Skip to main content
Top
Published in: Heart Failure Reviews 1/2017

Open Access 01-01-2017

Molecular mechanisms of heart failure: insights from Drosophila

Authors: Shasha Zhu, Zhe Han, Yan Luo, Yulin Chen, Qun Zeng, Xiushan Wu, Wuzhou Yuan

Published in: Heart Failure Reviews | Issue 1/2017

Login to get access

Abstract

Heart failure places an enormous burden on health and economic systems worldwide. It is a complex disease that is profoundly influenced by both genetic and environmental factors. Neither the molecular mechanisms underlying heart failure nor effective prevention strategies are fully understood. Fortunately, relevant aspects of human heart failure can be experimentally studied in tractable model animals, including the fruit fly, Drosophila, allowing the in vivo application of powerful and sophisticated molecular genetic and physiological approaches. Heart failure in Drosophila, as in humans, can be classified into dilated cardiomyopathies and hypertrophic cardiomyopathies. Critically, many genes and cellular pathways directing heart development and function are evolutionarily conserved from Drosophila to humans. Studies of molecular mechanisms linking aging with heart failure have revealed that genes involved in aging-associated energy homeostasis and oxidative stress resistance influence cardiac dysfunction through perturbation of IGF and TOR pathways. Importantly, ion channel proteins, cytoskeletal proteins, and integrins implicated in aging of the mammalian heart have been shown to play significant roles in heart failure. A number of genes previously described having roles in development of the Drosophila heart, such as genes involved in Wnt signaling pathways, have recently been shown to play important roles in the adult fly heart. Moreover, the fly model presents opportunities for innovative studies that cannot currently be pursued in the mammalian heart because of technical limitations. In this review, we discuss progress in our understanding of genes, proteins, and molecular mechanisms that affect the Drosophila adult heart and heart failure.
Literature
1.
go back to reference Houser SR, Margulies KB, Murphy AM et al (2012) Animal models of heart failure: a scientific statement from the American Heart Association [J]. Circ Res 111(1):131–150CrossRefPubMed Houser SR, Margulies KB, Murphy AM et al (2012) Animal models of heart failure: a scientific statement from the American Heart Association [J]. Circ Res 111(1):131–150CrossRefPubMed
2.
go back to reference Kypreos KE, Zafirovic S, Petropoulou PI et al (2014) Regulation of endothelial nitric oxide synthase and high-density lipoprotein quality by estradiol in cardiovascular pathology [J]. J Cardiovasc Pharmacol Ther 19(3):256–268CrossRefPubMed Kypreos KE, Zafirovic S, Petropoulou PI et al (2014) Regulation of endothelial nitric oxide synthase and high-density lipoprotein quality by estradiol in cardiovascular pathology [J]. J Cardiovasc Pharmacol Ther 19(3):256–268CrossRefPubMed
3.
go back to reference Patten RD, Hall-Porter MR (2009) Animal models of heart failure: a scientific statement from the American Heart Association [J].Circ. Heart Fail 2(2):138–144CrossRef Patten RD, Hall-Porter MR (2009) Animal models of heart failure: a scientific statement from the American Heart Association [J].Circ. Heart Fail 2(2):138–144CrossRef
4.
go back to reference Lehmacher C, Abeln B, Paululat A (2012) The ultrastructure of Drosophila heart cells [J]. Arthropod structure & development 41:459–474CrossRef Lehmacher C, Abeln B, Paululat A (2012) The ultrastructure of Drosophila heart cells [J]. Arthropod structure & development 41:459–474CrossRef
5.
go back to reference Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TR (eds) The genetics and biology of drosophila[M]. Academic Press, New York, NY Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TR (eds) The genetics and biology of drosophila[M]. Academic Press, New York, NY
6.
go back to reference Nishimura M, Ocorr K, Bodmer R, Cartry J (2011) Drosophila as a model to study cardiac aging[J].Exp. Gerontol 46(5):326–330 Nishimura M, Ocorr K, Bodmer R, Cartry J (2011) Drosophila as a model to study cardiac aging[J].Exp. Gerontol 46(5):326–330
7.
