Skip to main content
Top
Published in: Heart Failure Reviews 3/2016

01-05-2016

Molecular pathogenesis and current pathology of pulmonary hypertension

Author: Vinicio A. de Jesus Perez

Published in: Heart Failure Reviews | Issue 3/2016

Login to get access

Abstract

Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Literature
1.
2.
go back to reference McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J (2009) Accf/aha 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on expert consensus documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619PubMedCrossRef McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J (2009) Accf/aha 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on expert consensus documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619PubMedCrossRef
3.
go back to reference Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Koerner SK et al (1987) Primary pulmonary hypertension. A national prospective study. Ann Intern Med 107:216–223PubMedCrossRef Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Koerner SK et al (1987) Primary pulmonary hypertension. A national prospective study. Ann Intern Med 107:216–223PubMedCrossRef
4.
go back to reference Morrell NW (2006) Pulmonary hypertension due to bmpr2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3:680–686PubMedCrossRef Morrell NW (2006) Pulmonary hypertension due to bmpr2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3:680–686PubMedCrossRef
5.
go back to reference Chin KM, Kim NH, Rubin LJ (2005) The right ventricle in pulmonary hypertension. Coron Artery Dis 16:13–18PubMedCrossRef Chin KM, Kim NH, Rubin LJ (2005) The right ventricle in pulmonary hypertension. Coron Artery Dis 16:13–18PubMedCrossRef
6.
8.
go back to reference Tuder RM, Archer SL, Dorfmuller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell NW (2013) Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 62:D4–12PubMedPubMedCentralCrossRef Tuder RM, Archer SL, Dorfmuller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell NW (2013) Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 62:D4–12PubMedPubMedCentralCrossRef
9.
go back to reference Tuder RM (2014) How do we measure pathology in PAH (lung and RV) and what does it tell us about the disease. Drug Discov Today 19:1257–1263PubMedCrossRef Tuder RM (2014) How do we measure pathology in PAH (lung and RV) and what does it tell us about the disease. Drug Discov Today 19:1257–1263PubMedCrossRef
10.
go back to reference Rabinovitch M (2001) Pathobiology of pulmonary hypertension Extracellular matrix. Clin Chest Med 22:433–449 viii PubMedCrossRef Rabinovitch M (2001) Pathobiology of pulmonary hypertension Extracellular matrix. Clin Chest Med 22:433–449 viii PubMedCrossRef
11.
go back to reference Heath D, Edwards JE (1958) The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 18:533–547PubMedCrossRef Heath D, Edwards JE (1958) The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 18:533–547PubMedCrossRef
12.
go back to reference Heath D, Helmholz HF Jr, Burchell HB, Dushane JW, Edwards JE (1958) Graded pulmonary vascular changes and hemodynamic findings in cases of atrial and ventricular septal defect and patent ductus arteriosus. Circulation 18:1155–1166PubMedCrossRef Heath D, Helmholz HF Jr, Burchell HB, Dushane JW, Edwards JE (1958) Graded pulmonary vascular changes and hemodynamic findings in cases of atrial and ventricular septal defect and patent ductus arteriosus. Circulation 18:1155–1166PubMedCrossRef
13.
go back to reference Rabinovitch M, Haworth SG, Vance Z, Vawter G, Castaneda AR, Nadas AS, Reid LM (1980) Early pulmonary vascular changes in congenital heart disease studied in biopsy tissue. Hum Pathol 11:499–509PubMed Rabinovitch M, Haworth SG, Vance Z, Vawter G, Castaneda AR, Nadas AS, Reid LM (1980) Early pulmonary vascular changes in congenital heart disease studied in biopsy tissue. Hum Pathol 11:499–509PubMed
14.
go back to reference Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD, Tuder RM (2012) Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186:261–272PubMedPubMedCentralCrossRef Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, Jessup M, Grizzle WE, Aldred MA, Cool CD, Tuder RM (2012) Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186:261–272PubMedPubMedCentralCrossRef
15.
go back to reference Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691PubMedCrossRef Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691PubMedCrossRef
16.
go back to reference Stenmark KR, Frid MG (1998) Smooth muscle cell heterogeneity: role of specific smooth muscle cell subpopulations in pulmonary vascular disease. Chest 114:82S–90SPubMedCrossRef Stenmark KR, Frid MG (1998) Smooth muscle cell heterogeneity: role of specific smooth muscle cell subpopulations in pulmonary vascular disease. Chest 114:82S–90SPubMedCrossRef
17.
go back to reference Coflesky JT, Adler KB, Woodcock-Mitchell J, Mitchell J, Evans JN (1988) Proliferative changes in the pulmonary arterial wall during short-term hyperoxic injury to the lung. Am J Pathol 132:563–573PubMedPubMedCentral Coflesky JT, Adler KB, Woodcock-Mitchell J, Mitchell J, Evans JN (1988) Proliferative changes in the pulmonary arterial wall during short-term hyperoxic injury to the lung. Am J Pathol 132:563–573PubMedPubMedCentral
18.
go back to reference Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS, Gebb S, Jones PL (2005) Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension. Circulation 111:2988–2996PubMedPubMedCentralCrossRef Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS, Gebb S, Jones PL (2005) Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension. Circulation 111:2988–2996PubMedPubMedCentralCrossRef
19.
go back to reference Montani D, Chaumais MC, Guignabert C, Gunther S, Girerd B, Jais X, Algalarrondo V, Price LC, Savale L, Sitbon O, Simonneau G, Humbert M (2014) Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 141:172–191PubMedCrossRef Montani D, Chaumais MC, Guignabert C, Gunther S, Girerd B, Jais X, Algalarrondo V, Price LC, Savale L, Sitbon O, Simonneau G, Humbert M (2014) Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 141:172–191PubMedCrossRef
20.
go back to reference Boutet K, Montani D, Jais X, Yaici A, Sitbon O, Simonneau G, Humbert M (2008) Therapeutic advances in pulmonary arterial hypertension. Ther Adv Respir Dis 2:249–265PubMedCrossRef Boutet K, Montani D, Jais X, Yaici A, Sitbon O, Simonneau G, Humbert M (2008) Therapeutic advances in pulmonary arterial hypertension. Ther Adv Respir Dis 2:249–265PubMedCrossRef
21.
go back to reference Zaidi SH, You XM, Ciura S, Husain M, Rabinovitch M (2002) Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105:516–521PubMedCrossRef Zaidi SH, You XM, Ciura S, Husain M, Rabinovitch M (2002) Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105:516–521PubMedCrossRef
22.
go back to reference Nickel NP, Spiekerkoetter E, Gu M, Li CG, Li H, Kaschwich M, Diebold I, Hennigs JK, Kim KY, Miyagawa K, Wang L, Cao A, Sa S, Jiang X, Stockstill RW, Nicolls MR, Zamanian RT, Bland RD, Rabinovitch M (2015) Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signaling. Am J Respir Crit Care Med 191:1273–1286PubMedCrossRef Nickel NP, Spiekerkoetter E, Gu M, Li CG, Li H, Kaschwich M, Diebold I, Hennigs JK, Kim KY, Miyagawa K, Wang L, Cao A, Sa S, Jiang X, Stockstill RW, Nicolls MR, Zamanian RT, Bland RD, Rabinovitch M (2015) Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signaling. Am J Respir Crit Care Med 191:1273–1286PubMedCrossRef
23.
go back to reference Rabinovitch M (1999) Eve and beyond, retro and prospective insights. Am J Physiol 277:L5–12PubMed Rabinovitch M (1999) Eve and beyond, retro and prospective insights. Am J Physiol 277:L5–12PubMed
25.
go back to reference Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22:405–418PubMedCrossRef Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium. Clin Chest Med 22:405–418PubMedCrossRef
26.
go back to reference Tuder RM, Groves B, Badesch DB, Voelkel NF (1994) Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144:275–285PubMedPubMedCentral Tuder RM, Groves B, Badesch DB, Voelkel NF (1994) Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144:275–285PubMedPubMedCentral
27.
go back to reference Yeager ME, Golpon HA, Voelkel NF, Tuder RM (2002) Microsatellite mutational analysis of endothelial cells within plexiform lesions from patients with familial, pediatric, and sporadic pulmonary hypertension. Chest 121:61SPubMedCrossRef Yeager ME, Golpon HA, Voelkel NF, Tuder RM (2002) Microsatellite mutational analysis of endothelial cells within plexiform lesions from patients with familial, pediatric, and sporadic pulmonary hypertension. Chest 121:61SPubMedCrossRef
28.
go back to reference Tuder RM, Voelkel NF (2002) Angiogenesis and pulmonary hypertension: a unique process in a unique disease. Antioxid Redox Signal 4:833–843PubMedCrossRef Tuder RM, Voelkel NF (2002) Angiogenesis and pulmonary hypertension: a unique process in a unique disease. Antioxid Redox Signal 4:833–843PubMedCrossRef
29.
