Skip to main content
Top
Published in: European Journal of Epidemiology 2/2020

01-02-2020 | Macular Degeneration | OPHTHALMIC DISEASE

Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration

Authors: Xikun Han, Jue-Sheng Ong, Jiyuan An, Alex W. Hewitt, Puya Gharahkhani, Stuart MacGregor

Published in: European Journal of Epidemiology | Issue 2/2020

Login to get access

Abstract

Serum C-reactive protein (CRP), an important inflammatory marker, has been associated with age-related macular degeneration (AMD) in observational studies; however, the findings are inconsistent. It remains unclear whether the association between circulating CRP levels and AMD is causal. We used two-sample Mendelian randomization (MR) to evaluate the potential causal relationship between serum CRP levels and AMD risk. We derived genetic instruments for serum CRP levels in 418,642 participants of European ancestry from UK Biobank, and then conducted a genome-wide association study for 12,711 advanced AMD cases and 14,590 controls of European descent from the International AMD Genomics Consortium. Genetic variants which predicted elevated serum CRP levels were associated with advanced AMD (odds ratio [OR] for per standard deviation increase in serum CRP levels: 1.31, 95% confidence interval [CI]: 1.19–1.44, P = 5.2 × 10−8). The OR for the increase in advanced AMD risk when moving from low (< 3 mg/L) to high (> 3 mg/L) CRP levels is 1.29 (95% CI: 1.17–1.41). Our results were unchanged in sensitivity analyses using MR models which make different modelling assumptions. Our findings were broadly similar across the different forms of AMD (intermediate AMD, choroidal neovascularization, and geographic atrophy). We used multivariable MR to adjust for the effects of other potential AMD risk factors including smoking, body mass index, blood pressure and cholesterol; this did not alter our findings. Our study provides strong genetic evidence that higher circulating CRP levels lead to increases in risk for all forms of AMD. These findings highlight the potential utility for using circulating CRP as a biomarker in future trials aimed at modulating AMD risk via systemic therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.PubMed Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.PubMed
2.
go back to reference Friedman DS, O’Colmain BJ, Muñoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.PubMed Friedman DS, O’Colmain BJ, Muñoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.PubMed
3.
go back to reference Klein R, Klein BE, Cruickshanks KJ. The prevalence of age-related maculopathy by geographic region and ethnicity. Prog Retin Eye Res. 1999;18(3):371–89.PubMed Klein R, Klein BE, Cruickshanks KJ. The prevalence of age-related maculopathy by geographic region and ethnicity. Prog Retin Eye Res. 1999;18(3):371–89.PubMed
4.
go back to reference Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia: the blue mountains eye study. Ophthalmology. 1995;102(10):1450–60.PubMed Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia: the blue mountains eye study. Ophthalmology. 1995;102(10):1450–60.PubMed
5.
go back to reference Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health. 2014;2(2):e106–16.PubMed Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health. 2014;2(2):e106–16.PubMed
7.
go back to reference Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci. 2016;73(9):1765–86.PubMedPubMedCentral Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci. 2016;73(9):1765–86.PubMedPubMedCentral
8.
go back to reference Molins B, Romero-Vázquez S, Fuentes-Prior P, Adan A, Dick AD. C-reactive protein as a therapeutic target in age-related macular degeneration. Front Immunol. 2018;19(9):808. Molins B, Romero-Vázquez S, Fuentes-Prior P, Adan A, Dick AD. C-reactive protein as a therapeutic target in age-related macular degeneration. Front Immunol. 2018;19(9):808.
9.
go back to reference Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45(4):433–9, 439e1–2.PubMed Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45(4):433–9, 439e1–2.PubMed
11.
go back to reference Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. Association between C-reactive protein and age-related macular degeneration. JAMA. 2004;291(6):704–10.PubMed Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. Association between C-reactive protein and age-related macular degeneration. JAMA. 2004;291(6):704–10.PubMed
12.
go back to reference Seddon JM, George S, Rosner B, Rifai N. Progression of age-related macular degeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol. 2005;123(6):774–82.PubMed Seddon JM, George S, Rosner B, Rifai N. Progression of age-related macular degeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol. 2005;123(6):774–82.PubMed
13.
go back to reference McGwin G, Hall TA, Xie A, Owsley C. The relation between C reactive protein and age related macular degeneration in the cardiovascular health study. Br J Ophthalmol. 2005;89(9):1166–70.PubMedPubMedCentral McGwin G, Hall TA, Xie A, Owsley C. The relation between C reactive protein and age related macular degeneration in the cardiovascular health study. Br J Ophthalmol. 2005;89(9):1166–70.PubMedPubMedCentral
14.
go back to reference Wu KHC, Tan AG, Rochtchina E, et al. Circulating inflammatory markers and hemostatic factors in age-related maculopathy: a population-based case-control study. Invest Ophthalmol Vis Sci. 2007;48(5):1983–8.PubMed Wu KHC, Tan AG, Rochtchina E, et al. Circulating inflammatory markers and hemostatic factors in age-related maculopathy: a population-based case-control study. Invest Ophthalmol Vis Sci. 2007;48(5):1983–8.PubMed
15.
go back to reference Klein R, Knudtson MD, Klein BEK, et al. Inflammation, complement factor h, and age-related macular degeneration: the multi-ethnic study of Atherosclerosis. Ophthalmology. 2008;115(10):1742–9.PubMedPubMedCentral Klein R, Knudtson MD, Klein BEK, et al. Inflammation, complement factor h, and age-related macular degeneration: the multi-ethnic study of Atherosclerosis. Ophthalmology. 2008;115(10):1742–9.PubMedPubMedCentral
16.
go back to reference Hong T, Tan AG, Mitchell P, Wang JJ. A review and meta-analysis of the association between C-reactive protein and age-related macular degeneration. Surv Ophthalmol. 2011;56(3):184–94.PubMed Hong T, Tan AG, Mitchell P, Wang JJ. A review and meta-analysis of the association between C-reactive protein and age-related macular degeneration. Surv Ophthalmol. 2011;56(3):184–94.PubMed
17.
go back to reference Mitta VP, Christen WG, Glynn RJ, et al. C-reactive protein and the incidence of macular degeneration: pooled analysis of 5 cohorts. JAMA Ophthalmol. 2013;131(4):507–13.PubMedPubMedCentral Mitta VP, Christen WG, Glynn RJ, et al. C-reactive protein and the incidence of macular degeneration: pooled analysis of 5 cohorts. JAMA Ophthalmol. 2013;131(4):507–13.PubMedPubMedCentral
18.
go back to reference Yip JLY, Khawaja AP, Chan MPY, et al. Cross sectional and longitudinal associations between cardiovascular risk factors and age related macular degeneration in the EPIC-Norfolk eye study. PLoS ONE. 2015;10(7):e0132565.PubMedPubMedCentral Yip JLY, Khawaja AP, Chan MPY, et al. Cross sectional and longitudinal associations between cardiovascular risk factors and age related macular degeneration in the EPIC-Norfolk eye study. PLoS ONE. 2015;10(7):e0132565.PubMedPubMedCentral
19.
go back to reference Despriet DDG, Klaver CCW, Witteman JCM, et al. Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration. JAMA. 2006;296(3):301–9.PubMed Despriet DDG, Klaver CCW, Witteman JCM, et al. Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration. JAMA. 2006;296(3):301–9.PubMed
20.
go back to reference Schaumberg DA, Christen WG, Kozlowski P, Miller DT, Ridker PM, Zee RYL. A prospective assessment of the Y402H variant in complement factor H, genetic variants in C-reactive protein, and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47(6):2336–40.PubMedPubMedCentral Schaumberg DA, Christen WG, Kozlowski P, Miller DT, Ridker PM, Zee RYL. A prospective assessment of the Y402H variant in complement factor H, genetic variants in C-reactive protein, and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47(6):2336–40.PubMedPubMedCentral
21.
go back to reference Kim IK, Ji F, Morrison MA, et al. Comprehensive analysis of CRP, CFH Y402H and environmental risk factors on risk of neovascular age-related macular degeneration. Mol Vis. 2008;11(14):1487–95. Kim IK, Ji F, Morrison MA, et al. Comprehensive analysis of CRP, CFH Y402H and environmental risk factors on risk of neovascular age-related macular degeneration. Mol Vis. 2008;11(14):1487–95.
22.
go back to reference Cipriani V, Hogg RE, Sofat R, et al. Association of C-reactive protein genetic polymorphisms with late age-related macular degeneration. JAMA Ophthalmol. 2017;135(9):909–16.PubMedPubMedCentral Cipriani V, Hogg RE, Sofat R, et al. Association of C-reactive protein genetic polymorphisms with late age-related macular degeneration. JAMA Ophthalmol. 2017;135(9):909–16.PubMedPubMedCentral
23.
go back to reference Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;12(362):k601. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;12(362):k601.
24.
go back to reference Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018;19(9):566–80.PubMed Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018;19(9):566–80.PubMed
25.
go back to reference Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentral Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98.PubMedPubMedCentral
26.
go back to reference Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.PubMedPubMedCentral Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.PubMedPubMedCentral
27.
go back to reference Loh P-R, Tucker G, Bulik-Sullivan BK, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47(3):284–90.PubMedPubMedCentral Loh P-R, Tucker G, Bulik-Sullivan BK, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47(3):284–90.PubMedPubMedCentral
28.
go back to reference Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.PubMedPubMedCentral Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.PubMedPubMedCentral
29.
go back to reference Ligthart S, Vaez A, Võsa U, et al. Genome analyses of > 200,000 individuals identify 58 Loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am J Hum Genet. 2018;103(5):691–706.PubMedPubMedCentral Ligthart S, Vaez A, Võsa U, et al. Genome analyses of > 200,000 individuals identify 58 Loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am J Hum Genet. 2018;103(5):691–706.PubMedPubMedCentral
30.
go back to reference Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955–9.PubMedPubMedCentral Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955–9.PubMedPubMedCentral
31.
go back to reference Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.PubMed Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.PubMed
32.
go back to reference Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.PubMedPubMedCentral Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.PubMedPubMedCentral
33.
go back to reference Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. EPIC- InterAct consortium. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.PubMedPubMedCentral Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. EPIC- InterAct consortium. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.PubMedPubMedCentral
34.
go back to reference Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.PubMedPubMedCentral Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.PubMedPubMedCentral
35.
go back to reference Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783–802.PubMedPubMedCentral Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783–802.PubMedPubMedCentral
36.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentral Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentral
37.
go back to reference Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42.PubMed Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42.PubMed
38.
go back to reference Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentral Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentral
39.
go back to reference Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 2015;181(4):251–60.PubMedPubMedCentral Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 2015;181(4):251–60.PubMedPubMedCentral
42.
go back to reference Burgess S, Thompson DJ, Rees JMB, Day FR, Perry JR, Ong KK. Dissecting causal pathways using Mendelian randomization with summarized genetic data: application to age at menarche and risk of breast cancer. Genetics. 2017;207(2):481–7.PubMedPubMedCentral Burgess S, Thompson DJ, Rees JMB, Day FR, Perry JR, Ong KK. Dissecting causal pathways using Mendelian randomization with summarized genetic data: application to age at menarche and risk of breast cancer. Genetics. 2017;207(2):481–7.PubMedPubMedCentral
43.
go back to reference Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.PubMedPubMedCentral Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–9.PubMedPubMedCentral
44.
go back to reference R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2017. Available from: https://www.R-project.org/. Accessed 1 Apr 2019. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2017. Available from: https://​www.​R-project.​org/​. Accessed 1 Apr 2019.
45.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentral Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentral
Metadata
Title
Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration
Authors
Xikun Han
Jue-Sheng Ong
Jiyuan An
Alex W. Hewitt
Puya Gharahkhani
Stuart MacGregor
Publication date
01-02-2020
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology / Issue 2/2020
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-019-00598-z

Other articles of this Issue 2/2020

European Journal of Epidemiology 2/2020 Go to the issue