go back to reference Gonzalo-Gomez A, Turiegano E, León Y et al (2012) Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila [J]. PLoS One 7(5):e36477CrossRefPubMedPubMedCentral Gonzalo-Gomez A, Turiegano E, León Y et al (2012) Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila [J]. PLoS One 7(5):e36477CrossRefPubMedPubMedCentral
8.
go back to reference Ocorr K, Reeves NL, Wessells RJ et al (2007) KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging [J]. Proc Natl Acad Sci U S A 104:3943–3948CrossRefPubMedPubMedCentral Ocorr K, Reeves NL, Wessells RJ et al (2007) KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging [J]. Proc Natl Acad Sci U S A 104:3943–3948CrossRefPubMedPubMedCentral
9.
go back to reference Ocorr K, Perrin L, Lim HY, Qian L, Wu XS, Bodmer R (2007) Genetic control of heart function and aging in Drosophila [J].Trends. Cardiovasc Med 17(5):177–182 Ocorr K, Perrin L, Lim HY, Qian L, Wu XS, Bodmer R (2007) Genetic control of heart function and aging in Drosophila [J].Trends. Cardiovasc Med 17(5):177–182
10.
go back to reference Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) Drosophila as a model for the identification of genes causing adult human heart disease [J].Proc. Natl Acad Sci U S A 103(5):1394–1399CrossRef Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) Drosophila as a model for the identification of genes causing adult human heart disease [J].Proc. Natl Acad Sci U S A 103(5):1394–1399CrossRef
11.
go back to reference Kaushik G, Zambon AC, Fuhrmann A, Bernstein SI et al (2012) Measuring passive myocardial stiffness in Drosophila melanogaster to investigate diastolic dysfunction [J]. J Cell Mol Med 16:1656–1662CrossRefPubMedPubMedCentral Kaushik G, Zambon AC, Fuhrmann A, Bernstein SI et al (2012) Measuring passive myocardial stiffness in Drosophila melanogaster to investigate diastolic dysfunction [J]. J Cell Mol Med 16:1656–1662CrossRefPubMedPubMedCentral
12.
go back to reference Lin N, Badie N, Yu L, Abraham D, Cheng H, Bursac N, Rockman HA, Wolf MJ (2011) A method to measure myocardial calcium handling in adult Drosophila [J]. Circ Res 108(11):1306–1315CrossRefPubMedPubMedCentral Lin N, Badie N, Yu L, Abraham D, Cheng H, Bursac N, Rockman HA, Wolf MJ (2011) A method to measure myocardial calcium handling in adult Drosophila [J]. Circ Res 108(11):1306–1315CrossRefPubMedPubMedCentral
13.
14.
go back to reference Santalla M, Valverde CA, Harnichar E, Lacunza E, Aguilar-Fuentes J, Mattiazzi A, Ferrero P1 (2014) Aging and CaMKII alter intracellular Ca2+ transients and heart rhythm in Drosophila melanogaster[J]. PLoS One 9(97):e101871CrossRefPubMedPubMedCentral Santalla M, Valverde CA, Harnichar E, Lacunza E, Aguilar-Fuentes J, Mattiazzi A, Ferrero P1 (2014) Aging and CaMKII alter intracellular Ca2+ transients and heart rhythm in Drosophila melanogaster[J]. PLoS One 9(97):e101871CrossRefPubMedPubMedCentral
15.
go back to reference Wilkins BJ, Molkentin JD (2002) Calcineurin and cardiac hypertrophy: where have we been? Where are we going? [J]. JPhysiol 541:1–8CrossRef Wilkins BJ, Molkentin JD (2002) Calcineurin and cardiac hypertrophy: where have we been? Where are we going? [J]. JPhysiol 541:1–8CrossRef
16.
go back to reference Lee TE, Yu L, Wolf MJ, Rockman HA (2014) Galactokinase is a novel modifier of calcineurin- induced cardiomyopathy in Drosophila [J]. Genetics 198(2):591–603CrossRefPubMedPubMedCentral Lee TE, Yu L, Wolf MJ, Rockman HA (2014) Galactokinase is a novel modifier of calcineurin- induced cardiomyopathy in Drosophila [J]. Genetics 198(2):591–603CrossRefPubMedPubMedCentral
17.
