Skip to main content
Top
Published in: Heart Failure Reviews 4/2016

01-07-2016

Tissue thyroid hormones and thyronamines

Authors: Alice Accorroni, Federica Saponaro, Riccardo Zucchi

Published in: Heart Failure Reviews | Issue 4/2016

Login to get access

Abstract

It has been known for a long time that changes in cardiac function are a major component of the clinical presentation of thyroid disease. Increased heart rate and hyperdynamic circulation are hallmarks of hyperthyroidism, while bradycardia and decreased contractility characterize hypothyroidism. Recent findings have provided novel insights in the physiology and pathophysiology of heart regulation by thyroid hormones. In this review, we summarize the present knowledge on thyroxine (T4) transport and metabolism and on the biochemical pathways leading to genomic and non-genomic effects produced by 3,5,3′-triiodothyronine (T3) and by its active metabolites, particularly 3,5-diiodothyronine (T2) and 3-iodothyronamine (T1AM). On this basis, specific issues of special interest for cardiology are discussed, namely (1) relevance of the regulation of proteins involved in the control of calcium homeostasis and in pacemaker cell activity, due to non-genomic as well as to classical genomic effects; (2) stimulation of fatty acid oxidation by T2 and T1AM, the latter also causing a negative inotropic and chronotropic action at micromolar concentrations; (3) induction of D3 deiodinase in heart failure, potentially causing selective cardiac hypothyroidism, whose clinical implications are still controversial; and (4) cardioprotective effect of T1AM, possibly occurring at physiological concentrations, and relevance of T3 and of thyroid hormone receptor α1 in post-infarction repair.
Literature
2.
go back to reference Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22(4):451–476. doi:10.1210/edrv.22.4.0435 PubMedCrossRef Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22(4):451–476. doi:10.​1210/​edrv.​22.​4.​0435 PubMedCrossRef
4.
7.
go back to reference Moreno M, Silvestri E, De Matteis R, de Lange P, Lombardi A, Glinni D et al (2011) 3,5-Diiodo-l-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J 25(10):3312–3324. doi:10.1096/fj.11-181982 PubMedCrossRef Moreno M, Silvestri E, De Matteis R, de Lange P, Lombardi A, Glinni D et al (2011) 3,5-Diiodo-l-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J 25(10):3312–3324. doi:10.​1096/​fj.​11-181982 PubMedCrossRef
11.
12.
go back to reference Heuer H, Maier MK, Iden S, Mittag J, Friesema ECH, Visser TJ, Bauer K (2005) The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146(4):1701–1706. doi:10.1210/en.2004-1179 PubMedCrossRef Heuer H, Maier MK, Iden S, Mittag J, Friesema ECH, Visser TJ, Bauer K (2005) The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146(4):1701–1706. doi:10.​1210/​en.​2004-1179 PubMedCrossRef
17.
go back to reference Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch Eur J Physiol 447(5):653–665. doi:10.1007/s00424-003-1168-y CrossRef Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch Eur J Physiol 447(5):653–665. doi:10.​1007/​s00424-003-1168-y CrossRef
19.
go back to reference Friesema ECH, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278(41):40128–40135. doi:10.1074/jbc.M300909200 PubMedCrossRef Friesema ECH, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278(41):40128–40135. doi:10.​1074/​jbc.​M300909200 PubMedCrossRef
20.
go back to reference Friesema ECH, Jansen J, Jachtenberg J-W, Visser WE, Kester MHA, Visser TJ (2008) Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol (Baltimore, Md.) 22(6):1357–1369. doi:10.1210/me.2007-0112 CrossRef Friesema ECH, Jansen J, Jachtenberg J-W, Visser WE, Kester MHA, Visser TJ (2008) Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol (Baltimore, Md.) 22(6):1357–1369. doi:10.​1210/​me.​2007-0112 CrossRef
21.
22.
24.