go back to reference Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM (1998) Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101:927–934PubMedPubMedCentralCrossRef Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM (1998) Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101:927–934PubMedPubMedCentralCrossRef
30.
go back to reference Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178:558–564PubMedPubMedCentralCrossRef Rai PR, Cool CD, King JA, Stevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178:558–564PubMedPubMedCentralCrossRef
31.
go back to reference van Dijk CG, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, El Azzouzi H, Duncker DJ, Verhaar MC, Cheng C (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89PubMedCrossRef van Dijk CG, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, El Azzouzi H, Duncker DJ, Verhaar MC, Cheng C (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89PubMedCrossRef
32.
go back to reference Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2014) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245PubMedPubMedCentralCrossRef Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2014) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245PubMedPubMedCentralCrossRef
33.
go back to reference Dore-Duffy P (2014) Pericytes and adaptive angioplasticity: the role of tumor necrosis factor-like weak inducer of apoptosis (tweak). Methods Mol Biol 1135:35–52PubMedCrossRef Dore-Duffy P (2014) Pericytes and adaptive angioplasticity: the role of tumor necrosis factor-like weak inducer of apoptosis (tweak). Methods Mol Biol 1135:35–52PubMedCrossRef
34.
go back to reference El-Bizri N, Wang L, Merklinger SL, Guignabert C, Desai T, Urashima T, Sheikh AY, Knutsen RH, Mecham RP, Mishina Y, Rabinovitch M (2008) Smooth muscle protein 22alpha-mediated patchy deletion of bmpr1a impairs cardiac contractility but protects against pulmonary vascular remodeling. Circ Res 102:380–388PubMedPubMedCentralCrossRef El-Bizri N, Wang L, Merklinger SL, Guignabert C, Desai T, Urashima T, Sheikh AY, Knutsen RH, Mecham RP, Mishina Y, Rabinovitch M (2008) Smooth muscle protein 22alpha-mediated patchy deletion of bmpr1a impairs cardiac contractility but protects against pulmonary vascular remodeling. Circ Res 102:380–388PubMedPubMedCentralCrossRef
35.
go back to reference Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, Sattler C, Fadel E, Seferian A, Montani D, Dorfmuller P, Humbert M, Guignabert C (2014) Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation 129:1586–1597PubMedCrossRef Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, Sattler C, Fadel E, Seferian A, Montani D, Dorfmuller P, Humbert M, Guignabert C (2014) Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation 129:1586–1597PubMedCrossRef
36.
go back to reference Yuan K, Orcholski ME, Panaroni C, Shuffle EM, Huang NF, Jiang X, Tian W, Vladar EK, Wang L, Nicolls MR, Wu JY, de Jesus Perez VA (2015) Activation of the wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis. Am J Pathol 185:69–84PubMedPubMedCentralCrossRef Yuan K, Orcholski ME, Panaroni C, Shuffle EM, Huang NF, Jiang X, Tian W, Vladar EK, Wang L, Nicolls MR, Wu JY, de Jesus Perez VA (2015) Activation of the wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis. Am J Pathol 185:69–84PubMedPubMedCentralCrossRef
37.
go back to reference Durmowicz AG, Stenmark KR (1999) Mechanisms of structural remodeling in chronic pulmonary hypertension. Pediatr Rev 20:e91–e102PubMed Durmowicz AG, Stenmark KR (1999) Mechanisms of structural remodeling in chronic pulmonary hypertension. Pediatr Rev 20:e91–e102PubMed
38.
go back to reference Stenmark KR, Frid MG, Yeager M, Li M, Riddle S, McKinsey T, El Kasmi KC (2012) Targeting the adventitial microenvironment in pulmonary hypertension: a potential approach to therapy that considers epigenetic change. Pulm Circ 2:3–14PubMedPubMedCentralCrossRef Stenmark KR, Frid MG, Yeager M, Li M, Riddle S, McKinsey T, El Kasmi KC (2012) Targeting the adventitial microenvironment in pulmonary hypertension: a potential approach to therapy that considers epigenetic change. Pulm Circ 2:3–14PubMedPubMedCentralCrossRef
39.
go back to reference Wang Z, Chesler NC (2011) Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 1:212–223PubMedPubMedCentralCrossRef Wang Z, Chesler NC (2011) Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary hypertension. Pulm Circ 1:212–223PubMedPubMedCentralCrossRef
40.
go back to reference Rabinovitch M, Guignabert C, Humbert M, Nicolls MR (2014) Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115:165–175PubMedPubMedCentralCrossRef Rabinovitch M, Guignabert C, Humbert M, Nicolls MR (2014) Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 115:165–175PubMedPubMedCentralCrossRef
41.
go back to reference Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744PubMedPubMedCentralCrossRef Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE, Knowles JA (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744PubMedPubMedCentralCrossRef
42.
go back to reference International PPH Consortium, Lane KB, Machado RD, Pauciulo MW, Thomson JR, 3rd Phillips JA, Loyd JE, Nichols WC, Trembath RC (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81–84CrossRef International PPH Consortium, Lane KB, Machado RD, Pauciulo MW, Thomson JR, 3rd Phillips JA, Loyd JE, Nichols WC, Trembath RC (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26:81–84CrossRef
43.
go back to reference Machado RD, Pauciulo MW, Thomson JR, Lane KB, Morgan NV, Wheeler L, Phillips JA 3rd, Newman J, Williams D, Galie N, Manes A, McNeil K, Yacoub M, Mikhail G, Rogers P, Corris P, Humbert M, Donnai D, Martensson G, Tranebjaerg L, Loyd JE, Trembath RC, Nichols WC (2001) BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 68:92–102PubMedPubMedCentralCrossRef Machado RD, Pauciulo MW, Thomson JR, Lane KB, Morgan NV, Wheeler L, Phillips JA 3rd, Newman J, Williams D, Galie N, Manes A, McNeil K, Yacoub M, Mikhail G, Rogers P, Corris P, Humbert M, Donnai D, Martensson G, Tranebjaerg L, Loyd JE, Trembath RC, Nichols WC (2001) BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 68:92–102PubMedPubMedCentralCrossRef
44.
go back to reference Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs JS, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd JE, Trembath RC, Nichols WC (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 37:741–745PubMedPubMedCentralCrossRef Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs JS, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd JE, Trembath RC, Nichols WC (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 37:741–745PubMedPubMedCentralCrossRef
45.
go back to reference Alastalo TP, Li M, Perez Vde J, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPAR gamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial ec survival. J Clin Invest 121:3735–3746PubMedPubMedCentralCrossRef Alastalo TP, Li M, Perez Vde J, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPAR gamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial ec survival. J Clin Invest 121:3735–3746PubMedPubMedCentralCrossRef
46.
go back to reference de Jesus Perez VA, de Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M (2009) Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-Rhoa-Rac1 pathways. J Cell Biol 184:83–99PubMedPubMedCentralCrossRef de Jesus Perez VA, de Alastalo TP, Wu JC, Axelrod JD, Cooke JP, Amieva M, Rabinovitch M (2009) Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-Rhoa-Rac1 pathways. J Cell Biol 184:83–99PubMedPubMedCentralCrossRef
47.
go back to reference Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, El-Bizri N, Sawada H, Haghighat R, Chan R, Haghighat L, de Jesus Perez V, Wang L, Reddy S, Zhao M, Bernstein D, Solow-Cordero DE, Beachy PA, Wandless TJ, Ten Dijke P, Rabinovitch M (2013) Fk506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest 123:3600–3613PubMedPubMedCentralCrossRef Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG, El-Bizri N, Sawada H, Haghighat R, Chan R, Haghighat L, de Jesus Perez V, Wang L, Reddy S, Zhao M, Bernstein D, Solow-Cordero DE, Beachy PA, Wandless TJ, Ten Dijke P, Rabinovitch M (2013) Fk506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest 123:3600–3613PubMedPubMedCentralCrossRef
48.
go back to reference Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A, Jais X, Tregouet D, Reis A, Drouin-Garraud V, Fraisse A, Sitbon O, O’Callaghan DS, Simonneau G, Soubrier F, Humbert M (2010) Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med 181:851–861PubMedCrossRef Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A, Jais X, Tregouet D, Reis A, Drouin-Garraud V, Fraisse A, Sitbon O, O’Callaghan DS, Simonneau G, Soubrier F, Humbert M (2010) Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med 181:851–861PubMedCrossRef
49.
go back to reference Sankelo M, Flanagan JA, Machado R, Harrison R, Rudarakanchana N, Morrell N, Dixon M, Halme M, Puolijoki H, Kere J, Elomaa O, Kupari M, Raisanen-Sokolowski A, Trembath RC, Laitinen T (2005) BMPR2 mutations have short lifetime expectancy in primary pulmonary hypertension. Hum Mutat 26:119–124PubMedCrossRef Sankelo M, Flanagan JA, Machado R, Harrison R, Rudarakanchana N, Morrell N, Dixon M, Halme M, Puolijoki H, Kere J, Elomaa O, Kupari M, Raisanen-Sokolowski A, Trembath RC, Laitinen T (2005) BMPR2 mutations have short lifetime expectancy in primary pulmonary hypertension. Hum Mutat 26:119–124PubMedCrossRef
50.