go back to reference Gu GG, Singh S (1995) Pharmacological analysis of heartbeat in Drosophila [J]. J Neurobiol 28:269–280CrossRefPubMed Gu GG, Singh S (1995) Pharmacological analysis of heartbeat in Drosophila [J]. J Neurobiol 28:269–280CrossRefPubMed
18.
go back to reference Akasaka T, Klinedinst S, Ocorr K, Bustamante EL, Kim SK, Bodmer R (2006) The ATP–sensitive potassium (KATP) channel–encoded dSUR gene is required for Drosophila heart function and is regulated by tinman [J]. Proc Natl Acad Sci U S A 103(32):1999–2004CrossRef Akasaka T, Klinedinst S, Ocorr K, Bustamante EL, Kim SK, Bodmer R (2006) The ATP–sensitive potassium (KATP) channel–encoded dSUR gene is required for Drosophila heart function and is regulated by tinman [J]. Proc Natl Acad Sci U S A 103(32):1999–2004CrossRef
19.
go back to reference Medeiros DM, Davidson J, Jenkins JE (1993) A unified perspective on copper deficiency and cardiomyopathy [J]. Proc Soc Exp Biol Med 203:262–273CrossRefPubMed Medeiros DM, Davidson J, Jenkins JE (1993) A unified perspective on copper deficiency and cardiomyopathy [J]. Proc Soc Exp Biol Med 203:262–273CrossRefPubMed
20.
go back to reference Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D et al (2003) Copper chelation represses the vascular response to injury [J]. Proc Natl Acad Sci U S A 100:6700–6705CrossRefPubMedPubMedCentral Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D et al (2003) Copper chelation represses the vascular response to injury [J]. Proc Natl Acad Sci U S A 100:6700–6705CrossRefPubMedPubMedCentral
21.
go back to reference Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ (2010) Cardiac copper deficiency activates a systemic signaling[J]. Cell Metab 11(5):353–363CrossRefPubMedPubMedCentral Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ (2010) Cardiac copper deficiency activates a systemic signaling[J]. Cell Metab 11(5):353–363CrossRefPubMedPubMedCentral
22.
go back to reference Diop SB, Bodmer R (2015) Gaining insights into diabetic cardiomyopathy from Drosophila[J]. Trends in Endocrinology & Metabolism 26(11):618–627CrossRef Diop SB, Bodmer R (2015) Gaining insights into diabetic cardiomyopathy from Drosophila[J]. Trends in Endocrinology & Metabolism 26(11):618–627CrossRef
23.
go back to reference Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein [J]. Science 5514:104–106CrossRef Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein [J]. Science 5514:104–106CrossRef
24.
go back to reference Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function [J]. Science 5514:107–110CrossRef Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function [J]. Science 5514:107–110CrossRef
25.
go back to reference Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R (2004) Insulin regulation of heart function in aging fruit flies [J]. Nat Genet 12:1275–1281CrossRef Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R (2004) Insulin regulation of heart function in aging fruit flies [J]. Nat Genet 12:1275–1281CrossRef
26.
go back to reference Wessells R, Fitzgerald E, Piazza N, Ocorr K et al (2009) D4eBP acts downstream of both dTOR and dFOXO to modulate cardiac functional aging in Drosophila [J]. Aging Cell 8:542–552CrossRefPubMedPubMedCentral Wessells R, Fitzgerald E, Piazza N, Ocorr K et al (2009) D4eBP acts downstream of both dTOR and dFOXO to modulate cardiac functional aging in Drosophila [J]. Aging Cell 8:542–552CrossRefPubMedPubMedCentral
27.
go back to reference Chen MH, Kerkelä R, Force T (2008) Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics[J]. Circulation 118:84–95CrossRefPubMedPubMedCentral Chen MH, Kerkelä R, Force T (2008) Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics[J]. Circulation 118:84–95CrossRefPubMedPubMedCentral
28.
go back to reference Kehat I, Davis J, Tiburcy M, Accornero F et al (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth[J]. Circ Res 108:176–183CrossRefPubMed Kehat I, Davis J, Tiburcy M, Accornero F et al (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth[J]. Circ Res 108:176–183CrossRefPubMed
30.
go back to reference Yu L, Daniels J, Glaser AE, Wolf MJ (2013) Raf-mediated cardiac hypertrophy in adult Drosophila [J]. Disease Models & Mechanisms (6):964–976 Yu L, Daniels J, Glaser AE, Wolf MJ (2013) Raf-mediated cardiac hypertrophy in adult Drosophila [J]. Disease Models & Mechanisms (6):964–976
31.
