537–548PubMedPubMedCentral Shen Y, Dong LF, Zhou RM, Yao J, Song YC, Yang H et al (2016) Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. J Cell Mol Med 20:537–548PubMedPubMedCentral
51.
go back to reference Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517PubMed Li Y, Wang J, Sun L, Zhu S (2018) LncRNA myocardial infarction-associated transcript (MIAT) contributed to cardiac hypertrophy by regulating TLR4 via miR-93. Eur J Pharmacol 818:508–517PubMed
52.
go back to reference Ehrentraut H, Weber C, Ehrentraut S, Schwederski M, Boehm O, Knuefermann P et al (2011) The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur J Heart Fail 13:602–610PubMed Ehrentraut H, Weber C, Ehrentraut S, Schwederski M, Boehm O, Knuefermann P et al (2011) The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. Eur J Heart Fail 13:602–610PubMed
53.
go back to reference Katare PB, Bagul PK, Dinda AK, Banerjee SK (2017) Toll-Like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Front Immunol 8:719PubMedPubMedCentral Katare PB, Bagul PK, Dinda AK, Banerjee SK (2017) Toll-Like receptor 4 inhibition improves oxidative stress and mitochondrial health in isoproterenol-induced cardiac hypertrophy in rats. Front Immunol 8:719PubMedPubMedCentral
54.
go back to reference Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, William Browder I, Kao RL, Li C (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68:224–234PubMed Ha T, Li Y, Hua F, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, William Browder I, Kao RL, Li C (2005) Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc Res 68:224–234PubMed
55.
go back to reference Li C, Zhou G, Feng J, Zhang J, Hou L, Cheng Z (2018) Upregulation of lncRNA VDR/CASC15 induced by facilitates cardiac hypertrophy through modulating miR-432-5p/TLR4 axis. Biochem Biophys Res Commun 503:2407–2414PubMed Li C, Zhou G, Feng J, Zhang J, Hou L, Cheng Z (2018) Upregulation of lncRNA VDR/CASC15 induced by facilitates cardiac hypertrophy through modulating miR-432-5p/TLR4 axis. Biochem Biophys Res Commun 503:2407–2414PubMed
56.
go back to reference Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31:2370–2377PubMedPubMedCentral Davis-Dusenbery BN, Wu C, Hata A (2011) Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol 31:2370–2377PubMedPubMedCentral
57.
go back to reference Jin L, Lin X, Yang L, Fan X, Wang W, Li S, Li J, Liu X, Bao M, Cui X, Yang J, Cui Q, Geng B, Cai J (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension 71:262–272PubMed Jin L, Lin X, Yang L, Fan X, Wang W, Li S, Li J, Liu X, Bao M, Cui X, Yang J, Cui Q, Geng B, Cai J (2018) AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension. Hypertension 71:262–272PubMed
58.
go back to reference Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358PubMedPubMedCentral Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358PubMedPubMedCentral
59.
go back to reference Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu X, Zhuang S (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187PubMed Lai Y, He S, Ma L, Lin H, Ren B, Ma J, Zhu X, Zhuang S (2017) HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432:179–187PubMed
60.
go back to reference Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260PubMed Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260PubMed
61.
go back to reference Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HY, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos A, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110:737–749PubMed Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HY, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos A, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110:737–749PubMed
62.
go back to reference Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N et al (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282:35078–35087PubMed Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N et al (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282:35078–35087PubMed
63.
go back to reference Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347PubMedPubMedCentral Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347PubMedPubMedCentral
64.
go back to reference Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C (2017) LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget 8:47565–47573PubMedPubMedCentral Shao M, Chen G, Lv F, Liu Y, Tian H, Tao R, Jiang R, Zhang W, Zhuo C (2017) LncRNA TINCR attenuates cardiac hypertrophy by epigenetically silencing CaMKII. Oncotarget 8:47565–47573PubMedPubMedCentral
65.
go back to reference Yuan Y, Wang J, Chen Q, Wu Q, Deng W, Zhou H, Shen D (2019) Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim Biophys Acta Mol basis Dis 1865:1421–1427PubMed Yuan Y, Wang J, Chen Q, Wu Q, Deng W, Zhou H, Shen D (2019) Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling. Biochim Biophys Acta Mol basis Dis 1865:1421–1427PubMed
66.
go back to reference Dai J, Shen DF, Bian ZY, Zhou H, Gan HW, Zong J et al (2013) IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One 8:e53412PubMedPubMedCentral Dai J, Shen DF, Bian ZY, Zhou H, Gan HW, Zong J et al (2013) IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS One 8:e53412PubMedPubMedCentral
67.
go back to reference Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J, Yu J (2014) lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 281:3766–3775PubMed Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J, Yu J (2014) lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 281:3766–3775PubMed
68.
go back to reference Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665PubMedPubMedCentral Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665PubMedPubMedCentral
69.
go back to reference Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, Li YX, Li D, Peng C, Wang YL (2012) The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol 9:1002–1010PubMed Gao WL, Liu M, Yang Y, Yang H, Liao Q, Bai Y, Li YX, Li D, Peng C, Wang YL (2012) The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biol 9:1002–1010PubMed
70.
go back to reference Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65PubMed Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65PubMed
71.
go back to reference Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473PubMedPubMedCentral Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473PubMedPubMedCentral
72.
go back to reference Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397PubMed Lv L, Li T, Li X, Xu C, Liu Q, Jiang H, Li Y, Liu Y, Yan H, Huang Q, Zhou Y, Zhang M, Shan H, Liang H (2018) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397PubMed
73.
go back to reference Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200PubMedPubMedCentral Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200PubMedPubMedCentral
74.