27.
go back to reference Huber RD, Gao B, Sidler Pfändler M-A, Zhang-Fu W, Leuthold S, Hagenbuch B et al (2007) Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292(2):C795–C806. doi:10.1152/ajpcell.00597.2005 PubMedCrossRef Huber RD, Gao B, Sidler Pfändler M-A, Zhang-Fu W, Leuthold S, Hagenbuch B et al (2007) Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292(2):C795–C806. doi:10.​1152/​ajpcell.​00597.​2005 PubMedCrossRef
29.
30.
go back to reference Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M et al (1998) Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 273(35):22395–22401. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9712861 Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M et al (1998) Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 273(35):22395–22401. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​9712861
33.
go back to reference Bonen A, Heynen M, Hatta H (2006) Distribution of monocarboxylate transporters MCT1–MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab = Physiologie appliquée, nutrition et métabolisme 31(1):31–39. doi:10.1139/h05-002 PubMedCrossRef Bonen A, Heynen M, Hatta H (2006) Distribution of monocarboxylate transporters MCT1–MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab = Physiologie appliquée, nutrition et métabolisme 31(1):31–39. doi:10.​1139/​h05-002 PubMedCrossRef
34.
go back to reference Grube M, Köck K, Oswald S, Draber K, Meissner K, Eckel L et al (2006) Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther 80(6):607–620. doi:10.1016/j.clpt.2006.09.010 PubMedCrossRef Grube M, Köck K, Oswald S, Draber K, Meissner K, Eckel L et al (2006) Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther 80(6):607–620. doi:10.​1016/​j.​clpt.​2006.​09.​010 PubMedCrossRef
35.
go back to reference Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M et al (2001) Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 142(5):2005–2012. doi:10.1210/endo.142.5.8115 PubMed Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M et al (2001) Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 142(5):2005–2012. doi:10.​1210/​endo.​142.​5.​8115 PubMed
36.
39.
41.
go back to reference Silva JE, Larsen PR (1978) Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear. J Clin Investig 61(5):1247–1259. doi:10.1172/JCI109041 PubMedPubMedCentralCrossRef Silva JE, Larsen PR (1978) Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear. J Clin Investig 61(5):1247–1259. doi:10.​1172/​JCI109041 PubMedPubMedCentralCrossRef
42.
45.
go back to reference Yonemoto T, Nishikawa M, Matsubara H, Mori Y, Toyoda N, Gondou A et al (1999) Type 1 iodothyronine deiodinase in heart—effects of triiodothyronine and angiotensin II on its activity and mRNA in cultured rat myocytes. Endocrine J 46(5):621–628. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10670746 Yonemoto T, Nishikawa M, Matsubara H, Mori Y, Toyoda N, Gondou A et al (1999) Type 1 iodothyronine deiodinase in heart—effects of triiodothyronine and angiotensin II on its activity and mRNA in cultured rat myocytes. Endocrine J 46(5):621–628. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10670746
48.
go back to reference Croteau W, Davey JC, Galton VA, St Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Investig 98(2):405–417. doi:10.1172/JCI118806 PubMedPubMedCentralCrossRef Croteau W, Davey JC, Galton VA, St Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Investig 98(2):405–417. doi:10.​1172/​JCI118806 PubMedPubMedCentralCrossRef
49.
go back to reference Pachucki J, Hopkins J, Peeters R, Tu H, Carvalho SD, Kaulbach H et al (2001) Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology 142(1):13–20. doi:10.1210/endo.142.1.7907 PubMed Pachucki J, Hopkins J, Peeters R, Tu H, Carvalho SD, Kaulbach H et al (2001) Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology 142(1):13–20. doi:10.​1210/​endo.​142.​1.​7907 PubMed
50.
go back to reference Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol (Baltimore, Md.) 17(8):1508–1521. doi:10.1210/me.2002-0348 CrossRef Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol (Baltimore, Md.) 17(8):1508–1521. doi:10.​1210/​me.​2002-0348 CrossRef
53.