32.
go back to reference Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans health span via AMPK, LKB1, and SKN-1. PLoS One 5:e8758CrossRefPubMedPubMedCentral Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans health span via AMPK, LKB1, and SKN-1. PLoS One 5:e8758CrossRefPubMedPubMedCentral
33.
go back to reference Rahman MM, Sykiotis GP, Nishimura M, Bodmer R, Bohmann D (2013) Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes[J]. Aging Cell 12(4):554–562CrossRefPubMedPubMedCentral Rahman MM, Sykiotis GP, Nishimura M, Bodmer R, Bohmann D (2013) Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes[J]. Aging Cell 12(4):554–562CrossRefPubMedPubMedCentral
34.
go back to reference Ungvari Z, Bailey-Downs L, Gautam T, Sosnowska D et al (2011) Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-{kappa}B activation in the nonhuman primate Macaca mulatta[J]. J Gerontol A Biol Sci Med Sci 66:866–875CrossRefPubMed Ungvari Z, Bailey-Downs L, Gautam T, Sosnowska D et al (2011) Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-{kappa}B activation in the nonhuman primate Macaca mulatta[J]. J Gerontol A Biol Sci Med Sci 66:866–875CrossRefPubMed
35.
go back to reference Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling[J]. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028PubMed Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling[J]. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028PubMed
37.
38.
go back to reference Wu X (2010) Regulation of Wg/Wnt signaling pathways in heart development [M]. Shaping the Heart in Development and Disease 4:41–79 Wu X (2010) Regulation of Wg/Wnt signaling pathways in heart development [M]. Shaping the Heart in Development and Disease 4:41–79
39.
go back to reference Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis[J]. Science 317:807–810CrossRefPubMed Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis[J]. Science 317:807–810CrossRefPubMed
40.
go back to reference Anastas JN, Moon RT (2013) Wnt signalling pathways as therapeutic targets in cancer[J]. Nat Rev Cancer 13:11–26CrossRefPubMed Anastas JN, Moon RT (2013) Wnt signalling pathways as therapeutic targets in cancer[J]. Nat Rev Cancer 13:11–26CrossRefPubMed
41.
go back to reference Okada K, Naito AT, Higo T, Nakagawa A, Shibamoto M et al (2015) Wnt/β-catenin signaling contributes to skeletal myopathy in heart[J]. Circ Heart Fail 8(4):799–808CrossRefPubMed Okada K, Naito AT, Higo T, Nakagawa A, Shibamoto M et al (2015) Wnt/β-catenin signaling contributes to skeletal myopathy in heart[J]. Circ Heart Fail 8(4):799–808CrossRefPubMed
42.
go back to reference Cao J, Tsenovoy PL, Thompson EA, Falck JR, Touchon R, Sodhi K, Rezzani R, Shapiro J, Abraham NG (2015) Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway [J]. Prostaglandins Other Lipid Mediat 116-117:76–86CrossRefPubMed Cao J, Tsenovoy PL, Thompson EA, Falck JR, Touchon R, Sodhi K, Rezzani R, Shapiro J, Abraham NG (2015) Agonists of epoxyeicosatrienoic acids reduce infarct size and ameliorate cardiac dysfunction via activation of HO-1 and Wnt1 canonical pathway [J]. Prostaglandins Other Lipid Mediat 116-117:76–86CrossRefPubMed
43.
go back to reference Bao MW, Cai Z, Zhang XJ, Li L et al (2015) Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction [J]. Basic Res Cardiol 110(3):25CrossRefPubMed Bao MW, Cai Z, Zhang XJ, Li L et al (2015) Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction [J]. Basic Res Cardiol 110(3):25CrossRefPubMed
44.