go back to reference Guan X, Wang L, Liu Z, Guo X, Jiang Y, Lu Y, Peng Y, Liu T, Yang B, Shan H, Zhang Y, Xu C (2016) miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99:207–217PubMed Guan X, Wang L, Liu Z, Guo X, Jiang Y, Lu Y, Peng Y, Liu T, Yang B, Shan H, Zhang Y, Xu C (2016) miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99:207–217PubMed
75.
go back to reference Yu H, Guo Y, Mi L, Wang X, Li L, Gao W (2011) Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther 16:205–211PubMed Yu H, Guo Y, Mi L, Wang X, Li L, Gao W (2011) Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther 16:205–211PubMed
76.
go back to reference Zhao Y, Ponnusamy M, Liu C, Tian J, Dong Y, Gao J, Wang C, Zhang Y, Zhang L, Wang K, Li P (2017) MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochim Biophys Acta Mol basis Dis 1863:2871–2881PubMed Zhao Y, Ponnusamy M, Liu C, Tian J, Dong Y, Gao J, Wang C, Zhang Y, Zhang L, Wang K, Li P (2017) MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochim Biophys Acta Mol basis Dis 1863:2871–2881PubMed
77.
go back to reference Wang Z, Niu Q, Peng X, Li M, Liu K, Liu Y, Liu J, Jin F, Li X, Wei Y (2016) Candesartan cilexetil attenuated cardiac remodeling by improving expression and function of mitofusin 2 in SHR. Int J Cardiol 214:348–357PubMed Wang Z, Niu Q, Peng X, Li M, Liu K, Liu Y, Liu J, Jin F, Li X, Wei Y (2016) Candesartan cilexetil attenuated cardiac remodeling by improving expression and function of mitofusin 2 in SHR. Int J Cardiol 214:348–357PubMed
78.
go back to reference Chen Y, Liu X, Chen L, Chen W, Zhang Y, Chen J et al (2018) The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun 505:807–815PubMed Chen Y, Liu X, Chen L, Chen W, Zhang Y, Chen J et al (2018) The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun 505:807–815PubMed
79.
go back to reference Tsoporis JN, Mohammadzadeh F, Parker TG (2011) S100B: a multifunctional role in cardiovascular pathophysiology. Amino Acids 41:843–847PubMed Tsoporis JN, Mohammadzadeh F, Parker TG (2011) S100B: a multifunctional role in cardiovascular pathophysiology. Amino Acids 41:843–847PubMed
80.
go back to reference Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, Gao L, Li L (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692PubMed Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, Gao L, Li L (2019) The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 234:13680–13692PubMed
81.
go back to reference Wang JW, Fontes M, Wang X, Chong SY, Kessler EL, Zhang YN et al (2017) Leukocytic Toll-Like receptor 2 deficiency preserves cardiac function and reduces fibrosis in sustained pressure overload. Sci Rep 7:9193PubMedPubMedCentral Wang JW, Fontes M, Wang X, Chong SY, Kessler EL, Zhang YN et al (2017) Leukocytic Toll-Like receptor 2 deficiency preserves cardiac function and reduces fibrosis in sustained pressure overload. Sci Rep 7:9193PubMedPubMedCentral
82.
go back to reference Trentin-Sonoda M, Da SR, Kmit FV, Abrahao MV, Monnerat CG, Brasil GV et al (2015) Knockout of Toll-like receptors 2 and 4 prevents renal ischemia-reperfusion-induced cardiac hypertrophy in mice. PLoS One 10:e139350 Trentin-Sonoda M, Da SR, Kmit FV, Abrahao MV, Monnerat CG, Brasil GV et al (2015) Knockout of Toll-like receptors 2 and 4 prevents renal ischemia-reperfusion-induced cardiac hypertrophy in mice. PLoS One 10:e139350
83.
go back to reference Luo Y, Xu Y, Liang C, Xing W, Zhang T (2018) The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin. Cell Signal 43:11–20PubMed Luo Y, Xu Y, Liang C, Xing W, Zhang T (2018) The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin. Cell Signal 43:11–20PubMed
84.
go back to reference Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82PubMed Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82PubMed
85.
go back to reference Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556PubMed Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20:1545–1556PubMed
86.
go back to reference Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100:633–644PubMed Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100:633–644PubMed
87.
go back to reference Kontaraki JE, Parthenakis FI, Patrianakos AP, Karalis IK, Vardas PE (2007) Altered expression of early cardiac marker genes in circulating cells of patients with hypertrophic cardiomyopathy. Cardiovasc Pathol 16:329–335PubMed Kontaraki JE, Parthenakis FI, Patrianakos AP, Karalis IK, Vardas PE (2007) Altered expression of early cardiac marker genes in circulating cells of patients with hypertrophic cardiomyopathy. Cardiovasc Pathol 16:329–335PubMed
88.
go back to reference Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE (2011) Early cardiac gene transcript levels in peripheral blood mononuclear cells in patients with untreated essential hypertension. J Hypertens 29:791–797PubMed Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE (2011) Early cardiac gene transcript levels in peripheral blood mononuclear cells in patients with untreated essential hypertension. J Hypertens 29:791–797PubMed
Metadata
Title
Long non-coding RNAs in cardiac hypertrophy
Authors
Jinghui Sun
Chenglong Wang
Publication date
01-11-2020
Publisher
Springer US
Keyword
Heart Failure
Published in
Heart Failure Reviews / Issue 6/2020
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-019-09882-2

Other articles of this Issue 6/2020

Heart Failure Reviews 6/2020 Go to the issue