go back to reference Santini F, Chopra IJ, Hurd RE, Solomon DH, Teco GN (1992) A study of the characteristics of the rat placental iodothyronine 5-monodeiodinase: evidence that it is distinct from the rat hepatic iodothyronine 5′-monodeiodinase. Endocrinology 130(4):2325–2332. doi:10.1210/endo.130.4.1547744 PubMed Santini F, Chopra IJ, Hurd RE, Solomon DH, Teco GN (1992) A study of the characteristics of the rat placental iodothyronine 5-monodeiodinase: evidence that it is distinct from the rat hepatic iodothyronine 5′-monodeiodinase. Endocrinology 130(4):2325–2332. doi:10.​1210/​endo.​130.​4.​1547744 PubMed
54.
go back to reference Olivares EL, Marassi MP, Fortunato RS, da Silva ACM, Costa-e-Sousa RH, Araújo IG et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148(10):4786–4792. doi:10.1210/en.2007-0043 PubMedCrossRef Olivares EL, Marassi MP, Fortunato RS, da Silva ACM, Costa-e-Sousa RH, Araújo IG et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148(10):4786–4792. doi:10.​1210/​en.​2007-0043 PubMedCrossRef
55.
57.
go back to reference Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strasburger CJ, Köhrle J, Wu Z (2014) Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24(9):1350–1360. doi:10.1089/thy.2013.0688 PubMedCrossRef Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strasburger CJ, Köhrle J, Wu Z (2014) Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24(9):1350–1360. doi:10.​1089/​thy.​2013.​0688 PubMedCrossRef
58.
go back to reference Pinna G, Hiedra L, Meinhold H, Eravci M, Prengel H, Brödel O et al (1998) 3,3′-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress. J Clin Endocrinol Metab 83(9):3071–3077. doi:10.1210/jcem.83.9.5080 PubMed Pinna G, Hiedra L, Meinhold H, Eravci M, Prengel H, Brödel O et al (1998) 3,3′-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress. J Clin Endocrinol Metab 83(9):3071–3077. doi:10.​1210/​jcem.​83.​9.​5080 PubMed
60.
go back to reference Jonklaas J, Sathasivam A, Wang H, Finigan D, Soldin OP, Burman KD, Soldin SJ (2014) 3,3′-diiodothyronine concentrations in hospitalized or thyroidectomized patients: results from a pilot study. Endocrine Pract 20(8):797–807. doi:10.4158/EP13453.OR CrossRef Jonklaas J, Sathasivam A, Wang H, Finigan D, Soldin OP, Burman KD, Soldin SJ (2014) 3,3′-diiodothyronine concentrations in hospitalized or thyroidectomized patients: results from a pilot study. Endocrine Pract 20(8):797–807. doi:10.​4158/​EP13453.​OR CrossRef
61.
go back to reference Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10(6):638–642. doi:10.1038/nm1051 PubMedCrossRef Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10(6):638–642. doi:10.​1038/​nm1051 PubMedCrossRef
63.
go back to reference Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U et al (2015) Biosynthesis of 3-iodothyronamine from l-thyroxine in murine intestinal tissue. Endocrinology. doi:10.1210/en.2014-1499 Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U et al (2015) Biosynthesis of 3-iodothyronamine from l-thyroxine in murine intestinal tissue. Endocrinology. doi:10.​1210/​en.​2014-1499
64.
go back to reference Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A et al (2007) Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J 21(7):1597–1608. doi:10.1096/fj.06-7474com PubMedCrossRef Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A et al (2007) Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J 21(7):1597–1608. doi:10.​1096/​fj.​06-7474com PubMedCrossRef
65.
go back to reference Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1985) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324(6098):641–646. doi:10.1038/324641a0 CrossRef Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1985) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324(6098):641–646. doi:10.​1038/​324641a0 CrossRef
66.