go back to reference Sztrymf B, Coulet F, Girerd B, Yaici A, Jais X, Sitbon O, Montani D, Souza R, Simonneau G, Soubrier F, Humbert M (2008) Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am J Respir Crit Care Med 177:1377–1383PubMedCrossRef Sztrymf B, Coulet F, Girerd B, Yaici A, Jais X, Sitbon O, Montani D, Souza R, Simonneau G, Soubrier F, Humbert M (2008) Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am J Respir Crit Care Med 177:1377–1383PubMedCrossRef
51.
go back to reference Best DH, Austin ED, Chung WK, Elliott CG (2014) Genetics of pulmonary hypertension. Curr Opin Cardiol 29:520–527PubMedCrossRef Best DH, Austin ED, Chung WK, Elliott CG (2014) Genetics of pulmonary hypertension. Curr Opin Cardiol 29:520–527PubMedCrossRef
52.
go back to reference Drake KM, Dunmore BJ, McNelly LN, Morrell NW, Aldred MA (2013) Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 49:403–409PubMedPubMedCentralCrossRef Drake KM, Dunmore BJ, McNelly LN, Morrell NW, Aldred MA (2013) Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 49:403–409PubMedPubMedCentralCrossRef
53.
go back to reference Ryan JJ (2013) Chloroquine in pulmonary arterial hypertension: a new role for an old drug? Circ Cardiovasc Genet 6:310–311PubMedCrossRef Ryan JJ (2013) Chloroquine in pulmonary arterial hypertension: a new role for an old drug? Circ Cardiovasc Genet 6:310–311PubMedCrossRef
54.
go back to reference Yang J, Li X, Al-Lamki RS, Wu C, Weiss A, Berk J, Schermuly RT, Morrell NW (2013) Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 33:34–42PubMedCrossRef Yang J, Li X, Al-Lamki RS, Wu C, Weiss A, Berk J, Schermuly RT, Morrell NW (2013) Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 33:34–42PubMedCrossRef
55.
go back to reference Drake KM, Zygmunt D, Mavrakis L, Harbor P, Wang L, Comhair SA, Erzurum SC, Aldred MA (2011) Altered microRNA processing in heritable pulmonary arterial hypertension: an important role for SMAD-8. Am J Respir Crit Care Med 184:1400–1408PubMedPubMedCentralCrossRef Drake KM, Zygmunt D, Mavrakis L, Harbor P, Wang L, Comhair SA, Erzurum SC, Aldred MA (2011) Altered microRNA processing in heritable pulmonary arterial hypertension: an important role for SMAD-8. Am J Respir Crit Care Med 184:1400–1408PubMedPubMedCentralCrossRef
56.
go back to reference Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, Bradshaw TY, Southgate L, Lee GJ, Jackson I, Lord GM, Gibbs JS, Wilkins MR, Ohta-Ogo K, Nakamura K, Girerd B, Coulet F, Soubrier F, Humbert M, Morrell NW, Trembath RC, Machado RD (2011) Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat 32:1385–1389PubMedCrossRef Nasim MT, Ogo T, Ahmed M, Randall R, Chowdhury HM, Snape KM, Bradshaw TY, Southgate L, Lee GJ, Jackson I, Lord GM, Gibbs JS, Wilkins MR, Ohta-Ogo K, Nakamura K, Girerd B, Coulet F, Soubrier F, Humbert M, Morrell NW, Trembath RC, Machado RD (2011) Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Hum Mutat 32:1385–1389PubMedCrossRef
57.
go back to reference Lenato GM, Guanti G (2006) Hereditary haemorrhagic telangiectasia (HHT): genetic and molecular aspects. Curr Pharm Des 12:1173–1193PubMedCrossRef Lenato GM, Guanti G (2006) Hereditary haemorrhagic telangiectasia (HHT): genetic and molecular aspects. Curr Pharm Des 12:1173–1193PubMedCrossRef
58.
go back to reference Newman JH, Trembath RC, Morse JA, Grunig E, Loyd JE, Adnot S, Coccolo F, Ventura C, Phillips JA 3rd, Knowles JA, Janssen B, Eickelberg O, Eddahibi S, Herve P, Nichols WC, Elliott G (2004) Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol 43:33S–39SPubMedCrossRef Newman JH, Trembath RC, Morse JA, Grunig E, Loyd JE, Adnot S, Coccolo F, Ventura C, Phillips JA 3rd, Knowles JA, Janssen B, Eickelberg O, Eddahibi S, Herve P, Nichols WC, Elliott G (2004) Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol 43:33S–39SPubMedCrossRef
59.
go back to reference Pousada G, Baloira A, Vilarino C, Cifrian JM, Valverde D (2014) Novel mutations in BMPR2, ACVRL1 and KCNA5 genes and hemodynamic parameters in patients with pulmonary arterial hypertension. PLoS One 9:e100261PubMedPubMedCentralCrossRef Pousada G, Baloira A, Vilarino C, Cifrian JM, Valverde D (2014) Novel mutations in BMPR2, ACVRL1 and KCNA5 genes and hemodynamic parameters in patients with pulmonary arterial hypertension. PLoS One 9:e100261PubMedPubMedCentralCrossRef
60.
go back to reference de Jesus Perez VA, Yuan K, Lyuksyutova MA, Dewey F, Orcholski ME, Shuffle EM, Mathur M, Jr. Yancy L, Rojas V, Li CG, Cao A, Alastalo TP, Khazeni N, Cimprich KA, Butte AJ, Ashley E, Zamanian RT (2014) Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 189:1260–1272PubMedPubMedCentralCrossRef de Jesus Perez VA, Yuan K, Lyuksyutova MA, Dewey F, Orcholski ME, Shuffle EM, Mathur M, Jr. Yancy L, Rojas V, Li CG, Cao A, Alastalo TP, Khazeni N, Cimprich KA, Butte AJ, Ashley E, Zamanian RT (2014) Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 189:1260–1272PubMedPubMedCentralCrossRef
61.
go back to reference Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Tregouet DA, Borczuk A, Rosenzweig EB, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK (2013) A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369:351–361PubMedPubMedCentralCrossRef Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Tregouet DA, Borczuk A, Rosenzweig EB, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK (2013) A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369:351–361PubMedPubMedCentralCrossRef
62.
go back to reference Austin ED, Ma L, LeDuc C, Berman Rosenzweig E, Borczuk A, Phillips JA 3rd, Palomero T, Sumazin P, Kim HR, Talati MH, West J, Loyd JE, Chung WK (2012) Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet 5:336–343PubMedPubMedCentralCrossRef Austin ED, Ma L, LeDuc C, Berman Rosenzweig E, Borczuk A, Phillips JA 3rd, Palomero T, Sumazin P, Kim HR, Talati MH, West J, Loyd JE, Chung WK (2012) Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet 5:336–343PubMedPubMedCentralCrossRef
63.
go back to reference Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, Wheeler LA, Parl FF, Loyd JE, Phillips JA 3rd (2009) Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J 34:1093–1099PubMedPubMedCentralCrossRef Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, Wheeler LA, Parl FF, Loyd JE, Phillips JA 3rd (2009) Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J 34:1093–1099PubMedPubMedCentralCrossRef
64.
go back to reference West J, Cogan J, Geraci M, Robinson L, Newman J, Phillips JA, Lane K, Meyrick B, Loyd J (2008) Gene expression in BMPR2 mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways relevant to disease penetrance. BMC Med Genomics 1:45PubMedPubMedCentralCrossRef West J, Cogan J, Geraci M, Robinson L, Newman J, Phillips JA, Lane K, Meyrick B, Loyd J (2008) Gene expression in BMPR2 mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways relevant to disease penetrance. BMC Med Genomics 1:45PubMedPubMedCentralCrossRef
65.
go back to reference Frump AL, Goss KN, Vayl A, Albrecht M, Fisher A, Tursunova R, Fierst J, Whitson J, Cucci AR, Brown MB, Lahm T (2015) Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones. Am J Physiol Lung Cell Mol Physiol 308:L873–L890PubMedPubMedCentralCrossRef Frump AL, Goss KN, Vayl A, Albrecht M, Fisher A, Tursunova R, Fierst J, Whitson J, Cucci AR, Brown MB, Lahm T (2015) Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones. Am J Physiol Lung Cell Mol Physiol 308:L873–L890PubMedPubMedCentralCrossRef
66.
