Skip to main content
Top
Published in: Investigational New Drugs 5/2019

Open Access 01-10-2019 | PRECLINICAL STUDIES

The availability of drug by liposomal drug delivery

Individual kinetics and tissue distribution of encapsulated and released drug in mice after administration of PEGylated liposomal prednisolone phosphate

Authors: Evelien A. W. Smits, José A. Soetekouw, Ebel H. E. Pieters, Coen J. P. Smits, Nicolette de Wijs-Rot, Herman Vromans

Published in: Investigational New Drugs | Issue 5/2019

Login to get access

Summary

Lately, the usefulness of liposomal drug delivery systems has been debated. To better understand the underlying pharmacokinetics of the targeted drug delivery by liposomes, individual encapsulated and non-encapsulated drug concentrations in blood, tumor, liver, spleen and kidneys were quantified after i.v. administration of liposomal prednisolone phosphate in mice. Kinetic analysis shows that the tumor influx of encapsulated drug is not dominant compared to the uptake by the other tissues. Further, from a quantitative point of view, the availability of non-encapsulated drug in the tumor tissue after liposomal delivery is not pronounced as compared to the other tissues studied. However, drug release in the tumor seems more extended than in the other tissues and the non-encapsulated drug concentration decreases more slowly in the tumor than in the liver and spleen. The spleen shows a high affinity for the uptake of encapsulated drug as well as the release of drug from the liposomes. Subsequently, released drug in the spleen, and possibly also in other tissues, is probably quickly redistributed towards the blood and other tissues. This also impairs the drug delivery effect of the liposomes. In contrast to the released drug in the central circulation, liver and spleen, the released drug concentration in the tumor remains at a fairly constant level likely due to the extended release kinetics from the liposomes. These extended release characteristics in the tumor most probably contribute to the beneficial effect. Nevertheless, it should be noted that larger released drug concentrations are formed in healthy tissues.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48CrossRefPubMed Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48CrossRefPubMed
2.
go back to reference Qian S, Li C, Zuo Z (2012) Pharmacokinetics and disposition of various drug loaded liposomes. Curr Drug Metab 13:372–395CrossRefPubMed Qian S, Li C, Zuo Z (2012) Pharmacokinetics and disposition of various drug loaded liposomes. Curr Drug Metab 13:372–395CrossRefPubMed
3.
go back to reference Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G (2016) Accumulating nanoparticles by EPR: a route of no return. J Control Release 238:58–70CrossRefPubMed Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G (2016) Accumulating nanoparticles by EPR: a route of no return. J Control Release 238:58–70CrossRefPubMed
5.
go back to reference Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6CrossRefPubMed Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6CrossRefPubMed
6.
go back to reference Park K (2017) The drug delivery field at the inflection point: time to fight its way out of the egg. J Control Release 267:2–14CrossRefPubMed Park K (2017) The drug delivery field at the inflection point: time to fight its way out of the egg. J Control Release 267:2–14CrossRefPubMed
7.
go back to reference Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of Pegylated liposomal doxorubicin. Clin Pharmacokinet 42:419–436CrossRefPubMed Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of Pegylated liposomal doxorubicin. Clin Pharmacokinet 42:419–436CrossRefPubMed
8.
go back to reference Liu X, Situ A, Kang Y, Villabroza KR, Liao Y, Chang CH, Donahue T, Nel AE, Meng H (2016) Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic Cancer. ACS Nano 10:2702–2715CrossRefPubMedPubMedCentral Liu X, Situ A, Kang Y, Villabroza KR, Liao Y, Chang CH, Donahue T, Nel AE, Meng H (2016) Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic Cancer. ACS Nano 10:2702–2715CrossRefPubMedPubMedCentral
9.
go back to reference Schiffelers RM, Metselaar JM, Fens MHAM, Janssen APCA, Molema G, Storm G (2005) Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice. Neoplasia 7:118–127CrossRefPubMedPubMedCentral Schiffelers RM, Metselaar JM, Fens MHAM, Janssen APCA, Molema G, Storm G (2005) Liposome-encapsulated prednisolone phosphate inhibits growth of established tumors in mice. Neoplasia 7:118–127CrossRefPubMedPubMedCentral
10.