67.
go back to reference Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS et al (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58(4):705–711. doi:10.1124/pr.58.4.3 PubMedCrossRef Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS et al (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58(4):705–711. doi:10.​1124/​pr.​58.​4.​3 PubMedCrossRef
68.
go back to reference Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE (2012) Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol 26(6):926–939. doi:10.1210/me.2011-1290 PubMedPubMedCentralCrossRef Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE (2012) Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol 26(6):926–939. doi:10.​1210/​me.​2011-1290 PubMedPubMedCentralCrossRef
71.
go back to reference Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R et al (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142(2):544–550. doi:10.1210/endo.142.2.7935 PubMed Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R et al (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142(2):544–550. doi:10.​1210/​endo.​142.​2.​7935 PubMed
79.
go back to reference Gustafson TA, Markham BE, Morkin E (1986) Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 59(2):194–201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3742743 Gustafson TA, Markham BE, Morkin E (1986) Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 59(2):194–201. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​3742743
83.
go back to reference Averyhart-Fullard V, Fraker LD, Murphy AM, Solaro RJ (1994) Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart. J Mol Cell Cardiol 26(5):609–616. doi:10.1006/jmcc.1994.1073 PubMedCrossRef Averyhart-Fullard V, Fraker LD, Murphy AM, Solaro RJ (1994) Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart. J Mol Cell Cardiol 26(5):609–616. doi:10.​1006/​jmcc.​1994.​1073 PubMedCrossRef
84.
go back to reference Huang X, Lee KJ, Riedel B, Zhang C, Lemanski LF, Walker JW (2000) Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. J Mol Cell Cardiol 32(12):2221–2228. doi:10.1006/jmcc.2000.1249 PubMedCrossRef Huang X, Lee KJ, Riedel B, Zhang C, Lemanski LF, Walker JW (2000) Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. J Mol Cell Cardiol 32(12):2221–2228. doi:10.​1006/​jmcc.​2000.​1249 PubMedCrossRef
86.
go back to reference Hartong R, Wang N, Kurokawa R, Lazar MA, Glass CK, Apriletti JW, Dillmann WH (1994) Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ ATPase gene. Demonstration that retinoid X receptor binds 5′ to thyroid hormone receptor in response element 1. J Biol Chem 269(17):13021–13029. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8175722 Hartong R, Wang N, Kurokawa R, Lazar MA, Glass CK, Apriletti JW, Dillmann WH (1994) Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ ATPase gene. Demonstration that retinoid X receptor binds 5′ to thyroid hormone receptor in response element 1. J Biol Chem 269(17):13021–13029. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8175722
93.
go back to reference Reed TD, Babu GJ, Ji Y, Zilberman A, Ver Heyen M, Wuytack F, Periasamy M (2000) The expression of SR calcium transport ATPase and the Na(+)/Ca(2+) exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol 32(3):453–464. doi:10.1006/jmcc.1999.1095 PubMedCrossRef Reed TD, Babu GJ, Ji Y, Zilberman A, Ver Heyen M, Wuytack F, Periasamy M (2000) The expression of SR calcium transport ATPase and the Na(+)/Ca(2+) exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol 32(3):453–464. doi:10.​1006/​jmcc.​1999.​1095 PubMedCrossRef
96.
go back to reference Rutherford JD, Vatner SF, Braunwald E (1979) Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am J Physiol Heart Circ Physiol 237(5):H590–H596 Rutherford JD, Vatner SF, Braunwald E (1979) Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am J Physiol Heart Circ Physiol 237(5):H590–H596
100.
go back to reference Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 42(10):718–724. doi:10.1055/s-0030-1255035 PubMedCrossRef Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 42(10):718–724. doi:10.​1055/​s-0030-1255035 PubMedCrossRef
101.
go back to reference Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M et al (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190. doi:10.1007/s10456-007-9088-7 PubMedCrossRef Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M et al (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190. doi:10.​1007/​s10456-007-9088-7 PubMedCrossRef
102.