go back to reference Tang M, Yuan WZ, Bodmer R, Ocorr K, Wu XS (2014) The role of pygopus in the differentiation of intracardiac valves in Drosophila [J]. Genesis 52(1):19–28CrossRefPubMed Tang M, Yuan WZ, Bodmer R, Ocorr K, Wu XS (2014) The role of pygopus in the differentiation of intracardiac valves in Drosophila [J]. Genesis 52(1):19–28CrossRefPubMed
45.
go back to reference Tang M, Yuan WZ, Fan XW, Liu M, Bodmer R, Ocorr K, Wu XS (2013) pygopus maintains heart function in aging Drosophila independently of canonical Wnt signaling [J]. Circ Cardiovasc Genet 6(5):472–480CrossRefPubMed Tang M, Yuan WZ, Fan XW, Liu M, Bodmer R, Ocorr K, Wu XS (2013) pygopus maintains heart function in aging Drosophila independently of canonical Wnt signaling [J]. Circ Cardiovasc Genet 6(5):472–480CrossRefPubMed
46.
go back to reference Cantù C, Zimmerli D, Hausmann G et al (2014) Pax6-dependent, but b-catenin-independent, function of Bcl9 proteins in mouse lens development [J]. Genes Dev 28:1879–1884CrossRefPubMedPubMedCentral Cantù C, Zimmerli D, Hausmann G et al (2014) Pax6-dependent, but b-catenin-independent, function of Bcl9 proteins in mouse lens development [J]. Genes Dev 28:1879–1884CrossRefPubMedPubMedCentral
47.
go back to reference Popadiuk CM, Xiong J, Wells MG et al (2006) Antisense suppression of pygopus2 results in growth arrest of epithelial ovarian cancer [J]. Clin Cancer Res 12(7 Pt 1):2216–2223CrossRefPubMed Popadiuk CM, Xiong J, Wells MG et al (2006) Antisense suppression of pygopus2 results in growth arrest of epithelial ovarian cancer [J]. Clin Cancer Res 12(7 Pt 1):2216–2223CrossRefPubMed
48.
go back to reference Fiedler M, Sanchez-Barrena MJ, Nekrasov M et al (2008) Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex[J]. Cell Molecular 30(4):507–518CrossRef Fiedler M, Sanchez-Barrena MJ, Nekrasov M et al (2008) Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex[J]. Cell Molecular 30(4):507–518CrossRef
49.
go back to reference De La Roche M, Bienz M (2007) Wingless-independent association of pygopus with dTCF target genes [J]. Curr Biol 17(6):556–561CrossRefPubMed De La Roche M, Bienz M (2007) Wingless-independent association of pygopus with dTCF target genes [J]. Curr Biol 17(6):556–561CrossRefPubMed
50.
go back to reference Gu B, Sun P, Yuan Y et al (2009) pygo2 expands mammary progenitor cells by facilitating histone H3K4methylation [J]. J. Cell Biol 185(5):811–826CrossRef Gu B, Sun P, Yuan Y et al (2009) pygo2 expands mammary progenitor cells by facilitating histone H3K4methylation [J]. J. Cell Biol 185(5):811–826CrossRef
53.
54.
go back to reference Chen X, Li Z, Feng Z, Wang J, Ouyang C et al (2006) Integrin-linked kinase induces both senescence-associated alterations and extracellular fibronectin assembly in aging cardiac fibroblasts[J]. JGerontol A Biol Sci Med Sci 61:1232–1245CrossRef Chen X, Li Z, Feng Z, Wang J, Ouyang C et al (2006) Integrin-linked kinase induces both senescence-associated alterations and extracellular fibronectin assembly in aging cardiac fibroblasts[J]. JGerontol A Biol Sci Med Sci 61:1232–1245CrossRef
55.
go back to reference White DE, Coutu P, Shi YF, Tardif JC, Nattel S, St Arnaud R, Dedhar S, Muller WJ (2006) Targeted ablation of ILK from the murine heart results in dilated cardiomyopathy and spontaneous heart failure[J]. Genes Dev 20:2355–2360CrossRefPubMedPubMedCentral White DE, Coutu P, Shi YF, Tardif JC, Nattel S, St Arnaud R, Dedhar S, Muller WJ (2006) Targeted ablation of ILK from the murine heart results in dilated cardiomyopathy and spontaneous heart failure[J]. Genes Dev 20:2355–2360CrossRefPubMedPubMedCentral
56.
go back to reference Nishimura M1, Kumsta C, Kaushik G, Diop SB et al (2014) A dual role for integrin-linked kinase and b1-integrin in modulating cardiac aging [J].Aging. Cell 13(3):431–440 Nishimura M1, Kumsta C, Kaushik G, Diop SB et al (2014) A dual role for integrin-linked kinase and b1-integrin in modulating cardiac aging [J].Aging. Cell 13(3):431–440
58.
go back to reference Dowling JJ, Gibbs E, Russell M, Goldman D, Minarcik J et al (2008) Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function[J]. Circ Res 102:423–431CrossRefPubMed Dowling JJ, Gibbs E, Russell M, Goldman D, Minarcik J et al (2008) Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function[J]. Circ Res 102:423–431CrossRefPubMed
59.
go back to reference Catterson JH1, Heck MM, Hartley PS (2013) Fermitins, the orthologs of mammalian kindlins, regulate the development of a functional cardiac syncytium in Drosophila melanogaster [J]. PLoS One 8(5):e62958CrossRefPubMedPubMedCentral Catterson JH1, Heck MM, Hartley PS (2013) Fermitins, the orthologs of mammalian kindlins, regulate the development of a functional cardiac syncytium in Drosophila melanogaster [J]. PLoS One 8(5):e62958CrossRefPubMedPubMedCentral
60.
go back to reference Olson TM, Illenberger S, Kishimoto NY et al (2002) Meta vinculin mutations alter actin interaction in dilated cardiomyopathy[J]. Circulation 105:431–437CrossRefPubMed Olson TM, Illenberger S, Kishimoto NY et al (2002) Meta vinculin mutations alter actin interaction in dilated cardiomyopathy[J]. Circulation 105:431–437CrossRefPubMed
61.
62.
go back to reference Ma S, Ma CC (2011) Recent development in pleiotropic effects of statins on cardiovascular disease through regulation of transforming growth factor-beta superfamily[J]. Cytokine Growth Factor Rev 22:167–175PubMed Ma S, Ma CC (2011) Recent development in pleiotropic effects of statins on cardiovascular disease through regulation of transforming growth factor-beta superfamily[J]. Cytokine Growth Factor Rev 22:167–175PubMed
63.
go back to reference Spindler SR, Li R, Dhahbi JM, Yamakawa A et al (2015) Statin treatment increases lifespan and improves cardiac health in Drosophila by decreasing specific protein prenylation[J]. PLoS One 7(6):e39581CrossRef Spindler SR, Li R, Dhahbi JM, Yamakawa A et al (2015) Statin treatment increases lifespan and improves cardiac health in Drosophila by decreasing specific protein prenylation[J]. PLoS One 7(6):e39581CrossRef
64.
go back to reference Laribee RN, Shibata Y, Mersman DP, Collins SR et al (2007) CCR4/NOT complex associates with the proteasome and regulates histone methylation[J]. Proc Natl Acad Sci U S A 104:5836–5841CrossRefPubMedPubMedCentral Laribee RN, Shibata Y, Mersman DP, Collins SR et al (2007) CCR4/NOT complex associates with the proteasome and regulates histone methylation[J]. Proc Natl Acad Sci U S A 104:5836–5841CrossRefPubMedPubMedCentral
65.
go back to reference Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae[J]. Cell 104:377–386CrossRefPubMed Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae[J]. Cell 104:377–386CrossRefPubMed
66.
go back to reference Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes[J]. Genes Dev 20:1885–1898CrossRefPubMedPubMedCentral Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes[J]. Genes Dev 20:1885–1898CrossRefPubMedPubMedCentral
67.
go back to reference Neely GG, Kuba K, Cammarato A, Isobe K et al (2010) A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. [J]. Cell 141(6):142–153CrossRefPubMedPubMedCentral Neely GG, Kuba K, Cammarato A, Isobe K et al (2010) A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. [J]. Cell 141(6):142–153CrossRefPubMedPubMedCentral
68.
go back to reference Albert TK, Lemaire M, van Berkum NL, Gentz R, Collart MA, Timmers HT (2000) Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res 28:809–817CrossRefPubMedPubMedCentral Albert TK, Lemaire M, van Berkum NL, Gentz R, Collart MA, Timmers HT (2000) Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res 28:809–817CrossRefPubMedPubMedCentral
69.
go back to reference Brosel S, Yang H, Tanji K, Bonilla E, Schon EA (2010) Unexpected vascular enrichment of SCO1 over SCO2 in mammalian tissues: implications for human mitochondrial disease[J]. Am J Pathol 177:2541–2548CrossRefPubMedPubMedCentral Brosel S, Yang H, Tanji K, Bonilla E, Schon EA (2010) Unexpected vascular enrichment of SCO1 over SCO2 in mammalian tissues: implications for human mitochondrial disease[J]. Am J Pathol 177:2541–2548CrossRefPubMedPubMedCentral
70.
go back to reference Martínez-Morentin L, Martínez L, Piloto S et al (2015) Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model[J]. Hum Mol Genet 24(13):3608–3622PubMedPubMedCentral Martínez-Morentin L, Martínez L, Piloto S et al (2015) Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model[J]. Hum Mol Genet 24(13):3608–3622PubMedPubMedCentral
71.
go back to reference Li A, Zhou C, Moore J, Zhang P, Tsai TH et al (2011) Changes in the expression of the alzheimer’s disease-associated presenilin gene in Drosophila heart leads to cardiac dysfunction[J]. Curr Alzheimer Res 8:313–322CrossRefPubMedPubMedCentral Li A, Zhou C, Moore J, Zhang P, Tsai TH et al (2011) Changes in the expression of the alzheimer’s disease-associated presenilin gene in Drosophila heart leads to cardiac dysfunction[J]. Curr Alzheimer Res 8:313–322CrossRefPubMedPubMedCentral
72.
go back to reference Lanska DJ, Lavine L, Lanska MJ, Schoenberg BS (1988) Huntington’s disease mortality in the United States[J]. Neurology 38:769–772CrossRefPubMed Lanska DJ, Lavine L, Lanska MJ, Schoenberg BS (1988) Huntington’s disease mortality in the United States[J]. Neurology 38:769–772CrossRefPubMed
73.
go back to reference Mihm MJ, Amann DM, Schanbacher BL, Altschuld RA, Bauer JA et al (2007) Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease[J]. Neurobiol Dis 25(2):297–308CrossRefPubMed Mihm MJ, Amann DM, Schanbacher BL, Altschuld RA, Bauer JA et al (2007) Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease[J]. Neurobiol Dis 25(2):297–308CrossRefPubMed
74.
go back to reference Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K (2013) Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart[J]. PLoS Genet 9:e1004024CrossRefPubMedPubMedCentral Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K (2013) Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart[J]. PLoS Genet 9:e1004024CrossRefPubMedPubMedCentral
75.
go back to reference Zesiewicz TA, Strom JA, Borenstein AR, Hauser RA et al (2004) Heart failure in Parkinson’s disease: analysis of the United States medicare current beneficiary survey[J]. Parkinsonism Relat Disord 10:417–420CrossRefPubMed Zesiewicz TA, Strom JA, Borenstein AR, Hauser RA et al (2004) Heart failure in Parkinson’s disease: analysis of the United States medicare current beneficiary survey[J]. Parkinsonism Relat Disord 10:417–420CrossRefPubMed
76.
go back to reference Bhandari P1, Song M, Chen Y, Burelle Y, Dorn GW (2014) Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin[J]. Circ Res 114(2):257–265CrossRefPubMed Bhandari P1, Song M, Chen Y, Burelle Y, Dorn GW (2014) Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin[J]. Circ Res 114(2):257–265CrossRefPubMed
Metadata
Title
Molecular mechanisms of heart failure: insights from Drosophila
Authors
Shasha Zhu
Zhe Han
Yan Luo
Yulin Chen
Qun Zeng
Xiushan Wu
Wuzhou Yuan
Publication date
01-01-2017
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 1/2017
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-016-9590-3

Other articles of this Issue 1/2017

Heart Failure Reviews 1/2017 Go to the issue