Skip to main content
Top
Published in: Heart Failure Reviews 3-4/2007

01-12-2007

Fibroblast growth factor-2 and cardioprotection

Authors: Elissavet Kardami, Karen Detillieux, Xin Ma, Zhisheng Jiang, Jon-Jon Santiago, Sarah K. Jimenez, Peter A. Cattini

Published in: Heart Failure Reviews | Issue 3-4/2007

Login to get access

Abstract

Boosting myocardial resistance to acute as well as chronic ischemic damage would ameliorate the detrimental effects of numerous cardiac pathologies and reduce the probability of transition to heart failure. Experimental cardiology has pointed to ischemic and pharmacological pre- as well as post-conditioning as potent acute cardioprotective manipulations. Additional exciting experimental strategies include the induction of true regenerative and/or angiogenic responses to the damaged heart, resulting in sustained structural and functional beneficial effects. Fibroblast growth factor-2 (FGF-2), an endogenous multifunctional protein with strong affinity for the extracellular matrix and basal lamina and well-documented paracrine, autocrine and intacellular modes of action, has been shown over the years to exert acute and direct pro-survival effects, irrespectively of whether it is administered before, during or after an ischemic insult to the heart. FGF-2 is also a potent angiogenic protein and a crucial agent for the proliferation, expansion, and survival of several cell types including those with stem cell properties. Human clinical trials have pointed to a good safety record for this protein. In this review, we will present a case for the low molecular weight isoform of fibroblast growth factor-2 (lo-FGF-2) as a very promising therapeutic agent to achieve powerful acute as well as sustained benefits for the heart, due to its cytoprotective and regenerative properties.
Literature
1.
go back to reference Ornitz DM (2000) FGFs, heparan sulfate and FGFRs. Bioassays 22:108–112 Ornitz DM (2000) FGFs, heparan sulfate and FGFRs. Bioassays 22:108–112
2.
go back to reference Itoh N, Ornitz DM (2004) Evolution of the FGF and FGFR gene families. Trends Genet 20:563–569PubMed Itoh N, Ornitz DM (2004) Evolution of the FGF and FGFR gene families. Trends Genet 20:563–569PubMed
3.
go back to reference Detillieux KA, Jimenez SK, Sontag DP, Nickerson PW, Kardami E, Cattini PA (2004) The application of genetic mouse models to elucidate a role for FGF-2 in the mammalian cardiovascular system. Kluwer Academic Publishers, Boston, pp 373–391 Detillieux KA, Jimenez SK, Sontag DP, Nickerson PW, Kardami E, Cattini PA (2004) The application of genetic mouse models to elucidate a role for FGF-2 in the mammalian cardiovascular system. Kluwer Academic Publishers, Boston, pp 373–391
4.
go back to reference Kardami E, Jiang ZS, Jimenez SK, Hirst CJ, Sheikh F, Zahradka P, Cattini PA (2004) Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovasc Res 63:458–466PubMed Kardami E, Jiang ZS, Jimenez SK, Hirst CJ, Sheikh F, Zahradka P, Cattini PA (2004) Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovasc Res 63:458–466PubMed
5.
go back to reference Padua RR, Merle PL, Doble BW, Yu CH, Zahradka P, Pierce GN, Panagia V, Kardami E (1998) FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: involvement of sarcolemmal calcium-independent protein kinase C. J Mol Cell Cardiol 30:2695–2709PubMed Padua RR, Merle PL, Doble BW, Yu CH, Zahradka P, Pierce GN, Panagia V, Kardami E (1998) FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: involvement of sarcolemmal calcium-independent protein kinase C. J Mol Cell Cardiol 30:2695–2709PubMed
6.
go back to reference Padua RR, Sethi R, Dhalla NS, Kardami E (1995) Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143:129–135PubMed Padua RR, Sethi R, Dhalla NS, Kardami E (1995) Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143:129–135PubMed
7.
go back to reference Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, Cattini PA, Dixon IM, Kardami E (2002) Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am J Physiol Heart Circ Physiol 282:H1071–1080PubMed Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, Cattini PA, Dixon IM, Kardami E (2002) Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am J Physiol Heart Circ Physiol 282:H1071–1080PubMed
8.
go back to reference Jiang ZS, Srisakuldee W, Soulet F, Bouche G, Kardami E (2004) Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res 62:154–166PubMed Jiang ZS, Srisakuldee W, Soulet F, Bouche G, Kardami E (2004) Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res 62:154–166PubMed
9.
go back to reference Tappia PS, Padua RR, Panagia V, Kardami E (1999) Fibroblast growth factor-2 stimulates phospholipase Cbeta in adult cardiomyocytes. Biochem Cell Biol 77:569–575PubMed Tappia PS, Padua RR, Panagia V, Kardami E (1999) Fibroblast growth factor-2 stimulates phospholipase Cbeta in adult cardiomyocytes. Biochem Cell Biol 77:569–575PubMed
10.