go back to reference Lahm T, Crisostomo PR, Markel TA, Wang M, Weil BR, Novotny NM, Meldrum DR (2008) The effects of estrogen on pulmonary artery vasoreactivity and hypoxic pulmonary vasoconstriction: potential new clinical implications for an old hormone. Crit Care Med 36:2174–2183PubMedCrossRef Lahm T, Crisostomo PR, Markel TA, Wang M, Weil BR, Novotny NM, Meldrum DR (2008) The effects of estrogen on pulmonary artery vasoreactivity and hypoxic pulmonary vasoconstriction: potential new clinical implications for an old hormone. Crit Care Med 36:2174–2183PubMedCrossRef
67.
go back to reference Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153(Suppl 1):S99–S111PubMedPubMedCentral Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153(Suppl 1):S99–S111PubMedPubMedCentral
68.
go back to reference Fantozzi I, Platoshyn O, Wong AH, Zhang S, Remillard CV, Furtado MR, Petrauskene OV, Yuan JX (2006) Bone morphogenetic protein-2 upregulates expression and function of voltage-gated k+ channels in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 291:L993–1004PubMedCrossRef Fantozzi I, Platoshyn O, Wong AH, Zhang S, Remillard CV, Furtado MR, Petrauskene OV, Yuan JX (2006) Bone morphogenetic protein-2 upregulates expression and function of voltage-gated k+ channels in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 291:L993–1004PubMedCrossRef
69.
go back to reference Ko EA, Burg ED, Platoshyn O, Msefya J, Firth AL, Yuan JX (2007) Functional characterization of voltage-gated k+ channels in mouse pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 293:C928–C937PubMedCrossRef Ko EA, Burg ED, Platoshyn O, Msefya J, Firth AL, Yuan JX (2007) Functional characterization of voltage-gated k+ channels in mouse pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 293:C928–C937PubMedCrossRef
70.
go back to reference Mandegar M, Remillard CV, Yuan JX (2002) Ion channels in pulmonary arterial hypertension. Prog Cardiovasc Dis 45:81–114PubMedCrossRef Mandegar M, Remillard CV, Yuan JX (2002) Ion channels in pulmonary arterial hypertension. Prog Cardiovasc Dis 45:81–114PubMedCrossRef
71.
go back to reference Mandegar M, Yuan JX (2002) Role of k + channels in pulmonary hypertension. Vasc Pharmacol 38:25–33CrossRef Mandegar M, Yuan JX (2002) Role of k + channels in pulmonary hypertension. Vasc Pharmacol 38:25–33CrossRef
72.
go back to reference Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H (2006) Impact of task-1 in human pulmonary artery smooth muscle cells. Circ Res 98:1072–1080PubMedCrossRef Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H (2006) Impact of task-1 in human pulmonary artery smooth muscle cells. Circ Res 98:1072–1080PubMedCrossRef
73.
go back to reference Gurney A, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38:305–318PubMedCrossRef Gurney A, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38:305–318PubMedCrossRef
74.
go back to reference Tang B, Li Y, Nagaraj C, Morty RE, Gabor S, Stacher E, Voswinckel R, Weissmann N, Leithner K, Olschewski H, Olschewski A (2009) Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 41:476–483PubMedCrossRef Tang B, Li Y, Nagaraj C, Morty RE, Gabor S, Stacher E, Voswinckel R, Weissmann N, Leithner K, Olschewski H, Olschewski A (2009) Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 41:476–483PubMedCrossRef
75.
go back to reference Manoury B, Lamalle C, Oliveira R, Reid J, Gurney AM (2011) Contractile and electrophysiological properties of pulmonary artery smooth muscle are not altered in TASK-1 knockout mice. J Physiol 589:3231–3246PubMedPubMedCentralCrossRef Manoury B, Lamalle C, Oliveira R, Reid J, Gurney AM (2011) Contractile and electrophysiological properties of pulmonary artery smooth muscle are not altered in TASK-1 knockout mice. J Physiol 589:3231–3246PubMedPubMedCentralCrossRef
76.
go back to reference Fernandez RA, Wan J, Song S, Smith KA, Gu Y, Tauseef M, Tang H, Makino A, Mehta D, Yuan JX (2015) Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. Am J Physiol Cell Physiol 308:C581–C593PubMedPubMedCentralCrossRef Fernandez RA, Wan J, Song S, Smith KA, Gu Y, Tauseef M, Tang H, Makino A, Mehta D, Yuan JX (2015) Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. Am J Physiol Cell Physiol 308:C581–C593PubMedPubMedCentralCrossRef
77.
go back to reference Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Yamamura A, Guo Q, Wan J, Pohl NM, Tauseef M, Bodmer R, Ocorr K, Thistlethwaite PA, Haddad GG, Powell FL, Makino A, Mehta D, Yuan JX (2015) Notch activation of ca signaling mediates hypoxic pulmonary vasoconstriction and pulmonary hypertension. Am J Respir Cell Mol Biol 53(3):355–367PubMedCrossRef Smith KA, Voiriot G, Tang H, Fraidenburg DR, Song S, Yamamura H, Yamamura A, Guo Q, Wan J, Pohl NM, Tauseef M, Bodmer R, Ocorr K, Thistlethwaite PA, Haddad GG, Powell FL, Makino A, Mehta D, Yuan JX (2015) Notch activation of ca signaling mediates hypoxic pulmonary vasoconstriction and pulmonary hypertension. Am J Respir Cell Mol Biol 53(3):355–367PubMedCrossRef
78.
go back to reference Liu XR, Zhang MF, Yang N, Liu Q, Wang RX, Cao YN, Yang XR, Sham JS, Lin MJ (2012) Enhanced store-operated ca(2)+ entry and trpc channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol 302:C77–C87PubMedPubMedCentralCrossRef Liu XR, Zhang MF, Yang N, Liu Q, Wang RX, Cao YN, Yang XR, Sham JS, Lin MJ (2012) Enhanced store-operated ca(2)+ entry and trpc channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol 302:C77–C87PubMedPubMedCentralCrossRef
79.
go back to reference Wang C, Li JF, Zhao L, Liu J, Wan J, Wang YX, Wang J, Wang C (2009) Inhibition of SOC/Ca2+/Nfat pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respir Res 10:123PubMedPubMedCentralCrossRef Wang C, Li JF, Zhao L, Liu J, Wan J, Wang YX, Wang J, Wang C (2009) Inhibition of SOC/Ca2+/Nfat pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respir Res 10:123PubMedPubMedCentralCrossRef
80.
go back to reference Xu L, Chen Y, Yang K, Wang Y, Tian L, Zhang J, Wang EW, Sun D, Lu W, Wang J (2014) Chronic hypoxia increases TRPC6 expression and basal intracellular ca2+ concentration in rat distal pulmonary venous smooth muscle. PLoS One 9:e112007PubMedPubMedCentralCrossRef Xu L, Chen Y, Yang K, Wang Y, Tian L, Zhang J, Wang EW, Sun D, Lu W, Wang J (2014) Chronic hypoxia increases TRPC6 expression and basal intracellular ca2+ concentration in rat distal pulmonary venous smooth muscle. PLoS One 9:e112007PubMedPubMedCentralCrossRef
81.
go back to reference Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HA, Singer CA, Valencik ML, Britton F, Greenwood IA (2015) Molecular and functional significance of ca(2+)-activated cl(−) channels in pulmonary arterial smooth muscle. Pulm Circ 5:244–268PubMedPubMedCentralCrossRef Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HA, Singer CA, Valencik ML, Britton F, Greenwood IA (2015) Molecular and functional significance of ca(2+)-activated cl(−) channels in pulmonary arterial smooth muscle. Pulm Circ 5:244–268PubMedPubMedCentralCrossRef
82.
go back to reference Zhu S, White RE, Barman SA (2008) Role of phosphodiesterases in modulation of BKCa channels in hypertensive pulmonary arterial smooth muscle. Ther Adv Respir Dis 2:119–127PubMedPubMedCentralCrossRef Zhu S, White RE, Barman SA (2008) Role of phosphodiesterases in modulation of BKCa channels in hypertensive pulmonary arterial smooth muscle. Ther Adv Respir Dis 2:119–127PubMedPubMedCentralCrossRef
83.
go back to reference Barman SA, Zhu S, Han G, White RE (2003) Camp activates bkca channels in pulmonary arterial smooth muscle via cgmp-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol. 284:L1004–L1011PubMedCrossRef Barman SA, Zhu S, Han G, White RE (2003) Camp activates bkca channels in pulmonary arterial smooth muscle via cgmp-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol. 284:L1004–L1011PubMedCrossRef
84.
go back to reference Dai ZK, Liu YW, Hsu JH, Yeh JL, Chen IJ, Wu JR, Wu BN (2015) The xanthine derivative KMUP-1 attenuates serotonin-induced vasoconstriction and k(+)-channel inhibitory activity via the PKC pathway in pulmonary arteries. Int J Biol Sci 11:633–642PubMedPubMedCentralCrossRef Dai ZK, Liu YW, Hsu JH, Yeh JL, Chen IJ, Wu JR, Wu BN (2015) The xanthine derivative KMUP-1 attenuates serotonin-induced vasoconstriction and k(+)-channel inhibitory activity via the PKC pathway in pulmonary arteries. Int J Biol Sci 11:633–642PubMedPubMedCentralCrossRef
85.