go back to reference Druckmann S, Gabizon A, Barenholz Y (1989) Separation of liposome-associated doxorubicin from non-liposome-associated doxorubicin in human plasma: implications for pharmacokinetic studies. Biochim Biophys Acta 980:381–384CrossRefPubMed Druckmann S, Gabizon A, Barenholz Y (1989) Separation of liposome-associated doxorubicin from non-liposome-associated doxorubicin in human plasma: implications for pharmacokinetic studies. Biochim Biophys Acta 980:381–384CrossRefPubMed
11.
go back to reference Srigritsanapol AA, Chan KK (1994) A rapid method for the separation and analysis of leaked and liposomal entrapped phosphoramide mustard in plasma. J Pharm Biomed Anal 12:961–968CrossRefPubMed Srigritsanapol AA, Chan KK (1994) A rapid method for the separation and analysis of leaked and liposomal entrapped phosphoramide mustard in plasma. J Pharm Biomed Anal 12:961–968CrossRefPubMed
12.
go back to reference Mayer LD, St-Onge G (1995) Determination of free and liposome-associated doxorubicin and vincristine levels in plasma under equilibrium conditions employing ultrafiltration techniques. Anal Biochem 232:149–157CrossRefPubMed Mayer LD, St-Onge G (1995) Determination of free and liposome-associated doxorubicin and vincristine levels in plasma under equilibrium conditions employing ultrafiltration techniques. Anal Biochem 232:149–157CrossRefPubMed
13.
go back to reference Krishna R, Webb MS, St-Onge G, Mayer LD (2001) Liposomal and nonliposomal drug pharmacokinetics after Administration of Liposome-Encapsulated Vincristine and Their Contribution to drug tissue distribution properties. J Pharmacol Exp Ther 298:1206–1212PubMed Krishna R, Webb MS, St-Onge G, Mayer LD (2001) Liposomal and nonliposomal drug pharmacokinetics after Administration of Liposome-Encapsulated Vincristine and Their Contribution to drug tissue distribution properties. J Pharmacol Exp Ther 298:1206–1212PubMed
14.
go back to reference Bellott R, Pouna P, Robert J (2001) Separation and determination of liposomal and non-liposomal daunorubicin from the plasma of patients treated with Daunoxome. J Chromatogr B 757:257–267CrossRef Bellott R, Pouna P, Robert J (2001) Separation and determination of liposomal and non-liposomal daunorubicin from the plasma of patients treated with Daunoxome. J Chromatogr B 757:257–267CrossRef
15.
go back to reference Deshpande NM, Gangrade MG, Kekare MB, Vaidya VV (2010) Determination of free and liposomal amphotericin B in human plasma by liquid chromatography–mass spectroscopy with solid phase extraction and protein precipitation techniques. J Chromatogr B 878:315–326CrossRef Deshpande NM, Gangrade MG, Kekare MB, Vaidya VV (2010) Determination of free and liposomal amphotericin B in human plasma by liquid chromatography–mass spectroscopy with solid phase extraction and protein precipitation techniques. J Chromatogr B 878:315–326CrossRef
16.
go back to reference Xie Y, Shao N, Jin Y, Zhang L, Jiang H, Xiong N, Su F, Xu H (2018) Determination of non-liposomal and liposomal doxorubicin in plasma by LC–MS/MS coupled with an effective solid phase extraction: in comparison with ultrafiltration technique and application to a pharmacokinetic study. J Chromatogr B 1072:149–160CrossRef Xie Y, Shao N, Jin Y, Zhang L, Jiang H, Xiong N, Su F, Xu H (2018) Determination of non-liposomal and liposomal doxorubicin in plasma by LC–MS/MS coupled with an effective solid phase extraction: in comparison with ultrafiltration technique and application to a pharmacokinetic study. J Chromatogr B 1072:149–160CrossRef
17.
