Skip to main content
Top
Published in: Heart Failure Reviews 3/2019

Open Access 01-05-2019 | Heart Failure

Current animal models for the study of congestion in heart failure: an overview

Authors: Jirka Cops, Sibren Haesen, Bart De Moor, Wilfried Mullens, Dominique Hansen

Published in: Heart Failure Reviews | Issue 3/2019

Login to get access

Abstract

Congestion (i.e., backward failure) is an important culprit mechanism driving disease progression in heart failure. Nevertheless, congestion remains often underappreciated and clinicians underestimate the importance of congestion on the pathophysiology of decompensation in heart failure. In patients, it is however difficult to study how isolated congestion contributes to organ dysfunction, since heart failure and chronic kidney disease very often coexist in the so-called cardiorenal syndrome. Here, we review the existing relevant and suitable backward heart failure animal models to induce congestion, induced in the left- (i.e., myocardial infarction, rapid ventricular pacing) or right-sided heart (i.e., aorta-caval shunt, mitral valve regurgitation, and monocrotaline), and more specific animal models of congestion, induced by saline infusion or inferior vena cava constriction. Next, we examine critically how representative they are for the clinical situation. After all, a relevant animal model of isolated congestion offers the unique possibility of studying the effects of congestion in heart failure and the cardiorenal syndrome, separately from forward failure (i.e., impaired cardiac output). In this respect, new treatment options can be discovered.
Literature
7.
go back to reference Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, Collins SP, Doehner W, Filippatos GS, Flammer AJ, Fuhrmann V, Lainscak M, Lassus J, Legrand M, Masip J, Mueller C, Papp Z, Parissis J, Platz E, Rudiger A, Ruschitzka F, Schafer A, Seferovic PM, Skouri H, Yilmaz MB, Mebazaa A (2017) Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 19(7):821–836. https://doi.org/10.1002/ejhf.872 CrossRefPubMedPubMedCentral Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, Collins SP, Doehner W, Filippatos GS, Flammer AJ, Fuhrmann V, Lainscak M, Lassus J, Legrand M, Masip J, Mueller C, Papp Z, Parissis J, Platz E, Rudiger A, Ruschitzka F, Schafer A, Seferovic PM, Skouri H, Yilmaz MB, Mebazaa A (2017) Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 19(7):821–836. https://​doi.​org/​10.​1002/​ejhf.​872 CrossRefPubMedPubMedCentral
15.
go back to reference Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44(4):503–512CrossRef Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44(4):503–512CrossRef
16.
go back to reference Francis J, Weiss R, Wei S, Johnson A, Felder R (2001) Progression of heart failure after myocardial infarction in the rat. Am J Phys Regul Integr Comp Phys 281(5):R1734–R1745 Francis J, Weiss R, Wei S, Johnson A, Felder R (2001) Progression of heart failure after myocardial infarction in the rat. Am J Phys Regul Integr Comp Phys 281(5):R1734–R1745
17.
go back to reference Riegger A, Liebau G (1982) The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci 62(5):465–469CrossRef Riegger A, Liebau G (1982) The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci 62(5):465–469CrossRef
18.
go back to reference Moe GW, Stopps TP, Angus C, Forster C, Adolfo J, Armstrong PW (1989) Alterations in serum sodium in relation to atrial natriuretic factor and other neuroendocrine variables in experimental pacing-induced heart failure. J Am Coll Cardiol 13(1):173–179CrossRef Moe GW, Stopps TP, Angus C, Forster C, Adolfo J, Armstrong PW (1989) Alterations in serum sodium in relation to atrial natriuretic factor and other neuroendocrine variables in experimental pacing-induced heart failure. J Am Coll Cardiol 13(1):173–179CrossRef