go back to reference Detillieux KA, Sheikh F, Kardami E, Cattini PA (2003) Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57:8–19PubMed Detillieux KA, Sheikh F, Kardami E, Cattini PA (2003) Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57:8–19PubMed
11.
go back to reference Detillieux KA, Cattini PA, Kardami E (2004) Beyond angiogenesis: the cardioprotective potential of fibroblast growth factor-2. Can J Physiol Pharmacol 82:1044–1052PubMed Detillieux KA, Cattini PA, Kardami E (2004) Beyond angiogenesis: the cardioprotective potential of fibroblast growth factor-2. Can J Physiol Pharmacol 82:1044–1052PubMed
12.
go back to reference Liu L, Pasumarthi KB, Padua RR, Massaeli H, Fandrich RR, Pierce GN, Cattini PA, Kardami E (1995) Adult cardiomyocytes express functional high-affinity receptors for basic fibroblast growth factor. Am J Physiol 268:H1927–1938PubMed Liu L, Pasumarthi KB, Padua RR, Massaeli H, Fandrich RR, Pierce GN, Cattini PA, Kardami E (1995) Adult cardiomyocytes express functional high-affinity receptors for basic fibroblast growth factor. Am J Physiol 268:H1927–1938PubMed
13.
go back to reference Ishibashi Y, Urabe Y, Tsutsui H, Kinugawa S, Sugimachi M, Takahashi M, Yamamoto S, Tagawa H, Sunagawa K, Takeshita A. (1997) Negative inotropic effect of basic fibroblast growth factor on adult rat cardiac myocyte. Circulation 96:2501–2504PubMed Ishibashi Y, Urabe Y, Tsutsui H, Kinugawa S, Sugimachi M, Takahashi M, Yamamoto S, Tagawa H, Sunagawa K, Takeshita A. (1997) Negative inotropic effect of basic fibroblast growth factor on adult rat cardiac myocyte. Circulation 96:2501–2504PubMed
14.
go back to reference Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMed Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMed
15.
go back to reference van den Bos C, Mosca JD, Winkles J, Kerrigan L, Burgess WH, Marshak DR (1997) Human mesenchymal stem cells respond to fibroblast growth factors. Hum Cell 10:45–50PubMed van den Bos C, Mosca JD, Winkles J, Kerrigan L, Burgess WH, Marshak DR (1997) Human mesenchymal stem cells respond to fibroblast growth factors. Hum Cell 10:45–50PubMed
16.
go back to reference Sugimoto Y, Koji T, Miyoshi S (1999) Modification of expression of stem cell factor by various cytokines. J Cell Physiol 181:285–294PubMed Sugimoto Y, Koji T, Miyoshi S (1999) Modification of expression of stem cell factor by various cytokines. J Cell Physiol 181:285–294PubMed
17.
go back to reference Burger PE, Coetzee S, McKeehan WL, Kan M, Cook P, Fan Y, Suda T, Hebbel RP, Novitzky N, Muller WA et al (2002) Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood 100:3527–3535PubMed Burger PE, Coetzee S, McKeehan WL, Kan M, Cook P, Fan Y, Suda T, Hebbel RP, Novitzky N, Muller WA et al (2002) Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood 100:3527–3535PubMed
18.
go back to reference Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574 Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574
19.
go back to reference Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323PubMed Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323PubMed
20.
go back to reference Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K (2004) Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J 68:691–702PubMed Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K (2004) Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J 68:691–702PubMed
21.
go back to reference Jiang ZS, Jeyaraman M, Wen GB, Fandrich RR, Dixon IM, Cattini PA, Kardami E (2007) High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol 42:222–233PubMed Jiang ZS, Jeyaraman M, Wen GB, Fandrich RR, Dixon IM, Cattini PA, Kardami E (2007) High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol 42:222–233PubMed
22.
go back to reference Kardami E, Fandrich RR (1989) Basic fibroblast growth-factor in atria and ventricles of the vertebrate heart. J Cell Biol 109:1865–1875PubMed Kardami E, Fandrich RR (1989) Basic fibroblast growth-factor in atria and ventricles of the vertebrate heart. J Cell Biol 109:1865–1875PubMed
23.
go back to reference Strohman RC, Kardami E (1986) Muscle regeneration revisited: growth factor regulation of myogenic cell replication. Prog Clin Biol Res 226:287–296PubMed Strohman RC, Kardami E (1986) Muscle regeneration revisited: growth factor regulation of myogenic cell replication. Prog Clin Biol Res 226:287–296PubMed
24.
go back to reference Kardami E, Spector D, Strohman RC (1985) Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc Natl Acad Sci USA 82:8044–8047PubMed Kardami E, Spector D, Strohman RC (1985) Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc Natl Acad Sci USA 82:8044–8047PubMed
25.
go back to reference Bossard C, Laurell H, Van den Berghe L, Meunier S, Zanibellato C, Prats H. (2003) Translokin is an intracellular mediator of FGF-2 trafficking. Nat Cell Biol 5:433–439PubMed Bossard C, Laurell H, Van den Berghe L, Meunier S, Zanibellato C, Prats H. (2003) Translokin is an intracellular mediator of FGF-2 trafficking. Nat Cell Biol 5:433–439PubMed
26.