105.
106.
go back to reference Lin H-Y, Sun M, Tang H-Y, Lin C, Luidens MK, Mousa SA et al (2009) l-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell physiol 296(5):C980–C991. doi:10.1152/ajpcell.00305.2008 PubMedCrossRef Lin H-Y, Sun M, Tang H-Y, Lin C, Luidens MK, Mousa SA et al (2009) l-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell physiol 296(5):C980–C991. doi:10.​1152/​ajpcell.​00305.​2008 PubMedCrossRef
110.
go back to reference Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207(1):220–231. doi:10.1002/jcp.20562 PubMedCrossRef Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207(1):220–231. doi:10.​1002/​jcp.​20562 PubMedCrossRef
114.
go back to reference Horowitz B, Hensley CB, Quintero M, Azuma KK, Putnam D, McDonough AA (1990) Differential regulation of Na, K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem 265(0021-9258 SB - IM):14308–14314PubMed Horowitz B, Hensley CB, Quintero M, Azuma KK, Putnam D, McDonough AA (1990) Differential regulation of Na, K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem 265(0021-9258 SB - IM):14308–14314PubMed
117.
go back to reference Schmidt BMW, Martin N, Georgens AC, Tillmann H-C, Feuring M, Christ M, Wehling M (2002) Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab 87(4):1681–1686. doi:10.1210/jcem.87.4.8410 PubMedCrossRef Schmidt BMW, Martin N, Georgens AC, Tillmann H-C, Feuring M, Christ M, Wehling M (2002) Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab 87(4):1681–1686. doi:10.​1210/​jcem.​87.​4.​8410 PubMedCrossRef
118.
go back to reference Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M et al (2005) 3,5-diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 19(11):1552–1554. doi:10.1096/fj.05-3977fje PubMed Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M et al (2005) 3,5-diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 19(11):1552–1554. doi:10.​1096/​fj.​05-3977fje PubMed
119.
go back to reference Mollica MP, Lionetti L, Moreno M, Lombardi A, De Lange P, Antonelli A et al (2009) 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J Hepatol 51(2):363–370. doi:10.1016/j.jhep.2009.03.023 PubMedCrossRef Mollica MP, Lionetti L, Moreno M, Lombardi A, De Lange P, Antonelli A et al (2009) 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J Hepatol 51(2):363–370. doi:10.​1016/​j.​jhep.​2009.​03.​023 PubMedCrossRef
120.
go back to reference Padron AS, Neto RAL, Pantaleão TU, de Souza dos Santos MC, Araujo RL, de Andrade BM et al (2014) Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol 221(3):415–427. doi:10.1530/JOE-13-0502 PubMedPubMedCentralCrossRef Padron AS, Neto RAL, Pantaleão TU, de Souza dos Santos MC, Araujo RL, de Andrade BM et al (2014) Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol 221(3):415–427. doi:10.​1530/​JOE-13-0502 PubMedPubMedCentralCrossRef
125.
go back to reference Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M (2009) 3,5-Diiodo-l-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 296(3):E497–E502. doi:10.1152/ajpendo.90642.2008 PubMedCrossRef Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M (2009) 3,5-Diiodo-l-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 296(3):E497–E502. doi:10.​1152/​ajpendo.​90642.​2008 PubMedCrossRef
126.
go back to reference Lombardi A, De Matteis R, Moreno M, Napolitano L, Busiello RA, Senese R et al (2012) Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36. Am J Physiol Endocrinol Metab 303(10):E1222–E1233. doi:10.1152/ajpendo.00037.2012 PubMedCrossRef Lombardi A, De Matteis R, Moreno M, Napolitano L, Busiello RA, Senese R et al (2012) Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36. Am J Physiol Endocrinol Metab 303(10):E1222–E1233. doi:10.​1152/​ajpendo.​00037.​2012 PubMedCrossRef
128.