go back to reference Schorzman AN, Lucas AT, Kagel JR, Zamboni WC (2018) Methods and study designs for characterizing the pharmacokinetics and pharmacodynamics of carrier-mediated agents. In: Sirianni RW, Behkam B (eds) Targeted drug delivery methods and protocols. Humana Press, New York, pp 201–228CrossRef Schorzman AN, Lucas AT, Kagel JR, Zamboni WC (2018) Methods and study designs for characterizing the pharmacokinetics and pharmacodynamics of carrier-mediated agents. In: Sirianni RW, Behkam B (eds) Targeted drug delivery methods and protocols. Humana Press, New York, pp 201–228CrossRef
18.
go back to reference Laginha KM, Verwoert S, Charrois GJR, Allen TM (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 11:6944–6949CrossRefPubMed Laginha KM, Verwoert S, Charrois GJR, Allen TM (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 11:6944–6949CrossRefPubMed
19.
go back to reference Zamboni WC, Strychor S, Joseph E, Walsh DR, Zamboni BA, Parise RA, Tonda ME, Yu NY, Engbers C, Eiseman JL (2007) Plasma, tumor, and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts. Clin Cancer Res 13:7217–7223CrossRefPubMed Zamboni WC, Strychor S, Joseph E, Walsh DR, Zamboni BA, Parise RA, Tonda ME, Yu NY, Engbers C, Eiseman JL (2007) Plasma, tumor, and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts. Clin Cancer Res 13:7217–7223CrossRefPubMed
20.
go back to reference Charrois GJR, Allen TM (2004) Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta 1663:167–177CrossRefPubMed Charrois GJR, Allen TM (2004) Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta 1663:167–177CrossRefPubMed
21.
go back to reference Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In Vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559PubMed Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In Vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559PubMed
22.
go back to reference Metselaar JM, Wauben MHM, Wagenaar-Hilbers JPA, Boerman OC, Storm G (2003) Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 48:2059–2066CrossRefPubMed Metselaar JM, Wauben MHM, Wagenaar-Hilbers JPA, Boerman OC, Storm G (2003) Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 48:2059–2066CrossRefPubMed
23.
go back to reference Smits EAW, Soetekouw JA, Vromans H (2014) In vitro confirmation of the quantitative differentiation of liposomal encapsulated and non-encapsulated prednisolone (phosphate) tissue concentrations by murine phosphatases. J Liposome Res 24:130–135CrossRefPubMed Smits EAW, Soetekouw JA, Vromans H (2014) In vitro confirmation of the quantitative differentiation of liposomal encapsulated and non-encapsulated prednisolone (phosphate) tissue concentrations by murine phosphatases. J Liposome Res 24:130–135CrossRefPubMed
24.
go back to reference Kohli AG, Kieler-Ferguson HM, Chan D, Szoka FC (2014) A robust and quantitative method for tracking liposome contents after intravenous administration. J Control Release 176:86–93CrossRefPubMed Kohli AG, Kieler-Ferguson HM, Chan D, Szoka FC (2014) A robust and quantitative method for tracking liposome contents after intravenous administration. J Control Release 176:86–93CrossRefPubMed
25.
go back to reference Garg V, Jusko WJ (1994) Bioavailability and reversible metabolism of prednisone and prednisolone in man. Biopharm Drug Dispos 15:163–172CrossRefPubMed Garg V, Jusko WJ (1994) Bioavailability and reversible metabolism of prednisone and prednisolone in man. Biopharm Drug Dispos 15:163–172CrossRefPubMed
26.
go back to reference Möllmann H, Balbach S, Hochhaus G, Barth J, Derendorf H (1995) Pharmacokinetic-Pharmacodynamic correlations of corticosteroids. In: Derendorf H, Hochhaus G (eds) Handbook of pharmacokinetic/Pharmacodynamic correlation. CRC Press, Boca Raton, pp 323–361 Möllmann H, Balbach S, Hochhaus G, Barth J, Derendorf H (1995) Pharmacokinetic-Pharmacodynamic correlations of corticosteroids. In: Derendorf H, Hochhaus G (eds) Handbook of pharmacokinetic/Pharmacodynamic correlation. CRC Press, Boca Raton, pp 323–361
27.