go back to reference Bikfalvi A, Savona C, Perollet C, Javerzat S (1998) New insights in the biology of fibroblast growth factor-2. Angiogenesis 1:155–173PubMed Bikfalvi A, Savona C, Perollet C, Javerzat S (1998) New insights in the biology of fibroblast growth factor-2. Angiogenesis 1:155–173PubMed
27.
go back to reference Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S (2003) Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell 95:169–178PubMed Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S (2003) Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell 95:169–178PubMed
28.
go back to reference Powell PP, Klagsbrun M (1991) Three forms of rat basic fibroblast growth factor are made from a single mRNA and localize to the nucleus. J Cell Physiol 148:202–210PubMed Powell PP, Klagsbrun M (1991) Three forms of rat basic fibroblast growth factor are made from a single mRNA and localize to the nucleus. J Cell Physiol 148:202–210PubMed
29.
go back to reference Riese J, Zeller R, Dono R (1995) Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation. Mech Dev 49:13–22PubMed Riese J, Zeller R, Dono R (1995) Nucleo-cytoplasmic translocation and secretion of fibroblast growth factor-2 during avian gastrulation. Mech Dev 49:13–22PubMed
30.
go back to reference Kardami E, Murphy LJ, Liu L, Padua RR, Fandrich RR (1990) Characterization of two preparations of antibodies to basic fibroblast growth factor which exhibit distinct patterns of immunolocalization. Growth Factors 4:69–80PubMed Kardami E, Murphy LJ, Liu L, Padua RR, Fandrich RR (1990) Characterization of two preparations of antibodies to basic fibroblast growth factor which exhibit distinct patterns of immunolocalization. Growth Factors 4:69–80PubMed
31.
go back to reference Claus P, Doring F, Gringel S, Muller-Ostermeyer F, Fuhlrott J, Kraft T, Grothe C (2003) Differential intranuclear localization of fibroblast growth factor-2 isoforms and specific interaction with the survival of motoneuron protein. J Biol Chem 278:479–485PubMed Claus P, Doring F, Gringel S, Muller-Ostermeyer F, Fuhlrott J, Kraft T, Grothe C (2003) Differential intranuclear localization of fibroblast growth factor-2 isoforms and specific interaction with the survival of motoneuron protein. J Biol Chem 278:479–485PubMed
32.
go back to reference Endoh M, Pulsinelli WA, Wagner JA (1994) Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Brain Res Mol Brain Res 22:76–88PubMed Endoh M, Pulsinelli WA, Wagner JA (1994) Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Brain Res Mol Brain Res 22:76–88PubMed
33.
go back to reference Peifley KA, Winkles JA (1998) Angiotensin II and endothelin-1 increase fibroblast growth factor-2 mRNA expression in vascular smooth muscle cells. Biochem Biophys Res Commun 242:202–208PubMed Peifley KA, Winkles JA (1998) Angiotensin II and endothelin-1 increase fibroblast growth factor-2 mRNA expression in vascular smooth muscle cells. Biochem Biophys Res Commun 242:202–208PubMed
34.
go back to reference Detillieux KA, Meij JTA, Kardami E, Cattini PA (1999) alpha(l)-Adrenergic stimulation of FGF-2 promoter in cardiac myocytes and in adult transgenic mouse hearts. Am J Physiol Heart Circ Physiol 276:H826–H833 Detillieux KA, Meij JTA, Kardami E, Cattini PA (1999) alpha(l)-Adrenergic stimulation of FGF-2 promoter in cardiac myocytes and in adult transgenic mouse hearts. Am J Physiol Heart Circ Physiol 276:H826–H833
35.
go back to reference Jimenez SK, Sheikh F, Jin Y, Detillieux KA, Dhaliwal J, Kardami E, Cattini PA (2004) Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovasc Res 62:548–557PubMed Jimenez SK, Sheikh F, Jin Y, Detillieux KA, Dhaliwal J, Kardami E, Cattini PA (2004) Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovasc Res 62:548–557PubMed
36.
go back to reference Jimenez SK, Kardami E, Cattini PA (2004) FGF-2 autoregulation in cardiac myocytes. J Mol Cellular Cardiol 36:625–625 Jimenez SK, Kardami E, Cattini PA (2004) FGF-2 autoregulation in cardiac myocytes. J Mol Cellular Cardiol 36:625–625
37.
go back to reference Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19:505–514PubMed Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 19:505–514PubMed
38.
go back to reference Bonnal S, Schaeffer C, Creancier L, Clamens S, Moine H, Prats AC, Vagner S. (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278:39330–39336PubMed Bonnal S, Schaeffer C, Creancier L, Clamens S, Moine H, Prats AC, Vagner S. (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278:39330–39336PubMed
39.