19.
go back to reference Howard RJ, Stopps TP, Moe GW, Gotlieb A, Armstrong PW (1988) Recovery from heart failure: structural and functional analysis in a canine model. Can J Physiol Pharmacol 66(12):1505–1512CrossRef Howard RJ, Stopps TP, Moe GW, Gotlieb A, Armstrong PW (1988) Recovery from heart failure: structural and functional analysis in a canine model. Can J Physiol Pharmacol 66(12):1505–1512CrossRef
20.
go back to reference Ohno M, Cheng C-P, Little WC (1994) Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89(5):2241–2250CrossRef Ohno M, Cheng C-P, Little WC (1994) Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89(5):2241–2250CrossRef
21.
go back to reference Wilson JR, Douglas P, Hickey WF, Lanoce V, Ferraro N, Muhammad A, Reichek N (1987) Experimental congestive heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulation 75(4):857–867CrossRef Wilson JR, Douglas P, Hickey WF, Lanoce V, Ferraro N, Muhammad A, Reichek N (1987) Experimental congestive heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulation 75(4):857–867CrossRef
23.
go back to reference Porter CB, Walsh RA, Badke FR, O’Rourke RA (1983) Differential effects of diltiazem and nitroprusside on left ventricular function in experimental chronic volume overload. Circulation 68(3):685–692CrossRef Porter CB, Walsh RA, Badke FR, O’Rourke RA (1983) Differential effects of diltiazem and nitroprusside on left ventricular function in experimental chronic volume overload. Circulation 68(3):685–692CrossRef
25.
go back to reference Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24(5):430–432CrossRef Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24(5):430–432CrossRef
27.
go back to reference Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 69(1):52–58CrossRef Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 69(1):52–58CrossRef
30.
go back to reference Ichikawa S, Wakao Y, Muto M, Takahashi M (1990) Experimental studies of the load reducing effects of nitroglycerin in heart failure. Nihon Juigaku Zasshi Jpn J Vet Sci 52(2):361–369CrossRef Ichikawa S, Wakao Y, Muto M, Takahashi M (1990) Experimental studies of the load reducing effects of nitroglycerin in heart failure. Nihon Juigaku Zasshi Jpn J Vet Sci 52(2):361–369CrossRef
31.
go back to reference Spinale FG, Ishihra K, Zile M, DeFryte G, Crawford FA, Carabello BA (1993) Structural basis for changes in left ventricular function and geometry because of chronic mitral regurgitation and after correction of volume overload. J Thorac Cardiovasc Surg 106(6):1147–1157PubMed Spinale FG, Ishihra K, Zile M, DeFryte G, Crawford FA, Carabello BA (1993) Structural basis for changes in left ventricular function and geometry because of chronic mitral regurgitation and after correction of volume overload. J Thorac Cardiovasc Surg 106(6):1147–1157PubMed
34.
go back to reference Chen EP, Bittner HB, Craig DM, Davis RD Jr, Van Trigt P III (1997) Pulmonary hemodynamics and blood flow characteristics in chronic pulmonary hypertension. Ann Thorac Surg 63(3):806–813CrossRef Chen EP, Bittner HB, Craig DM, Davis RD Jr, Van Trigt P III (1997) Pulmonary hemodynamics and blood flow characteristics in chronic pulmonary hypertension. Ann Thorac Surg 63(3):806–813CrossRef
35.
go back to reference Zhang TT, Cui B, Dai DZ (2004) Downregulation of Kv4.2 and Kv4.3 channel gene expression in right ventricular hypertrophy induced by monocrotaline in rat. Acta Pharmacol Sin 25(2):226–230PubMed Zhang TT, Cui B, Dai DZ (2004) Downregulation of Kv4.2 and Kv4.3 channel gene expression in right ventricular hypertrophy induced by monocrotaline in rat. Acta Pharmacol Sin 25(2):226–230PubMed
36.
go back to reference Chen L, Gan XT, Haist JV, Feng Q, Lu X, Chakrabarti S, Karmazyn M (2001) Attenuation of compensatory right ventricular hypertrophy and heart failure following monocrotaline-induced pulmonary vascular injury by the Na+-H+ exchange inhibitor cariporide. J Pharmacol Exp Ther 298(2):469–476PubMed Chen L, Gan XT, Haist JV, Feng Q, Lu X, Chakrabarti S, Karmazyn M (2001) Attenuation of compensatory right ventricular hypertrophy and heart failure following monocrotaline-induced pulmonary vascular injury by the Na+-H+ exchange inhibitor cariporide. J Pharmacol Exp Ther 298(2):469–476PubMed
42.
go back to reference Olivetti G, Ricci R, Lagrasta C, Maniga E, Sonnenblick EH, Anversa P (1988) Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res 63(3):648–657CrossRef Olivetti G, Ricci R, Lagrasta C, Maniga E, Sonnenblick EH, Anversa P (1988) Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res 63(3):648–657CrossRef
43.
go back to reference Yates FE (1958) Effects of central venous congestion on sodium, potassium and water metabolism in the rat; response to desoxycorticosterone. Am J Phys 194(1):57–64CrossRef Yates FE (1958) Effects of central venous congestion on sodium, potassium and water metabolism in the rat; response to desoxycorticosterone. Am J Phys 194(1):57–64CrossRef
44.
go back to reference Davis JO, Howell DS (1953) Mechanisms of fluid and electrolyte retention in experimental preparations in dogs: II. With thoracic inferior vena cava constriction. Circ Res 1(2):171–178CrossRef Davis JO, Howell DS (1953) Mechanisms of fluid and electrolyte retention in experimental preparations in dogs: II. With thoracic inferior vena cava constriction. Circ Res 1(2):171–178CrossRef
45.
go back to reference Seitchik MW, Poll M, Rosenthal W, Baronofsky ID (1961) Studies in the hemodynamics following supradiaphragmatic constriction of the inferior vena cava. Ann Surg 153:71–80CrossRef Seitchik MW, Poll M, Rosenthal W, Baronofsky ID (1961) Studies in the hemodynamics following supradiaphragmatic constriction of the inferior vena cava. Ann Surg 153:71–80CrossRef
47.
go back to reference Fitzsimons JT, Elfont RM (1982) Angiotensin does contribute to drinking induced by caval ligation in rat. Am J Phys 243(5):R558–R562 Fitzsimons JT, Elfont RM (1982) Angiotensin does contribute to drinking induced by caval ligation in rat. Am J Phys 243(5):R558–R562
48.
go back to reference Reinhardt WO (1951) Antidiuretic effect of non-renal venous congestion on renal water excretion by the hydrated rat. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY) 77(4):809–812CrossRef Reinhardt WO (1951) Antidiuretic effect of non-renal venous congestion on renal water excretion by the hydrated rat. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY) 77(4):809–812CrossRef
49.
go back to reference Crumb CK, Minuth AN, Flasterstein AH, Hebert CS, Eknoyan G, Martinez-Maldonado M, Suki WN (1977) Sodium excretion and intrarenal hemodynamics in thoracic inferior vena cava constriction. Am J Phys 232(6):F507–F512 Crumb CK, Minuth AN, Flasterstein AH, Hebert CS, Eknoyan G, Martinez-Maldonado M, Suki WN (1977) Sodium excretion and intrarenal hemodynamics in thoracic inferior vena cava constriction. Am J Phys 232(6):F507–F512
50.
go back to reference Du Rietz B, Ekman R, Olsson AM (1979) Vascular lesions in the rat after ligation of the inferior vena cava above the renal veins. Urol Res 7(4):253–260CrossRef Du Rietz B, Ekman R, Olsson AM (1979) Vascular lesions in the rat after ligation of the inferior vena cava above the renal veins. Urol Res 7(4):253–260CrossRef
51.
go back to reference Mann J, Johnson A, Rascher W, Genest J, Ganten D (1981) Thirst in the rat after ligation of the inferior vena cava: role of angiotensin II. Pharmacol Biochem Behav 15(3):337–341CrossRef Mann J, Johnson A, Rascher W, Genest J, Ganten D (1981) Thirst in the rat after ligation of the inferior vena cava: role of angiotensin II. Pharmacol Biochem Behav 15(3):337–341CrossRef
52.
go back to reference Schrier RW, Humphreys MH, Ufferman RC (1971) Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava. Circ Res 29(5):490–498CrossRef Schrier RW, Humphreys MH, Ufferman RC (1971) Role of cardiac output and the autonomic nervous system in the antinatriuretic response to acute constriction of the thoracic superior vena cava. Circ Res 29(5):490–498CrossRef
54.
go back to reference Ishikawa S-E, Saito T, Okada K, Tsutsui K, Kuzuya T (1986) Effect of vasopressin antagonist on water excretion in inferior vena cava constriction. Kidney Int 30(1):49–55CrossRef Ishikawa S-E, Saito T, Okada K, Tsutsui K, Kuzuya T (1986) Effect of vasopressin antagonist on water excretion in inferior vena cava constriction. Kidney Int 30(1):49–55CrossRef
55.
go back to reference Kawamura J, Itoh M, Yoshida O (1979) Effect of renal vein ligation with or without suprarenal inferior vena cava ligation on sodium and phosphate excretions during acute extracellular volume expansion in the rat. Investig Urol 16(6):463–467 Kawamura J, Itoh M, Yoshida O (1979) Effect of renal vein ligation with or without suprarenal inferior vena cava ligation on sodium and phosphate excretions during acute extracellular volume expansion in the rat. Investig Urol 16(6):463–467
57.
go back to reference Simonetto DA, Yang HY, Yin M, de Assuncao TM, Kwon JH, Hilscher M, Pan S, Yang L, Bi Y, Beyder A, Cao S, Simari RD, Ehman R, Kamath PS, Shah VH (2015) Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology (Baltimore, Md) 61(2):648–659. https://doi.org/10.1002/hep.27387 CrossRef Simonetto DA, Yang HY, Yin M, de Assuncao TM, Kwon JH, Hilscher M, Pan S, Yang L, Bi Y, Beyder A, Cao S, Simari RD, Ehman R, Kamath PS, Shah VH (2015) Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology (Baltimore, Md) 61(2):648–659. https://​doi.​org/​10.​1002/​hep.​27387 CrossRef
58.
go back to reference Akiyoshi H, Terada T (1999) Centrilobular and perisinusoidal fibrosis in experimental congestive liver in the rat. J Hepatol 30(3):433–439CrossRef Akiyoshi H, Terada T (1999) Centrilobular and perisinusoidal fibrosis in experimental congestive liver in the rat. J Hepatol 30(3):433–439CrossRef
59.
go back to reference Bagrov Y, Gusev G, Krestinskaya T, Manninen V, Mälkönen M, Vasileva V (1982) Kidney and liver function in rats during the edema following constriction of thoracic inferior vena cava with and without adrenalectomy or hypophysectomy. J Intern Med 212(S668):143–149 Bagrov Y, Gusev G, Krestinskaya T, Manninen V, Mälkönen M, Vasileva V (1982) Kidney and liver function in rats during the edema following constriction of thoracic inferior vena cava with and without adrenalectomy or hypophysectomy. J Intern Med 212(S668):143–149
61.
go back to reference Lisy O, Redfield MM, Jovanovic S, Jougasaki M, Jovanovic A, Leskinen H, Terzic A, Burnett JC Jr (2000) Mechanical unloading versus neurohumoral stimulation on myocardial structure and endocrine function in vivo. Circulation 102(3):338–343CrossRef Lisy O, Redfield MM, Jovanovic S, Jougasaki M, Jovanovic A, Leskinen H, Terzic A, Burnett JC Jr (2000) Mechanical unloading versus neurohumoral stimulation on myocardial structure and endocrine function in vivo. Circulation 102(3):338–343CrossRef
65.
go back to reference Paganelli WC, Cant JR, Pintal RR, Kifor I, Barger AC, Dzau VJ (1988) Plasma atrial natriuretic factor during chronic thoracic inferior vena caval constriction. Circ Res 62(2):279–285CrossRef Paganelli WC, Cant JR, Pintal RR, Kifor I, Barger AC, Dzau VJ (1988) Plasma atrial natriuretic factor during chronic thoracic inferior vena caval constriction. Circ Res 62(2):279–285CrossRef
68.
go back to reference Katz YJ, Cockett A, MOOR RS (1959) Elevation of inferior vena cava pressure and thoracic lymph and urine flow. Circ Res 7(1):118–122CrossRef Katz YJ, Cockett A, MOOR RS (1959) Elevation of inferior vena cava pressure and thoracic lymph and urine flow. Circ Res 7(1):118–122CrossRef
72.
go back to reference Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172CrossRef Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172CrossRef
74.
go back to reference Smith HJ, Nuttall A (1985) Experimental models of heart failure. Cardiovasc Res 19(4):181–186CrossRef Smith HJ, Nuttall A (1985) Experimental models of heart failure. Cardiovasc Res 19(4):181–186CrossRef
75.
go back to reference Lowe JE, Reimer KA, Jennings R (1978) Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol 90(2):363PubMedPubMedCentral Lowe JE, Reimer KA, Jennings R (1978) Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol 90(2):363PubMedPubMedCentral
76.
go back to reference Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G (2005) Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med 352(3):225–237CrossRef Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G (2005) Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med 352(3):225–237CrossRef
77.
go back to reference Yarbrough WM, Spinale FG (2003) Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J Nucl Cardiol 10(1):77–86CrossRef Yarbrough WM, Spinale FG (2003) Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J Nucl Cardiol 10(1):77–86CrossRef
81.
go back to reference Ludwig C (1856) Lehrbuch der Physiologie des Menschen, vol 2. Winter, Ludwig C (1856) Lehrbuch der Physiologie des Menschen, vol 2. Winter,
82.
go back to reference Firth J, Raine A, Ledingham J (1988) Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 331(8593):1033–1036CrossRef Firth J, Raine A, Ledingham J (1988) Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 331(8593):1033–1036CrossRef
83.
go back to reference Winton F (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72(1):49–61CrossRef Winton F (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72(1):49–61CrossRef
86.
go back to reference Komuro K, Seo Y, Yamamoto M, Sai S, Ishizu T, Shimazu K, Takahashi Y, Imagawa S, Anzai T, Yonezawa K, Aonuma K (2018) Assessment of renal perfusion impairment in a rat model of acute renal congestion using contrast-enhanced ultrasonography. Heart Vessel 33(4):434–440. https://doi.org/10.1007/s00380-017-1063-7 CrossRef Komuro K, Seo Y, Yamamoto M, Sai S, Ishizu T, Shimazu K, Takahashi Y, Imagawa S, Anzai T, Yonezawa K, Aonuma K (2018) Assessment of renal perfusion impairment in a rat model of acute renal congestion using contrast-enhanced ultrasonography. Heart Vessel 33(4):434–440. https://​doi.​org/​10.​1007/​s00380-017-1063-7 CrossRef
87.
go back to reference Giallourakis CC, Rosenberg PM, Friedman LS (2002) The liver in heart failure. Clin Liver Dis 6(4):947–967CrossRef Giallourakis CC, Rosenberg PM, Friedman LS (2002) The liver in heart failure. Clin Liver Dis 6(4):947–967CrossRef
Metadata
Title
Current animal models for the study of congestion in heart failure: an overview
Authors
Jirka Cops
Sibren Haesen
Bart De Moor
Wilfried Mullens
Dominique Hansen
Publication date
01-05-2019
Publisher
Springer US
Keyword
Heart Failure
Published in
Heart Failure Reviews / Issue 3/2019
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-018-9762-4

Other articles of this Issue 3/2019

Heart Failure Reviews 3/2019 Go to the issue