go back to reference Smits EAW, Soetekouw JA, Bakker PFA, Baijens BJH, Vromans H (2015) Plasma, blood and liver tissue sample preparation methods for the separate quantification of liposomal-encapsulated prednisolone phosphate and non-encapsulated prednisolone. J Liposome Res 25:46–57CrossRefPubMed Smits EAW, Soetekouw JA, Bakker PFA, Baijens BJH, Vromans H (2015) Plasma, blood and liver tissue sample preparation methods for the separate quantification of liposomal-encapsulated prednisolone phosphate and non-encapsulated prednisolone. J Liposome Res 25:46–57CrossRefPubMed
28.
go back to reference Motion JPM, Nguyen J, Szoka FC (2012) Phosphatase-triggered Fusogenic liposomes for cytoplasmic delivery of cell-impermeable compounds. Angew Chem 124:9181–9185CrossRef Motion JPM, Nguyen J, Szoka FC (2012) Phosphatase-triggered Fusogenic liposomes for cytoplasmic delivery of cell-impermeable compounds. Angew Chem 124:9181–9185CrossRef
29.
go back to reference Crielaard BJ, Lammers T, Morgan ME, Chaabane L, Carboni S, Greco B, Zaratin P, Kraneveld AD, Storm G (2011) Macrophages and liposomes in inflammatory disease: friends or foes? Int J Pharm 416:499–506CrossRefPubMed Crielaard BJ, Lammers T, Morgan ME, Chaabane L, Carboni S, Greco B, Zaratin P, Kraneveld AD, Storm G (2011) Macrophages and liposomes in inflammatory disease: friends or foes? Int J Pharm 416:499–506CrossRefPubMed
30.
go back to reference Barrera P, Metselaar JM, van den Hoven JM, Mulder S, Nuijen B, Wortel C, Storm G, Beijnen JH, van Riel PLCM (2012) Long-circulating liposomal prednisolone versus pulse intramuscular methyl-prednisolone in patients with active rheumatoid arthritis. In: van den Hoven JM (2012). In: Liposomal glucocorticoids: pharmaceutical, preclinical and clinical aspects. Utrecht University, Dissertation Barrera P, Metselaar JM, van den Hoven JM, Mulder S, Nuijen B, Wortel C, Storm G, Beijnen JH, van Riel PLCM (2012) Long-circulating liposomal prednisolone versus pulse intramuscular methyl-prednisolone in patients with active rheumatoid arthritis. In: van den Hoven JM (2012). In: Liposomal glucocorticoids: pharmaceutical, preclinical and clinical aspects. Utrecht University, Dissertation
31.
go back to reference Wong CW, Czarny B, Metselaar JM, Ho C, Ng SR, Barathi AV, Storm G, Wong TT (2018) Evaluation of subconjunctival liposomal steroids for the treatment of experimental uveitis. Sci Rep 8:6604CrossRefPubMedPubMedCentral Wong CW, Czarny B, Metselaar JM, Ho C, Ng SR, Barathi AV, Storm G, Wong TT (2018) Evaluation of subconjunctival liposomal steroids for the treatment of experimental uveitis. Sci Rep 8:6604CrossRefPubMedPubMedCentral
32.
go back to reference Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN (2002) Acid phosphatases. J Clin Pathol: Mol Pathol 55:65–72 Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN (2002) Acid phosphatases. J Clin Pathol: Mol Pathol 55:65–72
33.
go back to reference Cittadino E, Ferraretto M, Torres E, Maiocchi A, Crielaard BJ, Lammers T, Storm G, Aime S, Terreno E (2012) MRI evaluation of the antitumor activity of paramagnetic liposomes loaded with prednisolone phosphate. Eur J Pharm Sci 45:436–441CrossRefPubMed Cittadino E, Ferraretto M, Torres E, Maiocchi A, Crielaard BJ, Lammers T, Storm G, Aime S, Terreno E (2012) MRI evaluation of the antitumor activity of paramagnetic liposomes loaded with prednisolone phosphate. Eur J Pharm Sci 45:436–441CrossRefPubMed
34.