go back to reference Gonzalez-Herrera IG, Prado-Lourenco L, Teshima-Kondo S, Kondo K, Cabon F, Arnal JF, Bayard F, Prats AC (2006) IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 34:17–21PubMed Gonzalez-Herrera IG, Prado-Lourenco L, Teshima-Kondo S, Kondo K, Cabon F, Arnal JF, Bayard F, Prats AC (2006) IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 34:17–21PubMed
40.
go back to reference Klagsbrun M, Smith S, Sullivan R, Shing Y, Davidson S, Smith JA, Sasse J (1987) Multiple forms of basic fibroblast growth factor: amino-terminal cleavages by tumor cell- and brain cell-derived acid proteinases. Proc Natl Acad Sci USA 84:1839–1843PubMed Klagsbrun M, Smith S, Sullivan R, Shing Y, Davidson S, Smith JA, Sasse J (1987) Multiple forms of basic fibroblast growth factor: amino-terminal cleavages by tumor cell- and brain cell-derived acid proteinases. Proc Natl Acad Sci USA 84:1839–1843PubMed
41.
go back to reference Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E (1990) Calcium protects pituitary basic fibroblast growth factors from limited proteolysis by co-purifying proteases. Biochem Biophys Res Commun 173:1116–1122PubMed Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E (1990) Calcium protects pituitary basic fibroblast growth factors from limited proteolysis by co-purifying proteases. Biochem Biophys Res Commun 173:1116–1122PubMed
42.
go back to reference Kawamoto A, Kawata H, Akai Y, Katsuyama Y, Takase E, Sasaki Y, Tsujimura S, Sakaguchi Y, Iwano M, Fujimoto S et al (1998) Serum levels of VEGF and basic FGF in the subacute phase of myocardial infarction. Int J Cardiol 67:47–54PubMed Kawamoto A, Kawata H, Akai Y, Katsuyama Y, Takase E, Sasaki Y, Tsujimura S, Sakaguchi Y, Iwano M, Fujimoto S et al (1998) Serum levels of VEGF and basic FGF in the subacute phase of myocardial infarction. Int J Cardiol 67:47–54PubMed
43.
go back to reference O’Brien TS, Smith K, Cranston D, Fuggle S, Bicknell R, Harris AL (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol 76:311–314PubMedCrossRef O’Brien TS, Smith K, Cranston D, Fuggle S, Bicknell R, Harris AL (1995) Urinary basic fibroblast growth factor in patients with bladder cancer and benign prostatic hypertrophy. Br J Urol 76:311–314PubMedCrossRef
44.
go back to reference Soutter AD, Nguyen M, Watanabe H, Folkman J (1993) Basic fibroblast growth factor secreted by an animal tumor is detectable in urine. Cancer Res 53:5297–5299PubMed Soutter AD, Nguyen M, Watanabe H, Folkman J (1993) Basic fibroblast growth factor secreted by an animal tumor is detectable in urine. Cancer Res 53:5297–5299PubMed
45.
go back to reference Fujimoto K, Ichimori Y, Kakizoe T, Okajima E, Sakamoto H, Sugimura T, Terada M (1991) Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem Biophys Res Commun 180:386–392PubMed Fujimoto K, Ichimori Y, Kakizoe T, Okajima E, Sakamoto H, Sugimura T, Terada M (1991) Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem Biophys Res Commun 180:386–392PubMed
46.
go back to reference Santiago JJR, Fandrich R, Kardami E. (2005) Angiotensin-II stimulates expression and release of prohypertrophic hi-FGF-2 molecule by cardiac fibroblasts. J Mol Cellular Cardiol 38:834–834 Santiago JJR, Fandrich R, Kardami E. (2005) Angiotensin-II stimulates expression and release of prohypertrophic hi-FGF-2 molecule by cardiac fibroblasts. J Mol Cellular Cardiol 38:834–834
47.
go back to reference Quarto N, Fong KD, Longaker MT (2005) Gene profiling of cells expressing different FGF-2 forms. Gene 356:49–68PubMed Quarto N, Fong KD, Longaker MT (2005) Gene profiling of cells expressing different FGF-2 forms. Gene 356:49–68PubMed
48.
go back to reference Ma X, Hirst C, Cattini PA, Kirshenbaum L, Kardami E (2006) Nuclear FGF-2 triggers reciprocal communication between nucleus and mitochondria resulting in ERK1/2 pathway-dependent chromatin compaction and cell death. Circulation 114:48–48 Ma X, Hirst C, Cattini PA, Kirshenbaum L, Kardami E (2006) Nuclear FGF-2 triggers reciprocal communication between nucleus and mitochondria resulting in ERK1/2 pathway-dependent chromatin compaction and cell death. Circulation 114:48–48
49.
go back to reference Smith JA, Madden T, Vijjeswarapu M, Newman RA (2001) Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol 62:469–472PubMed Smith JA, Madden T, Vijjeswarapu M, Newman RA (2001) Inhibition of export of fibroblast growth factor-2 (FGF-2) from the prostate cancer cell lines PC3 and DU145 by Anvirzel and its cardiac glycoside component, oleandrin. Biochem Pharmacol 62:469–472PubMed
50.
go back to reference Florkiewicz RZ, Anchin J, Baird A. (1998) The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+, K+-ATPase. J Biol Chem 273:544–551PubMed Florkiewicz RZ, Anchin J, Baird A. (1998) The inhibition of fibroblast growth factor-2 export by cardenolides implies a novel function for the catalytic subunit of Na+, K+-ATPase. J Biol Chem 273:544–551PubMed
51.
go back to reference Taverna S, Ghersi G, Ginestra A, Rigogliuso S, Pecorella S, Alaimo G, Saladino F, Dolo V, Dell’Era P, Pavan A et al (2003) Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. J Biol Chem 278:51911–51919PubMed Taverna S, Ghersi G, Ginestra A, Rigogliuso S, Pecorella S, Alaimo G, Saladino F, Dolo V, Dell’Era P, Pavan A et al (2003) Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. J Biol Chem 278:51911–51919PubMed
52.
go back to reference Clarke MS, Caldwell RW, Chiao H, Miyake K, McNeil PL (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res 76:927–934PubMed Clarke MS, Caldwell RW, Chiao H, Miyake K, McNeil PL (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res 76:927–934PubMed
53.
go back to reference Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA (2001) Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol Heart Circ Physiol 280:H1039–1050PubMed Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA (2001) Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol Heart Circ Physiol 280:H1039–1050PubMed
54.
go back to reference Kaye D, Pimental D, Prasad S, Maki T, Berger HJ, McNeil PL, Smith TW, Kelly RA (1996) Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 97:281–291PubMed Kaye D, Pimental D, Prasad S, Maki T, Berger HJ, McNeil PL, Smith TW, Kelly RA (1996) Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 97:281–291PubMed
55.
go back to reference Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743PubMed Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743PubMed
56.
go back to reference Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D. (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186PubMed Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D. (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186PubMed
57.
go back to reference Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol 185:45–106PubMed Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol 185:45–106PubMed
58.
go back to reference Jin Y, Pasumarthi KB, Bock ME, Lytras A, Kardami E, Cattini PA (1994) Cloning and expression of fibroblast growth factor receptor-1 isoforms in the mouse heart: evidence for isoform switching during heart development. J Mol Cell Cardiol 26:1449–1459PubMed Jin Y, Pasumarthi KB, Bock ME, Lytras A, Kardami E, Cattini PA (1994) Cloning and expression of fibroblast growth factor receptor-1 isoforms in the mouse heart: evidence for isoform switching during heart development. J Mol Cell Cardiol 26:1449–1459PubMed
59.
go back to reference Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708PubMed Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708PubMed
60.
go back to reference Chua CC, Rahimi N, Forsten-Williams K, Nugent MA (2004) Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 94:316–323PubMed Chua CC, Rahimi N, Forsten-Williams K, Nugent MA (2004) Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 94:316–323PubMed
61.
go back to reference Maher PA (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134:529–536PubMed Maher PA (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134:529–536PubMed
62.
go back to reference Reilly JF, Maher PA (2001) Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152:1307–1312PubMed Reilly JF, Maher PA (2001) Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152:1307–1312PubMed
63.
go back to reference Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787PubMed Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787PubMed
64.
go back to reference Bouche G, Baldin V, Belenguer P, Prats H, Amalric F (1994) Activation of rDNA transcription by FGF-2: key role of protein kinase CKII. Cell Mol Biol Res 40:547–554PubMed Bouche G, Baldin V, Belenguer P, Prats H, Amalric F (1994) Activation of rDNA transcription by FGF-2: key role of protein kinase CKII. Cell Mol Biol Res 40:547–554PubMed
65.
go back to reference Walker DM, Yellon DM (1992) Ischaemic preconditioning: from mechanisms to exploitation. Cardiovasc Res 26:734–739PubMedCrossRef Walker DM, Yellon DM (1992) Ischaemic preconditioning: from mechanisms to exploitation. Cardiovasc Res 26:734–739PubMedCrossRef
66.
go back to reference Bolli R. (2000) The late phase of preconditioning. Circ Res 87:972–983PubMed Bolli R. (2000) The late phase of preconditioning. Circ Res 87:972–983PubMed
67.
go back to reference Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240PubMed Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240PubMed
68.
go back to reference Yellon DM, Hausenloy DJ (2005) Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat Clin Pract Cardiovasc Med 2:568–575PubMed Yellon DM, Hausenloy DJ (2005) Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat Clin Pract Cardiovasc Med 2:568–575PubMed
69.
go back to reference Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151PubMed Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151PubMed
70.
go back to reference Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70:212–221PubMed Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70:212–221PubMed
71.
go back to reference Padua RR, Sethi R, Davey-Forgie SE, Liu L, Dhalla NS, Kardami E (1996) Cardioprotection and basic fibroblast growth factor. Boston, Kluwer Academic Publishers, pp 501–518 Padua RR, Sethi R, Davey-Forgie SE, Liu L, Dhalla NS, Kardami E (1996) Cardioprotection and basic fibroblast growth factor. Boston, Kluwer Academic Publishers, pp 501–518
72.
go back to reference Srisakuldee W, Jeyaraman M, Nickel BE, Jiang ZS, Fandrich RR, Kardami E (2005) Pre- as well as post-conditioning cardioprotection by fibroblast growth factor-2 is linked to the phosphorylation of connexin-43 at specific protein kinase C target sites. Circulation 112:U364–U364 Srisakuldee W, Jeyaraman M, Nickel BE, Jiang ZS, Fandrich RR, Kardami E (2005) Pre- as well as post-conditioning cardioprotection by fibroblast growth factor-2 is linked to the phosphorylation of connexin-43 at specific protein kinase C target sites. Circulation 112:U364–U364
73.
go back to reference Nishida S, Nagamine H, Tanaka Y, Watanabe G (2003) Protective effect of basic fibroblast growth factor against myocyte death and arrhythmias in acute myocardial infarction in rats. Circ J 67:334–339PubMed Nishida S, Nagamine H, Tanaka Y, Watanabe G (2003) Protective effect of basic fibroblast growth factor against myocyte death and arrhythmias in acute myocardial infarction in rats. Circ J 67:334–339PubMed
74.
go back to reference House SL, Bolte C, Zhou M, Doetschman T, Klevitsky R, Newman G, Schultz Jel J (2003) Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation 108:3140–3148PubMed House SL, Bolte C, Zhou M, Doetschman T, Klevitsky R, Newman G, Schultz Jel J (2003) Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation 108:3140–3148PubMed
75.
go back to reference Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, Wu W, Vondriska TM, Pass JM, Tang XL et al (2002) Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest 109:499–507PubMed Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, Wu W, Vondriska TM, Pass JM, Tang XL et al (2002) Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest 109:499–507PubMed
76.
go back to reference Vondriska TM, Zhang J, Song C, Tang XL, Cao X, Baines CP, Pass JM, Wang S, Bolli R, Ping P (2001) Protein kinase C epsilon-Src modules direct signal transduction in nitric oxide-induced cardioprotection: complex formation as a means for cardioprotective signaling. Circ Res 88:1306–1313PubMed Vondriska TM, Zhang J, Song C, Tang XL, Cao X, Baines CP, Pass JM, Wang S, Bolli R, Ping P (2001) Protein kinase C epsilon-Src modules direct signal transduction in nitric oxide-induced cardioprotection: complex formation as a means for cardioprotective signaling. Circ Res 88:1306–1313PubMed
77.
go back to reference Vondriska TM, Klein JB, Ping P (2001) Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: the signaling module hypothesis. Am J Physiol Heart Circ Physiol 280:H1434–1441PubMed Vondriska TM, Klein JB, Ping P (2001) Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: the signaling module hypothesis. Am J Physiol Heart Circ Physiol 280:H1434–1441PubMed
78.
go back to reference Inagaki K, Begley R, Ikeno F, Mochly-Rosen D (2005) Cardioprotection by epsilon-protein kinase C activation from ischemia: continuous delivery and antiarrhythmic effect of an epsilon-protein kinase C-activating peptide. Circulation 111:44–50PubMed Inagaki K, Begley R, Ikeno F, Mochly-Rosen D (2005) Cardioprotection by epsilon-protein kinase C activation from ischemia: continuous delivery and antiarrhythmic effect of an epsilon-protein kinase C-activating peptide. Circulation 111:44–50PubMed
79.
go back to reference Liu GS, Cohen MV, Mochly-Rosen D, Downey JM (1999) Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 31:1937–1948PubMed Liu GS, Cohen MV, Mochly-Rosen D, Downey JM (1999) Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 31:1937–1948PubMed
80.
go back to reference Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90:390–397PubMed Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90:390–397PubMed
81.
go back to reference Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–976PubMed Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–976PubMed
82.
go back to reference House SL, Branch K, Newman G, Doetschman T, Schultz Jel J (2005) Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. Am J Physiol Heart Circ Physiol 289:H2167–2175PubMed House SL, Branch K, Newman G, Doetschman T, Schultz Jel J (2005) Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. Am J Physiol Heart Circ Physiol 289:H2167–2175PubMed
83.
go back to reference Doble BW, Ping PP, Kardami E (2000) The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301PubMed Doble BW, Ping PP, Kardami E (2000) The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301PubMed
84.
go back to reference Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E (2004) Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. J Cell Sci 117:507–514PubMed Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E (2004) Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. J Cell Sci 117:507–514PubMed
85.
go back to reference Srisakuldee W, Nickel BE, Fandrich RR, Jiang ZS, Kardami E (2006) Administration of FGF-2 to the heart stimulates connexin-43 phosphorylation at protein kinase C target sites. Cell Commun Adhesion 13:13–19 Srisakuldee W, Nickel BE, Fandrich RR, Jiang ZS, Kardami E (2006) Administration of FGF-2 to the heart stimulates connexin-43 phosphorylation at protein kinase C target sites. Cell Commun Adhesion 13:13–19
86.