go back to reference Dubuis E, Potier M, Wang R, Vandier C (2005) Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCA channels. Cardiovasc Res 65:751–761PubMedCrossRef Dubuis E, Potier M, Wang R, Vandier C (2005) Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCA channels. Cardiovasc Res 65:751–761PubMedCrossRef
86.
go back to reference Gai XY, Wei YH, Zhang W, Wuren TN, Wang YP, Li ZQ, Liu S, Ma L, Lu DX, Zhou Y, Ge RL (2015) Echinacoside induces rat pulmonary artery vasorelaxation by opening the NO-cGMP-PKG-BKCa channels and reducing intracellular ca2+ levels. Acta Pharmacol Sin 36:587–596PubMedCrossRef Gai XY, Wei YH, Zhang W, Wuren TN, Wang YP, Li ZQ, Liu S, Ma L, Lu DX, Zhou Y, Ge RL (2015) Echinacoside induces rat pulmonary artery vasorelaxation by opening the NO-cGMP-PKG-BKCa channels and reducing intracellular ca2+ levels. Acta Pharmacol Sin 36:587–596PubMedCrossRef
87.
go back to reference Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, Dos Santos P, Savineau JP, Baulieu EE (2003) Dehydroepiandrosterone (dhea) prevents and reverses chronic hypoxic pulmonary hypertension. Proc Natl Acad Sci USA 100:9488–9493PubMedPubMedCentralCrossRef Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, Dos Santos P, Savineau JP, Baulieu EE (2003) Dehydroepiandrosterone (dhea) prevents and reverses chronic hypoxic pulmonary hypertension. Proc Natl Acad Sci USA 100:9488–9493PubMedPubMedCentralCrossRef
88.
go back to reference Rehman J, Archer SL (2010) A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the warburg model of pulmonary arterial hypertension. Adv Exp Med Biol 661:171–185PubMedCrossRef Rehman J, Archer SL (2010) A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the warburg model of pulmonary arterial hypertension. Adv Exp Med Biol 661:171–185PubMedCrossRef
89.
go back to reference Tuder RM, Davis LA, Graham BB (2012) Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension. Am J Respir Crit Care Med 185:260–266PubMedPubMedCentralCrossRef Tuder RM, Davis LA, Graham BB (2012) Targeting energetic metabolism: a new frontier in the pathogenesis and treatment of pulmonary hypertension. Am J Respir Crit Care Med 185:260–266PubMedPubMedCentralCrossRef
90.
go back to reference Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641PubMedCrossRef Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641PubMedCrossRef
91.
go back to reference Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138PubMedPubMedCentralCrossRef Fijalkowska I, Xu W, Comhair SA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM (2010) Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol 176:1130–1138PubMedPubMedCentralCrossRef
92.
go back to reference Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-k+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51PubMedCrossRef Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-k+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51PubMedCrossRef
93.
go back to reference Dromparis P, Sutendra G, Michelakis ED (2010) The role of mitochondria in pulmonary vascular remodeling. J Mol Med 88:1003–1010PubMedCrossRef Dromparis P, Sutendra G, Michelakis ED (2010) The role of mitochondria in pulmonary vascular remodeling. J Mol Med 88:1003–1010PubMedCrossRef
94.
go back to reference McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis ED (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Investig 115:1479–1491PubMedPubMedCentralCrossRef McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis ED (2005) Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Investig 115:1479–1491PubMedPubMedCentralCrossRef
95.
go back to reference McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840PubMedCrossRef McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840PubMedCrossRef
96.
go back to reference Dromparis P, Paulin R, Stenson TH, Haromy A, Sutendra G, Michelakis ED (2013) Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation 127:115–125PubMedCrossRef Dromparis P, Paulin R, Stenson TH, Haromy A, Sutendra G, Michelakis ED (2013) Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation 127:115–125PubMedCrossRef
97.
go back to reference Ryter SW, Nakahira K, Haspel JA, Choi AM (2012) Autophagy in pulmonary diseases. Annu Rev Physiol 74:377–401PubMedCrossRef Ryter SW, Nakahira K, Haspel JA, Choi AM (2012) Autophagy in pulmonary diseases. Annu Rev Physiol 74:377–401PubMedCrossRef
98.
go back to reference Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, McMurtry MS, Michalak M, Vance JE, Sessa WC, Michelakis ED (2011) The role of nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med 3:88ra55PubMedPubMedCentralCrossRef Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, McMurtry MS, Michalak M, Vance JE, Sessa WC, Michelakis ED (2011) The role of nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med 3:88ra55PubMedPubMedCentralCrossRef
99.
go back to reference Long L, Yang X, Southwood M, Lu J, Marciniak SJ, Dunmore BJ, Morrell NW (2013) Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type ii receptor degradation. Circ Res 112:1159–1170PubMedCrossRef Long L, Yang X, Southwood M, Lu J, Marciniak SJ, Dunmore BJ, Morrell NW (2013) Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type ii receptor degradation. Circ Res 112:1159–1170PubMedCrossRef
101.
go back to reference Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, Feghali-Bostwick C, Ryter SW, Kim HP, Rabinovitch M, Choi AM (2011) Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183:649–658PubMedPubMedCentralCrossRef Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, Feghali-Bostwick C, Ryter SW, Kim HP, Rabinovitch M, Choi AM (2011) Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183:649–658PubMedPubMedCentralCrossRef
102.
go back to reference Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Kumar RK, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 62:D34–D41PubMedCrossRef Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Kumar RK, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 62:D34–D41PubMedCrossRef
103.
go back to reference de Jesus Perez V, Kudelko K, Snook S, Zamanian RT (2011) Drugs and toxins-associated pulmonary arterial hypertension: lessons learned and challenges ahead. Int J Clin Pract Suppl (169):8–10 de Jesus Perez V, Kudelko K, Snook S, Zamanian RT (2011) Drugs and toxins-associated pulmonary arterial hypertension: lessons learned and challenges ahead. Int J Clin Pract Suppl (169):8–10
104.
go back to reference Montani D, Seferian A, Savale L, Simonneau G, Humbert M (2013) Drug-induced pulmonary arterial hypertension: a recent outbreak. Eur Respir Rev 22:244–250PubMedCrossRef Montani D, Seferian A, Savale L, Simonneau G, Humbert M (2013) Drug-induced pulmonary arterial hypertension: a recent outbreak. Eur Respir Rev 22:244–250PubMedCrossRef
105.
go back to reference Gross SB (1999) Appetite suppressants and cardiac valvulopathy. Current clinical perspectives. Adv Nurse Pract 7:36–40PubMed Gross SB (1999) Appetite suppressants and cardiac valvulopathy. Current clinical perspectives. Adv Nurse Pract 7:36–40PubMed
106.
go back to reference Seiler KU, Wassermann O, Wensky H (1976) On the role of serotonin in the pathogenesis of pulmonary hypertension induced by anorectic drugs; an experimental study in the isolated perfused rat lung, II. Fenfluramine, mazindol, mefenorex, phentermine and R 800. Clin. Exp Pharmacol Physiol. 3:323–330PubMedCrossRef Seiler KU, Wassermann O, Wensky H (1976) On the role of serotonin in the pathogenesis of pulmonary hypertension induced by anorectic drugs; an experimental study in the isolated perfused rat lung, II. Fenfluramine, mazindol, mefenorex, phentermine and R 800. Clin. Exp Pharmacol Physiol. 3:323–330PubMedCrossRef
107.
go back to reference Wang Y, Liu M, Wang HM, Bai Y, Zhang XH, Sun YX, Wang HL (2013) Involvement of serotonin mechanism in methamphetamine-induced chronic pulmonary toxicity in rats. Hum Exp Toxicol 32:736–746PubMedCrossRef Wang Y, Liu M, Wang HM, Bai Y, Zhang XH, Sun YX, Wang HL (2013) Involvement of serotonin mechanism in methamphetamine-induced chronic pulmonary toxicity in rats. Hum Exp Toxicol 32:736–746PubMedCrossRef
108.
go back to reference Dempsie Y, Morecroft I, Welsh DJ, MacRitchie NA, Herold N, Loughlin L, Nilsen M, Peacock AJ, Harmar A, Bader M, MacLean MR (2008) Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice. Circulation 117:2928–2937PubMedCrossRef Dempsie Y, Morecroft I, Welsh DJ, MacRitchie NA, Herold N, Loughlin L, Nilsen M, Peacock AJ, Harmar A, Bader M, MacLean MR (2008) Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice. Circulation 117:2928–2937PubMedCrossRef
109.
go back to reference Lawrie A, Spiekerkoetter E, Martinez EC, Ambartsumian N, Sheward WJ, MacLean MR, Harmar AJ, Schmidt AM, Lukanidin E, Rabinovitch M (2005) Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circ Res 97:227–235PubMedCrossRef Lawrie A, Spiekerkoetter E, Martinez EC, Ambartsumian N, Sheward WJ, MacLean MR, Harmar AJ, Schmidt AM, Lukanidin E, Rabinovitch M (2005) Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circ Res 97:227–235PubMedCrossRef
110.
go back to reference Dempsie Y, Nilsen M, White K, Mair KM, Loughlin L, Ambartsumian N, Rabinovitch M, Maclean MR (2011) Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females. Respir Res 12:159PubMedPubMedCentralCrossRef Dempsie Y, Nilsen M, White K, Mair KM, Loughlin L, Ambartsumian N, Rabinovitch M, Maclean MR (2011) Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females. Respir Res 12:159PubMedPubMedCentralCrossRef
111.
go back to reference Spiekerkoetter E, Alvira CM, Kim YM, Bruneau A, Pricola KL, Wang L, Ambartsumian N, Rabinovitch M (2008) Reactivation of gamma hv 68 induces neointimal lesions in pulmonary arteries of S100A4/Mts1-overexpressing mice in association with degradation of elastin. Am J Physiol Lung Cell Mol Physiol 294:L276–L289PubMedCrossRef Spiekerkoetter E, Alvira CM, Kim YM, Bruneau A, Pricola KL, Wang L, Ambartsumian N, Rabinovitch M (2008) Reactivation of gamma hv 68 induces neointimal lesions in pulmonary arteries of S100A4/Mts1-overexpressing mice in association with degradation of elastin. Am J Physiol Lung Cell Mol Physiol 294:L276–L289PubMedCrossRef
112.
go back to reference Meloche J, Courchesne A, Barrier M, Carter S, Bisserier M, Paulin R, Lauzon-Joset JF, Breuils-Bonnet S, Tremblay E, Biardel S, Racine C, Courture C, Bonnet P, Majka SM, Deshaies Y, Picard F, Provencher S, Bonnet S (2013) Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology. J Am Heart Assoc 2:e005157PubMedPubMedCentralCrossRef Meloche J, Courchesne A, Barrier M, Carter S, Bisserier M, Paulin R, Lauzon-Joset JF, Breuils-Bonnet S, Tremblay E, Biardel S, Racine C, Courture C, Bonnet P, Majka SM, Deshaies Y, Picard F, Provencher S, Bonnet S (2013) Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology. J Am Heart Assoc 2:e005157PubMedPubMedCentralCrossRef
113.
go back to reference Schaiberger PH, Kennedy TC, Miller FC, Gal J, Petty TL (1993) Pulmonary hypertension associated with long-term inhalation of “crank” methamphetamine. Chest 104:614–616PubMedCrossRef Schaiberger PH, Kennedy TC, Miller FC, Gal J, Petty TL (1993) Pulmonary hypertension associated with long-term inhalation of “crank” methamphetamine. Chest 104:614–616PubMedCrossRef
114.
go back to reference Thompson CA (2008) Pulmonary arterial hypertension seen in methamphetamine abusers. Am J Health Syst Pharm 65:1109–1110PubMedCrossRef Thompson CA (2008) Pulmonary arterial hypertension seen in methamphetamine abusers. Am J Health Syst Pharm 65:1109–1110PubMedCrossRef
115.
go back to reference Perros F, Gunther S, Ranchoux B, Godinas L, Antigny F, Chaumais MC, Dorfmuller P, Hautefort A, Raymond N, Savale L, Jais X, Girerd B, Cottin V, Sitbon O, Simonneau G, Humbert M, Montani D (2015) Mitomycin-induced pulmonary veno-occlusive disease: evidence from human disease and animal models. Circulation 132:834–847PubMedCrossRef Perros F, Gunther S, Ranchoux B, Godinas L, Antigny F, Chaumais MC, Dorfmuller P, Hautefort A, Raymond N, Savale L, Jais X, Girerd B, Cottin V, Sitbon O, Simonneau G, Humbert M, Montani D (2015) Mitomycin-induced pulmonary veno-occlusive disease: evidence from human disease and animal models. Circulation 132:834–847PubMedCrossRef
116.
go back to reference Ryan JJ, Marsboom G, Archer SL (2013) Rodent models of group 1 pulmonary hypertension. Handb Exp Pharmacol 218:105–149PubMedCrossRef Ryan JJ, Marsboom G, Archer SL (2013) Rodent models of group 1 pulmonary hypertension. Handb Exp Pharmacol 218:105–149PubMedCrossRef
117.
go back to reference Roth RA, Reindel JF (1991) Lung vascular injury from monocrotaline pyrrole, a putative hepatic metabolite. Adv Exp Med Biol 283:477–487PubMedCrossRef Roth RA, Reindel JF (1991) Lung vascular injury from monocrotaline pyrrole, a putative hepatic metabolite. Adv Exp Med Biol 283:477–487PubMedCrossRef
118.
go back to reference Schultze AE, Roth RA (1998) Chronic pulmonary hypertension—the monocrotaline model and involvement of the hemostatic system. J Toxicol Environ Health B Crit Rev. 1:271–346PubMedCrossRef Schultze AE, Roth RA (1998) Chronic pulmonary hypertension—the monocrotaline model and involvement of the hemostatic system. J Toxicol Environ Health B Crit Rev. 1:271–346PubMedCrossRef
119.
go back to reference Wilson DW, Segall HJ, Pan LC, Lame MW, Estep JE, Morin D (1992) Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol 22:307–325PubMedCrossRef Wilson DW, Segall HJ, Pan LC, Lame MW, Estep JE, Morin D (1992) Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol 22:307–325PubMedCrossRef
120.
go back to reference Campbell AI, Kuliszewski MA, Stewart DJ (1999) Cell-based gene transfer to the pulmonary vasculature: endothelial nitric oxide synthase overexpression inhibits monocrotaline-induced pulmonary hypertension. Am J Respir Cell Mol Biol 21:567–575PubMedCrossRef Campbell AI, Kuliszewski MA, Stewart DJ (1999) Cell-based gene transfer to the pulmonary vasculature: endothelial nitric oxide synthase overexpression inhibits monocrotaline-induced pulmonary hypertension. Am J Respir Cell Mol Biol 21:567–575PubMedCrossRef
121.
go back to reference Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96:442–450PubMedCrossRef Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96:442–450PubMedCrossRef
122.
go back to reference Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF, Bogaard HJ (2012) The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 302:L363–L369PubMedCrossRef Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF, Bogaard HJ (2012) The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 302:L363–L369PubMedCrossRef
123.
go back to reference Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019–1025PubMedPubMedCentral Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019–1025PubMedPubMedCentral
124.
go back to reference Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D, Scerbavicius R, Burns N, Cool C, Wood K, Parr JE, Boackle SA, Voelkel NF (2007) Absence of t cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 175:1280–1289PubMedPubMedCentralCrossRef Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D, Scerbavicius R, Burns N, Cool C, Wood K, Parr JE, Boackle SA, Voelkel NF (2007) Absence of t cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 175:1280–1289PubMedPubMedCentralCrossRef
125.
go back to reference Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754PubMedCrossRef Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754PubMedCrossRef
126.
go back to reference Vitali SH, Hansmann G, Rose C, Fernandez-Gonzalez A, Scheid A, Mitsialis SA, Kourembanas S (2014) The sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: long-term follow-up. Pulm Circ 4:619–629PubMedPubMedCentralCrossRef Vitali SH, Hansmann G, Rose C, Fernandez-Gonzalez A, Scheid A, Mitsialis SA, Kourembanas S (2014) The sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: long-term follow-up. Pulm Circ 4:619–629PubMedPubMedCentralCrossRef
127.
go back to reference Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM, Miyazono K, Li E, Bloch KD (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247PubMedCrossRef Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM, Miyazono K, Li E, Bloch KD (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247PubMedCrossRef
128.
go back to reference Beppu H, Lei H, Bloch KD, Li E (2005) Generation of a floxed allele of the mouse BMP type II receptor gene. Genesis 41:133–137PubMedCrossRef Beppu H, Lei H, Bloch KD, Li E (2005) Generation of a floxed allele of the mouse BMP type II receptor gene. Genesis 41:133–137PubMedCrossRef
129.
go back to reference West J, Harral J, Lane K, Deng Y, Ickes B, Crona D, Albu S, Stewart D, Fagan K (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295:L744–L755PubMedPubMedCentralCrossRef West J, Harral J, Lane K, Deng Y, Ickes B, Crona D, Albu S, Stewart D, Fagan K (2008) Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. Am J Physiol Lung Cell Mol Physiol 295:L744–L755PubMedPubMedCentralCrossRef
130.
go back to reference Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Pechoux C, Bogaard HJ, Dorfmuller P, Remy S, Lecerf F, Plante S, Chat S, Fadel E, Houssaini A, Anegon I, Adnot S, Simonneau G, Humbert M, Cohen-Kaminsky S, Perros F (2015) Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131:1006–1018PubMedCrossRef Ranchoux B, Antigny F, Rucker-Martin C, Hautefort A, Pechoux C, Bogaard HJ, Dorfmuller P, Remy S, Lecerf F, Plante S, Chat S, Fadel E, Houssaini A, Anegon I, Adnot S, Simonneau G, Humbert M, Cohen-Kaminsky S, Perros F (2015) Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 131:1006–1018PubMedCrossRef
131.
go back to reference Yuan K, Orcholski M, Tian X, Liao X, de Jesus Perez VA (2013) Micrornas: promising therapeutic targets for the treatment of pulmonary arterial hypertension. Expert Opin Ther Targets 17:557–564PubMedCrossRef Yuan K, Orcholski M, Tian X, Liao X, de Jesus Perez VA (2013) Micrornas: promising therapeutic targets for the treatment of pulmonary arterial hypertension. Expert Opin Ther Targets 17:557–564PubMedCrossRef
132.
go back to reference Bienertova-Vasku J, Novak J, Vasku A (2015) Micrornas in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens 9:221–234PubMedCrossRef Bienertova-Vasku J, Novak J, Vasku A (2015) Micrornas in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. J Am Soc Hypertens 9:221–234PubMedCrossRef
133.
go back to reference Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) Microrna-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299:L861–L871PubMedPubMedCentralCrossRef Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) Microrna-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299:L861–L871PubMedPubMedCentralCrossRef
134.
go back to reference Yang S, Banerjee S, Freitas A, Cui H, Xie N, Abraham E, Liu G (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302:L521–L529PubMedPubMedCentralCrossRef Yang S, Banerjee S, Freitas A, Cui H, Xie N, Abraham E, Liu G (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 302:L521–L529PubMedPubMedCentralCrossRef
135.
go back to reference Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA, Kreipe H, Laenger F, Jonigk D (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microrna expression. J Heart Lung Transplant 31:764–772PubMedCrossRef Bockmeyer CL, Maegel L, Janciauskiene S, Rische J, Lehmann U, Maus UA, Nickel N, Haverich A, Hoeper MM, Golpon HA, Kreipe H, Laenger F, Jonigk D (2012) Plexiform vasculopathy of severe pulmonary arterial hypertension and microrna expression. J Heart Lung Transplant 31:764–772PubMedCrossRef
136.
go back to reference Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB (2009) Interleukin-6 overexpression induces pulmonary hypertension. Circ Res 104:236–244, 228p following 244 Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB (2009) Interleukin-6 overexpression induces pulmonary hypertension. Circ Res 104:236–244, 228p following 244
137.
go back to reference Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, Seeger W, Zeiher AM, Dimmeler S, Schermuly RT (2012) Inhibition of microrna-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185:409–419PubMedCrossRef Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, Seeger W, Zeiher AM, Dimmeler S, Schermuly RT (2012) Inhibition of microrna-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185:409–419PubMedCrossRef
138.
go back to reference Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548PubMedPubMedCentralCrossRef Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S (2011) Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208:535–548PubMedPubMedCentralCrossRef
139.
go back to reference Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F, Provencher S, Bonnet S (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309:C363–C372PubMedCrossRef Meloche J, Le Guen M, Potus F, Vinck J, Ranchoux B, Johnson I, Antigny F, Tremblay E, Breuils-Bonnet S, Perros F, Provencher S, Bonnet S (2015) miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol 309:C363–C372PubMedCrossRef
140.
go back to reference Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH (2015) MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117:870–883PubMedPubMedCentralCrossRef Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A, McBride M, McClure JD, Grant J, Thomas M, Frid M, Stenmark K, White K, Seto AG, Morrell NW, Bradshaw AC, MacLean MR, Baker AH (2015) MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res 117:870–883PubMedPubMedCentralCrossRef
141.
go back to reference Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, Upton P, Xin M, van Rooij E, Olson EN, Morrell NW, MacLean MR, Baker AH (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111:290–300PubMedCrossRef Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, Upton P, Xin M, van Rooij E, Olson EN, Morrell NW, MacLean MR, Baker AH (2012) A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111:290–300PubMedCrossRef
142.
go back to reference Bertero T, Cottrill K, Krauszman A, Lu Y, Annis S, Hale A, Bhat B, Waxman AB, Chau BN, Kuebler WM, Chan SY (2015) The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J Biol Chem 290:2069–2085PubMedPubMedCentralCrossRef Bertero T, Cottrill K, Krauszman A, Lu Y, Annis S, Hale A, Bhat B, Waxman AB, Chau BN, Kuebler WM, Chan SY (2015) The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J Biol Chem 290:2069–2085PubMedPubMedCentralCrossRef
143.
go back to reference Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO, Graham BB, Kumar R, Black SM, Fratz S, Fineman JR, West JD, Haley KJ, Waxman AB, Chau BN, Cottrill KA, Chan SY (2014) Systems-level regulation of microrna networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 124:3514–3528PubMedPubMedCentralCrossRef Bertero T, Lu Y, Annis S, Hale A, Bhat B, Saggar R, Saggar R, Wallace WD, Ross DJ, Vargas SO, Graham BB, Kumar R, Black SM, Fratz S, Fineman JR, West JD, Haley KJ, Waxman AB, Chau BN, Cottrill KA, Chan SY (2014) Systems-level regulation of microrna networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 124:3514–3528PubMedPubMedCentralCrossRef
144.
go back to reference White K, Loscalzo J, Chan SY (2012) Holding our breath: the emerging and anticipated roles of microrna in pulmonary hypertension. Pulm Circ 2:278–290PubMedPubMedCentralCrossRef White K, Loscalzo J, Chan SY (2012) Holding our breath: the emerging and anticipated roles of microrna in pulmonary hypertension. Pulm Circ 2:278–290PubMedPubMedCentralCrossRef
146.
go back to reference Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, Wang D, Li M, McKinsey TA, Stenmark KR, Wilkins MR (2012) Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126:455–467PubMedPubMedCentralCrossRef Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, Wang D, Li M, McKinsey TA, Stenmark KR, Wilkins MR (2012) Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 126:455–467PubMedPubMedCentralCrossRef
147.
go back to reference Lan B, Hayama E, Kawaguchi N, Furutani Y, Nakanishi T (2015) Therapeutic efficacy of valproic acid in a combined monocrotaline and chronic hypoxia rat model of severe pulmonary hypertension. PLoS One 10:e0117211PubMedPubMedCentralCrossRef Lan B, Hayama E, Kawaguchi N, Furutani Y, Nakanishi T (2015) Therapeutic efficacy of valproic acid in a combined monocrotaline and chronic hypoxia rat model of severe pulmonary hypertension. PLoS One 10:e0117211PubMedPubMedCentralCrossRef
148.
go back to reference Bogaard HJ, Mizuno S, Hussaini AA, Toldo S, Abbate A, Kraskauskas D, Kasper M, Natarajan R, Voelkel NF (2011) Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 183:1402–1410PubMedCrossRef Bogaard HJ, Mizuno S, Hussaini AA, Toldo S, Abbate A, Kraskauskas D, Kasper M, Natarajan R, Voelkel NF (2011) Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 183:1402–1410PubMedCrossRef
149.
go back to reference Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN, Cipriani N, Rehman J (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671PubMedPubMedCentralCrossRef Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thebaud B, Husain AN, Cipriani N, Rehman J (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671PubMedPubMedCentralCrossRef
150.
151.
go back to reference Aldred MA, Comhair SA, Varella-Garcia M, Asosingh K, Xu W, Noon GP, Thistlethwaite PA, Tuder RM, Erzurum SC, Geraci MW, Coldren CD (2010) Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 182:1153–1160PubMedPubMedCentralCrossRef Aldred MA, Comhair SA, Varella-Garcia M, Asosingh K, Xu W, Noon GP, Thistlethwaite PA, Tuder RM, Erzurum SC, Geraci MW, Coldren CD (2010) Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 182:1153–1160PubMedPubMedCentralCrossRef
152.
go back to reference Machado RD, James V, Southwood M, Harrison RE, Atkinson C, Stewart S, Morrell NW, Trembath RC, Aldred MA (2005) Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation 111:607–613PubMedCrossRef Machado RD, James V, Southwood M, Harrison RE, Atkinson C, Stewart S, Morrell NW, Trembath RC, Aldred MA (2005) Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation 111:607–613PubMedCrossRef
153.
go back to reference Federici C, Drake KM, Rigelsky CM, McNelly LN, Meade SL, Comhair SA, Erzurum SC, Aldred MA (2015) Increased mutagen sensitivity and DNA damage in pulmonary arterial hypertension. Am J Respir Crit Care Med 192:219–228PubMedCrossRef Federici C, Drake KM, Rigelsky CM, McNelly LN, Meade SL, Comhair SA, Erzurum SC, Aldred MA (2015) Increased mutagen sensitivity and DNA damage in pulmonary arterial hypertension. Am J Respir Crit Care Med 192:219–228PubMedCrossRef
154.
go back to reference Li M, Vattulainen S, Aho J, Orcholski M, Rojas V, Yuan K, Helenius M, Taimen P, Myllykangas S, De Jesus Perez V, Koskenvuo JW, Alastalo TP (2014) Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 50:1118–1128PubMedCrossRef Li M, Vattulainen S, Aho J, Orcholski M, Rojas V, Yuan K, Helenius M, Taimen P, Myllykangas S, De Jesus Perez V, Koskenvuo JW, Alastalo TP (2014) Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 50:1118–1128PubMedCrossRef
155.
go back to reference Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, Graydon C, Courboulin A, Breuils-Bonnet S, Tremblay E, Couture C, Michelakis ED, Provencher S, Bonnet S (2014) Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 129:786–797PubMedCrossRef Meloche J, Pflieger A, Vaillancourt M, Paulin R, Potus F, Zervopoulos S, Graydon C, Courboulin A, Breuils-Bonnet S, Tremblay E, Couture C, Michelakis ED, Provencher S, Bonnet S (2014) Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 129:786–797PubMedCrossRef
156.
go back to reference Dib H, Tamby MC, Bussone G, Regent A, Berezne A, Lafine C, Broussard C, Simonneau G, Guillevin L, Witko-Sarsat V, Humbert M, Mouthon L (2012) Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur Respir J 39:1405–1414PubMedCrossRef Dib H, Tamby MC, Bussone G, Regent A, Berezne A, Lafine C, Broussard C, Simonneau G, Guillevin L, Witko-Sarsat V, Humbert M, Mouthon L (2012) Targets of anti-endothelial cell antibodies in pulmonary hypertension and scleroderma. Eur Respir J 39:1405–1414PubMedCrossRef
157.
go back to reference Nicolls MR, Taraseviciene-Stewart L, Rai PR, Badesch DB, Voelkel NF (2005) Autoimmunity and pulmonary hypertension: a perspective. Eur Respir J 26:1110–1118PubMedCrossRef Nicolls MR, Taraseviciene-Stewart L, Rai PR, Badesch DB, Voelkel NF (2005) Autoimmunity and pulmonary hypertension: a perspective. Eur Respir J 26:1110–1118PubMedCrossRef
158.
go back to reference Hagen M, Fagan K, Steudel W, Carr M, Lane K, Rodman DM, West J (2007) Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol Lung Cell Mol Physiol 292:L1473–L1479PubMedCrossRef Hagen M, Fagan K, Steudel W, Carr M, Lane K, Rodman DM, West J (2007) Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am J Physiol Lung Cell Mol Physiol 292:L1473–L1479PubMedCrossRef
159.
go back to reference Courboulin A, Tremblay VL, Barrier M, Meloche J, Jacob MH, Chapolard M, Bisserier M, Paulin R, Lambert C, Provencher S, Bonnet S (2011) Kruppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res 12:128PubMedPubMedCentralCrossRef Courboulin A, Tremblay VL, Barrier M, Meloche J, Jacob MH, Chapolard M, Bisserier M, Paulin R, Lambert C, Provencher S, Bonnet S (2011) Kruppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res 12:128PubMedPubMedCentralCrossRef
160.
go back to reference Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, Eddahibi S (2009) Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res 10:6PubMedPubMedCentralCrossRef Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, Eddahibi S (2009) Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res 10:6PubMedPubMedCentralCrossRef
161.
go back to reference Golembeski SM, West J, Tada Y, Fagan KA (2005) Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest 128:572S–573SPubMedCrossRef Golembeski SM, West J, Tada Y, Fagan KA (2005) Interleukin-6 causes mild pulmonary hypertension and augments hypoxia-induced pulmonary hypertension in mice. Chest 128:572S–573SPubMedCrossRef
162.
go back to reference Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM (2015) Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol 185:1850–1858PubMedCrossRef Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM (2015) Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol 185:1850–1858PubMedCrossRef
163.
go back to reference Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated t cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418–11423PubMedPubMedCentralCrossRef Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated t cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci USA 104:11418–11423PubMedPubMedCentralCrossRef
164.
go back to reference Macian F (2005) Nfat proteins: key regulators of t-cell development and function. Nat Rev Immunol 5:472–484PubMedCrossRef Macian F (2005) Nfat proteins: key regulators of t-cell development and function. Nat Rev Immunol 5:472–484PubMedCrossRef
165.
go back to reference Heissmeyer V, Macian F, Varma R, Im SH, Garcia-Cozar F, Horton HF, Byrne MC, Feske S, Venuprasad K, Gu H, Liu YC, Dustin ML, Rao A (2005) A molecular dissection of lymphocyte unresponsiveness induced by sustained calcium signalling. Novartis Found Symp 267:165–174 (discussion 174–169) PubMedCrossRef Heissmeyer V, Macian F, Varma R, Im SH, Garcia-Cozar F, Horton HF, Byrne MC, Feske S, Venuprasad K, Gu H, Liu YC, Dustin ML, Rao A (2005) A molecular dissection of lymphocyte unresponsiveness induced by sustained calcium signalling. Novartis Found Symp 267:165–174 (discussion 174–169) PubMedCrossRef
166.
go back to reference Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, Kajimoto H, Hong Z, Paul J, Wietholt C, Pogoriler J, Piao L, Rehman J, Archer SL (2011) A central role for cd68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med 183:1080–1091PubMedPubMedCentralCrossRef Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, Kajimoto H, Hong Z, Paul J, Wietholt C, Pogoriler J, Piao L, Rehman J, Archer SL (2011) A central role for cd68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med 183:1080–1091PubMedPubMedCentralCrossRef
167.
go back to reference Tian W, Jiang X, Tamosiuniene R, Sung YK, Qian J, Dhillon G, Gera L, Farkas L, Rabinovitch M, Zamanian RT, Inayathullah M, Fridlib M, Rajadas J, Peters-Golden M, Voelkel NF, Nicolls MR (2013) Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Science translational medicine. 5:200ra117PubMedPubMedCentralCrossRef Tian W, Jiang X, Tamosiuniene R, Sung YK, Qian J, Dhillon G, Gera L, Farkas L, Rabinovitch M, Zamanian RT, Inayathullah M, Fridlib M, Rajadas J, Peters-Golden M, Voelkel NF, Nicolls MR (2013) Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Science translational medicine. 5:200ra117PubMedPubMedCentralCrossRef
168.
go back to reference Kim YM, Haghighat L, Spiekerkoetter E, Sawada H, Alvira CM, Wang L, Acharya S, Rodriguez-Colon G, Orton A, Zhao M, Rabinovitch M (2011) Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions. Am J Pathol 179:1560–1572PubMedPubMedCentralCrossRef Kim YM, Haghighat L, Spiekerkoetter E, Sawada H, Alvira CM, Wang L, Acharya S, Rodriguez-Colon G, Orton A, Zhao M, Rabinovitch M (2011) Neutrophil elastase is produced by pulmonary artery smooth muscle cells and is linked to neointimal lesions. Am J Pathol 179:1560–1572PubMedPubMedCentralCrossRef
169.
go back to reference Rabinovitch M (1995) Elastase and cell matrix interactions in the pathobiology of vascular disease. Acta Paediatr Jpn 37:657–666PubMedCrossRef Rabinovitch M (1995) Elastase and cell matrix interactions in the pathobiology of vascular disease. Acta Paediatr Jpn 37:657–666PubMedCrossRef
170.
go back to reference Rabinovitch M (1998) Elastase and the pathobiology of unexplained pulmonary hypertension. Chest 114:213S–224SPubMedCrossRef Rabinovitch M (1998) Elastase and the pathobiology of unexplained pulmonary hypertension. Chest 114:213S–224SPubMedCrossRef
171.
go back to reference Kobayashi J, Wigle D, Childs T, Zhu L, Keeley FW, Rabinovitch M (1994) Serum-induced vascular smooth muscle cell elastolytic activity through tyrosine kinase intracellular signalling. J Cell Physiol 160:121–131PubMedCrossRef Kobayashi J, Wigle D, Childs T, Zhu L, Keeley FW, Rabinovitch M (1994) Serum-induced vascular smooth muscle cell elastolytic activity through tyrosine kinase intracellular signalling. J Cell Physiol 160:121–131PubMedCrossRef
172.
go back to reference Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423–431PubMedCrossRef Merklinger SL, Jones PL, Martinez EC, Rabinovitch M (2005) Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423–431PubMedCrossRef
Metadata
Title
Molecular pathogenesis and current pathology of pulmonary hypertension
Author
Vinicio A. de Jesus Perez
Publication date
01-05-2016
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 3/2016
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-015-9519-2

Other articles of this Issue 3/2016

Heart Failure Reviews 3/2016 Go to the issue