go back to reference Smits EAW, Smits CJP, Vromans H (2013) The development of a method to quantify encapsulated and free prednisolone phosphate in liposomal formulations. J Pharm Biomed Anal 75:47–54CrossRefPubMed Smits EAW, Smits CJP, Vromans H (2013) The development of a method to quantify encapsulated and free prednisolone phosphate in liposomal formulations. J Pharm Biomed Anal 75:47–54CrossRefPubMed
35.
go back to reference Smits EAW, Soetekouw JA, van Doormalen I, van den Berg BHJ, van der Woude MP, de Wijs-Rot N, Vromans H (2015) Quantitative LC–MS determination of liposomal encapsulated prednisolone phosphate and non-encapsulated prednisolone concentrations in murine whole blood and liver tissue. J Pharm Biomed Anal 115:552–561CrossRefPubMed Smits EAW, Soetekouw JA, van Doormalen I, van den Berg BHJ, van der Woude MP, de Wijs-Rot N, Vromans H (2015) Quantitative LC–MS determination of liposomal encapsulated prednisolone phosphate and non-encapsulated prednisolone concentrations in murine whole blood and liver tissue. J Pharm Biomed Anal 115:552–561CrossRefPubMed
36.
go back to reference Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484CrossRefPubMed Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484CrossRefPubMed
37.
go back to reference Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRefPubMed Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79CrossRefPubMed
38.
go back to reference Schmidt J, Metselaar JM, Wauben MHM, Toyka KV, Storm G, Gold R (2003) Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126:1895–1904CrossRefPubMed Schmidt J, Metselaar JM, Wauben MHM, Toyka KV, Storm G, Gold R (2003) Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126:1895–1904CrossRefPubMed
39.
go back to reference Ozbakir B, Crielaard BJ, Metselaar JM, Storm G, Lammers T (2014) Liposomal corticosteroids for the treatment of inflammatory disorders and cancer. J Control Release 190:624–636CrossRefPubMed Ozbakir B, Crielaard BJ, Metselaar JM, Storm G, Lammers T (2014) Liposomal corticosteroids for the treatment of inflammatory disorders and cancer. J Control Release 190:624–636CrossRefPubMed
40.
go back to reference Bertrand N, Leroux J-C (2012) The journal of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163CrossRef Bertrand N, Leroux J-C (2012) The journal of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163CrossRef
41.
go back to reference Sarko D, Georges RB (2016) Kidney-specific drug delivery: review of opportunities, achievements, and challenges. J Analytical Pharm Res 2:33–38CrossRef Sarko D, Georges RB (2016) Kidney-specific drug delivery: review of opportunities, achievements, and challenges. J Analytical Pharm Res 2:33–38CrossRef
42.
43.
go back to reference Kluza E, Yeo SY, Schmid S, van der Schaft DWJ, Boekhoven RW, Schiffelers RM, Storm G, Strijkers GJ, Nicolay K (2011) Anti-tumor activity of liposomal glucocorticoids: the relevance of liposome-mediated drug delivery, intratumoral localization and systemic activity. J Control Release 151:10–17CrossRefPubMed Kluza E, Yeo SY, Schmid S, van der Schaft DWJ, Boekhoven RW, Schiffelers RM, Storm G, Strijkers GJ, Nicolay K (2011) Anti-tumor activity of liposomal glucocorticoids: the relevance of liposome-mediated drug delivery, intratumoral localization and systemic activity. J Control Release 151:10–17CrossRefPubMed
44.
go back to reference Lee SH, Starkey PM, Gordon S (1985) Quantitative analysis of Total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med 161:475–489CrossRefPubMed Lee SH, Starkey PM, Gordon S (1985) Quantitative analysis of Total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med 161:475–489CrossRefPubMed
45.
go back to reference Moghimi SM (1995) Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Adv Drug Deliv Rev 17:103–115CrossRef Moghimi SM (1995) Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Adv Drug Deliv Rev 17:103–115CrossRef
46.