go back to reference Mangiullo R, Gnoni A, Damiano F, Siculella L, Zanotti F, Papa S, Gnoni GV (2010) 3,5-diiodo-l-thyronine upregulates rat-liver mitochondrial F(o)F(1)-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim Biophys Acta 1797(2):233–240. doi:10.1016/j.bbabio.2009.10.009 PubMedCrossRef Mangiullo R, Gnoni A, Damiano F, Siculella L, Zanotti F, Papa S, Gnoni GV (2010) 3,5-diiodo-l-thyronine upregulates rat-liver mitochondrial F(o)F(1)-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim Biophys Acta 1797(2):233–240. doi:10.​1016/​j.​bbabio.​2009.​10.​009 PubMedCrossRef
129.
go back to reference Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U et al (2015) 3,5-Diiodo-l-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1):389–399. doi:10.1210/en.2014-1604 PubMedCrossRef Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U et al (2015) 3,5-Diiodo-l-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1):389–399. doi:10.​1210/​en.​2014-1604 PubMedCrossRef
130.
go back to reference Antonelli A, Fallahi P, Ferrari SM, Di Domenicantonio A, Moreno M, Lanni A, Goglia F 3,5-diiodo-l-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J Biol Regul Homeost Agents 25(4):655–660. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22217997 Antonelli A, Fallahi P, Ferrari SM, Di Domenicantonio A, Moreno M, Lanni A, Goglia F 3,5-diiodo-l-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J Biol Regul Homeost Agents 25(4):655–660. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22217997
131.
go back to reference Cheng SY, Ransom SC, McPhie P, Bhat MK, Mixson AJ, Wintraub BD (1994) Analysis of the binding of 3,3′,5-triiodo-l-thyronine and its analogues to mutant human beta 1 thyroid hormone receptors: a model of the hormone binding site. Biochemistry 33(14):4319–4326. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8155649 Cheng SY, Ransom SC, McPhie P, Bhat MK, Mixson AJ, Wintraub BD (1994) Analysis of the binding of 3,3′,5-triiodo-l-thyronine and its analogues to mutant human beta 1 thyroid hormone receptors: a model of the hormone binding site. Biochemistry 33(14):4319–4326. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8155649
132.
go back to reference Mendoza A, Navarrete-Ramírez P, Hernández-Puga G, Villalobos P, Holzer G, Renaud JP et al (2013) 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1. Endocrinology 154(8):2948–2958. doi:10.1210/en.2013-1030 PubMedCrossRef Mendoza A, Navarrete-Ramírez P, Hernández-Puga G, Villalobos P, Holzer G, Renaud JP et al (2013) 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1. Endocrinology 154(8):2948–2958. doi:10.​1210/​en.​2013-1030 PubMedCrossRef
133.
136.
go back to reference Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J et al (2015) 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 54(3):205–216. doi:10.1530/JME-15-0003 PubMedCrossRef Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J et al (2015) 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 54(3):205–216. doi:10.​1530/​JME-15-0003 PubMedCrossRef
137.
go back to reference Frascarelli S, Ghelardoni S, Chiellini G, Galli E, Ronca F, Scanlan TS, Zucchi R (2011) Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 25(4):307–313. doi:10.1007/s10557-011-6320-x PubMedCrossRef Frascarelli S, Ghelardoni S, Chiellini G, Galli E, Ronca F, Scanlan TS, Zucchi R (2011) Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 25(4):307–313. doi:10.​1007/​s10557-011-6320-x PubMedCrossRef
138.
go back to reference Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, Di Meo S (2011) Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 341(1–2):55–62. doi:10.1016/j.mce.2011.05.013 PubMedCrossRef Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, Di Meo S (2011) Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 341(1–2):55–62. doi:10.​1016/​j.​mce.​2011.​05.​013 PubMedCrossRef
141.
go back to reference Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennström B, Mittag J (2015) 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 172(13):3426–3433. doi:10.1111/bph.13131 PubMedCrossRef Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennström B, Mittag J (2015) 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 172(13):3426–3433. doi:10.​1111/​bph.​13131 PubMedCrossRef
142.
go back to reference Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87(3):968–974. doi:10.1210/jcem.87.3.8302 PubMedCrossRef Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87(3):968–974. doi:10.​1210/​jcem.​87.​3.​8302 PubMedCrossRef
145.
go back to reference Pachucki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85(6):498–503PubMedCrossRef Pachucki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85(6):498–503PubMedCrossRef
147.
148.
go back to reference Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR et al (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85(3):560–570. doi:10.1093/cvr/cvp304 PubMedCrossRef Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR et al (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85(3):560–570. doi:10.​1093/​cvr/​cvp304 PubMedCrossRef
149.
go back to reference Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH (1999) Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res 43(2):382–388PubMedCrossRef Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH (1999) Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res 43(2):382–388PubMedCrossRef
151.
go back to reference Dernellis J, Panaretou M (2002) Effects of thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism. Am Heart J 143:718–724PubMedCrossRef Dernellis J, Panaretou M (2002) Effects of thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism. Am Heart J 143:718–724PubMedCrossRef
152.
go back to reference Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci USA 89(12):5251–5255PubMedPubMedCentralCrossRef Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci USA 89(12):5251–5255PubMedPubMedCentralCrossRef
153.
go back to reference Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 132(4):270–278. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10681281 Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 132(4):270–278. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10681281
154.
go back to reference Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM (2009) Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol 294(5):H2137–H2143. doi:10.1152/ajpheart.01379.2007 CrossRef Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM (2009) Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol 294(5):H2137–H2143. doi:10.​1152/​ajpheart.​01379.​2007 CrossRef
155.
go back to reference Saba A, Donzelli R, Colligiani D, Raffaelli A, Nannipieri M, Kusmic C et al (2014) Quantification of thyroxine and 3,5,3′-triiodo-thyronine in human and animal hearts by a novel liquid chromatography–tandem mass spectrometry method. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 46(9):628–634. doi:10.1055/s-0034-1368717 PubMedCrossRef Saba A, Donzelli R, Colligiani D, Raffaelli A, Nannipieri M, Kusmic C et al (2014) Quantification of thyroxine and 3,5,3′-triiodo-thyronine in human and animal hearts by a novel liquid chromatography–tandem mass spectrometry method. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 46(9):628–634. doi:10.​1055/​s-0034-1368717 PubMedCrossRef
157.
go back to reference Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103(8):1089–1094. doi:10.1161/01.CIR.103.8.1089 PubMedCrossRef Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103(8):1089–1094. doi:10.​1161/​01.​CIR.​103.​8.​1089 PubMedCrossRef
158.
go back to reference Belke DD, Gloss B, Swanson EA, Dillmann WH (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and-beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148(6):2870–2877. doi:10.1210/en.2007-0009 PubMedCrossRef Belke DD, Gloss B, Swanson EA, Dillmann WH (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and-beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148(6):2870–2877. doi:10.​1210/​en.​2007-0009 PubMedCrossRef
160.
go back to reference Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A et al (2011) Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152(2):669–679. doi:10.1210/en.2010-0431 PubMedCrossRef Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A et al (2011) Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152(2):669–679. doi:10.​1210/​en.​2010-0431 PubMedCrossRef
161.
go back to reference Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165(1):107–114. doi:10.1530/EJE-11-0062 PubMedCrossRef Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165(1):107–114. doi:10.​1530/​EJE-11-0062 PubMedCrossRef
Metadata
Title
Tissue thyroid hormones and thyronamines
Authors
Alice Accorroni
Federica Saponaro
Riccardo Zucchi
Publication date
01-07-2016
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 4/2016
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-016-9553-8

Other articles of this Issue 4/2016

Heart Failure Reviews 4/2016 Go to the issue