go back to reference Yellon DM, Baxter GF (2000) Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 83:381–387PubMed Yellon DM, Baxter GF (2000) Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 83:381–387PubMed
87.
go back to reference Gross GJ, Auchampach JA (2007) Reperfusion injury: does it exist? J Mol Cell Cardiol 42:12–18PubMed Gross GJ, Auchampach JA (2007) Reperfusion injury: does it exist? J Mol Cell Cardiol 42:12–18PubMed
88.
go back to reference Opie LH (1989) Reperfusion injury and its pharmacologic modification. Circulation 80:1049–1062PubMed Opie LH (1989) Reperfusion injury and its pharmacologic modification. Circulation 80:1049–1062PubMed
89.
go back to reference Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460PubMed Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460PubMed
90.
go back to reference Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Agullo L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70:274–285PubMed Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Agullo L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70:274–285PubMed
91.
go back to reference Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190PubMed Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70:181–190PubMed
92.
go back to reference Kardami E, Detillieux KA, Jimenez SK, Cattini, PA (2006) Fibroblast growth factor-2 as a therapeutic agent against heart disease. Springer, pp 145–166 Kardami E, Detillieux KA, Jimenez SK, Cattini, PA (2006) Fibroblast growth factor-2 as a therapeutic agent against heart disease. Springer, pp 145–166
93.
go back to reference Horrigan MC, Malycky JL, Ellis SG, Topol EJ, Nicolini FA (1999) Reduction in myocardial infarct size by basic fibroblast growth factor following coronary occlusion in a canine model. Int J Cardiol 68(Suppl 1):S85–91PubMed Horrigan MC, Malycky JL, Ellis SG, Topol EJ, Nicolini FA (1999) Reduction in myocardial infarct size by basic fibroblast growth factor following coronary occlusion in a canine model. Int J Cardiol 68(Suppl 1):S85–91PubMed
94.
go back to reference Horrigan MC, MacIsaac AI, Nicolini FA, Vince DG, Lee P, Ellis SG, Topol EJ (1996) Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 94:1927–1933PubMed Horrigan MC, MacIsaac AI, Nicolini FA, Vince DG, Lee P, Ellis SG, Topol EJ (1996) Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation 94:1927–1933PubMed
95.
go back to reference Padua RR, Kardami E (1993) Increased basic fibroblast growth factor (bFGF) accumulation and distinct patterns of localization in isoproterenol-induced cardiomyocyte injury. Growth Factors 8:291–306PubMed Padua RR, Kardami E (1993) Increased basic fibroblast growth factor (bFGF) accumulation and distinct patterns of localization in isoproterenol-induced cardiomyocyte injury. Growth Factors 8:291–306PubMed
96.
go back to reference Engvall E (1995) Structure and function of basement membranes. Int J Dev Biol 39:781–787PubMed Engvall E (1995) Structure and function of basement membranes. Int J Dev Biol 39:781–787PubMed
97.
go back to reference Vracko R. (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 77:314–346PubMed Vracko R. (1974) Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 77:314–346PubMed
98.
go back to reference D’Amore PA (1990) Modes of FGF release in vivo and in vitro. Cancer Metastasis Rev 9:227–238PubMed D’Amore PA (1990) Modes of FGF release in vivo and in vitro. Cancer Metastasis Rev 9:227–238PubMed
99.
go back to reference Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E (1990) Calcium protects pituitary basic fibroblast growth-factors from limited proteolysis by copurifying proteases. Biochem Biophys Res Commun 173:1116–1122PubMed Doble BW, Fandrich RR, Liu L, Padua RR, Kardami E (1990) Calcium protects pituitary basic fibroblast growth-factors from limited proteolysis by copurifying proteases. Biochem Biophys Res Commun 173:1116–1122PubMed
100.
go back to reference Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662PubMed Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662PubMed
101.
go back to reference Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. Faseb J 17:1355–1357PubMed Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. Faseb J 17:1355–1357PubMed
102.
go back to reference Piper HM, Garcia-Dorado D (1999) Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 68:1913–1919PubMed Piper HM, Garcia-Dorado D (1999) Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 68:1913–1919PubMed
103.
go back to reference Inagaki K, Churchill E, Mochly-Rosen D (2006) Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res 70:222PubMed Inagaki K, Churchill E, Mochly-Rosen D (2006) Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res 70:222PubMed
104.
go back to reference Anversa P, Leri A, Kajstura J (2006) Cardiac regeneration. J Am Coll Cardiol 47:1769–1776PubMed Anversa P, Leri A, Kajstura J (2006) Cardiac regeneration. J Am Coll Cardiol 47:1769–1776PubMed
105.
go back to reference Gude N, Muraski J, Rubio M, Kajstura J, Schaefer E, Anversa P, Sussman MA (2006) Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res 99:381–388PubMed Gude N, Muraski J, Rubio M, Kajstura J, Schaefer E, Anversa P, Sussman MA (2006) Akt promotes increased cardiomyocyte cycling and expansion of the cardiac progenitor cell population. Circ Res 99:381–388PubMed
106.
go back to reference Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421PubMed Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421PubMed
107.
go back to reference Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287:98–105PubMed Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 287:98–105PubMed
108.
go back to reference Kofidis T, de Bruin JL, Yamane T, Tanaka M, Lebl DR, Swijnenburg RJ, Weissman IL, Robbins RC (2005) Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 111:2486–2493PubMed Kofidis T, de Bruin JL, Yamane T, Tanaka M, Lebl DR, Swijnenburg RJ, Weissman IL, Robbins RC (2005) Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation 111:2486–2493PubMed
109.
go back to reference Song H, Kwon K, Lim S, Kang SM, Ko YG, Xu Z, Chung JH, Kim BS, Lee H, Joung B et al (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 19:402–407PubMed Song H, Kwon K, Lim S, Kang SM, Ko YG, Xu Z, Chung JH, Kim BS, Lee H, Joung B et al (2005) Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 19:402–407PubMed
110.
go back to reference Dvorak P, Dvorakova D, Hampl A (2006) Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 580:2869–2874PubMed Dvorak P, Dvorakova D, Hampl A (2006) Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett 580:2869–2874PubMed
111.
go back to reference Han W, Yu Y, Liu XY (2006) Local signals in stem cell-based bone marrow regeneration. Cell Res 16:189–195PubMed Han W, Yu Y, Liu XY (2006) Local signals in stem cell-based bone marrow regeneration. Cell Res 16:189–195PubMed
112.
go back to reference Wang Y, Johnsen HE, Mortensen S, Bindslev L, Ripa RS, Haack-Sorensen M, Jorgensen E, Fang W, Kastrup J (2006) Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart 92:768–774PubMed Wang Y, Johnsen HE, Mortensen S, Bindslev L, Ripa RS, Haack-Sorensen M, Jorgensen E, Fang W, Kastrup J (2006) Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart 92:768–774PubMed
113.
go back to reference Ayach BB, Yoshimitsu M, Dawood F, Sun M, Arab S, Chen M, Higuchi K, Siatskas C, Lee P, Lim H et al (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA 103:2304–2309PubMed Ayach BB, Yoshimitsu M, Dawood F, Sun M, Arab S, Chen M, Higuchi K, Siatskas C, Lee P, Lim H et al (2006) Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA 103:2304–2309PubMed
114.
go back to reference Freed DH, Cunnington RH, Dangerfield AL, Sutton JS, Dixon IM (2005) Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc Res 65:782–792PubMed Freed DH, Cunnington RH, Dangerfield AL, Sutton JS, Dixon IM (2005) Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc Res 65:782–792PubMed
115.
go back to reference Chien KR (2000) Myocyte survival pathways and cardiomyopathy: implications for trastuzumab cardiotoxicity. Semin Oncol 27:9–14; discussion 92–100 Chien KR (2000) Myocyte survival pathways and cardiomyopathy: implications for trastuzumab cardiotoxicity. Semin Oncol 27:9–14; discussion 92–100
116.
go back to reference Palmen M, Daemen MJ, De Windt LJ, Willems J, Dassen WR, Heeneman S, Zimmermann R, Van Bilsen M, Doevendans PA (2004) Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism. J Am Coll Cardiol 44:1113–1123PubMed Palmen M, Daemen MJ, De Windt LJ, Willems J, Dassen WR, Heeneman S, Zimmermann R, Van Bilsen M, Doevendans PA (2004) Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism. J Am Coll Cardiol 44:1113–1123PubMed
117.
go back to reference Buehler A, Martire A, Strohm C, Wolfram S, Fernandez B, Palmen M, Wehrens XH, Doevendans PA, Franz WM, Schaper W et al (2002) Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. Cardiovasc Res 55:768–777PubMed Buehler A, Martire A, Strohm C, Wolfram S, Fernandez B, Palmen M, Wehrens XH, Doevendans PA, Franz WM, Schaper W et al (2002) Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. Cardiovasc Res 55:768–777PubMed
118.
go back to reference Cuevas P, Carceller F, Martinez-Coso V, Asin-Cardiel E, Gimenez-Gallego G (2000) Fibroblast growth factor cardioprotection against ischemia-reperfusion injury may involve K+ ATP channels. Eur J Med Res 5:145–149PubMed Cuevas P, Carceller F, Martinez-Coso V, Asin-Cardiel E, Gimenez-Gallego G (2000) Fibroblast growth factor cardioprotection against ischemia-reperfusion injury may involve K+ ATP channels. Eur J Med Res 5:145–149PubMed
Metadata
Title
Fibroblast growth factor-2 and cardioprotection
Authors
Elissavet Kardami
Karen Detillieux
Xin Ma
Zhisheng Jiang
Jon-Jon Santiago
Sarah K. Jimenez
Peter A. Cattini
Publication date
01-12-2007
Published in
Heart Failure Reviews / Issue 3-4/2007
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-007-9027-0

Other articles of this Issue 3-4/2007

Heart Failure Reviews 3-4/2007 Go to the issue

Foreword

Foreword