go back to reference Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, Dalton JT, Swaan PW (2003) Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res 20:1794–1803CrossRefPubMed Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, Dalton JT, Swaan PW (2003) Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res 20:1794–1803CrossRefPubMed
47.
go back to reference Frey BM, Frey FJ (1990) Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet 19:126–146CrossRefPubMed Frey BM, Frey FJ (1990) Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet 19:126–146CrossRefPubMed
48.
go back to reference Xu J, Winkler J, Derendorf H (2007) A pharmacokinetic/pharmacodynamic approach to predict total prednisolone concentrations in human plasma. J Pharmacokinet Pharmacodyn 34:355–372CrossRefPubMed Xu J, Winkler J, Derendorf H (2007) A pharmacokinetic/pharmacodynamic approach to predict total prednisolone concentrations in human plasma. J Pharmacokinet Pharmacodyn 34:355–372CrossRefPubMed
49.
go back to reference Czock D, Keller F, Rasche FM, Häussler U (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44:61–98CrossRefPubMed Czock D, Keller F, Rasche FM, Häussler U (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44:61–98CrossRefPubMed
50.
go back to reference Bergmann TK, Barraclough KA, Lee KJ, Staatz CE (2012) Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation. Clin Pharmacokinet 51:711–741CrossRefPubMed Bergmann TK, Barraclough KA, Lee KJ, Staatz CE (2012) Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation. Clin Pharmacokinet 51:711–741CrossRefPubMed
51.
go back to reference Rocci ML Jr, Szefler SJ, Acara M, Jusko WJ (1981) Prednisolone metabolism and excretion in the isolated perfused rat kidney. Drug Metab Dispos 9:177–182PubMed Rocci ML Jr, Szefler SJ, Acara M, Jusko WJ (1981) Prednisolone metabolism and excretion in the isolated perfused rat kidney. Drug Metab Dispos 9:177–182PubMed
52.
go back to reference Garg V, Jusko WJ (1991) Simultaneous analysis of prednisone, prednisolone and their major hydroxylated metabolites in urine by high-performance liquid chromatography. J Chromatogr Biomed Appl 567:39–47CrossRef Garg V, Jusko WJ (1991) Simultaneous analysis of prednisone, prednisolone and their major hydroxylated metabolites in urine by high-performance liquid chromatography. J Chromatogr Biomed Appl 567:39–47CrossRef
53.
go back to reference Ahi S, Beotra A, Dubey S, Upadhyaym A, Jain S (2012) Simultaneous identification of prednisolone and its ten metabolites in human urine by high performance liquid chromatography-tandem mass spectrometry. Drug Test Anal 4:460–467CrossRefPubMed Ahi S, Beotra A, Dubey S, Upadhyaym A, Jain S (2012) Simultaneous identification of prednisolone and its ten metabolites in human urine by high performance liquid chromatography-tandem mass spectrometry. Drug Test Anal 4:460–467CrossRefPubMed
54.
go back to reference Rodchenkov GM, Vedenin AN, Uralets VP, Semenov VA (1991) Characterization of prednisone, prednisolone and their metabolites by gas chromatography-mass spectrometry. J Chromatogr Biomed Appl 565:45–51CrossRef Rodchenkov GM, Vedenin AN, Uralets VP, Semenov VA (1991) Characterization of prednisone, prednisolone and their metabolites by gas chromatography-mass spectrometry. J Chromatogr Biomed Appl 565:45–51CrossRef
Metadata
Title
The availability of drug by liposomal drug delivery
Individual kinetics and tissue distribution of encapsulated and released drug in mice after administration of PEGylated liposomal prednisolone phosphate
Authors
Evelien A. W. Smits
José A. Soetekouw
Ebel H. E. Pieters
Coen J. P. Smits
Nicolette de Wijs-Rot
Herman Vromans
Publication date
01-10-2019
Publisher
Springer US
Published in
Investigational New Drugs / Issue 5/2019
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-018-0708-4

Other articles of this Issue 5/2019

Investigational New Drugs 5/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine