Skip to main content
Top
Published in: Investigational New Drugs 1/2019

01-02-2019 | PRECLINICAL STUDIES

Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists

Authors: A. Molinos-Quintana, P. Trujillo-Hacha, J. I. Piruat, J. A. Bejarano-García, E. García-Guerrero, J. A. Pérez-Simón, Miguel Muñoz

Published in: Investigational New Drugs | Issue 1/2019

Login to get access

Summary

The substance P/neurokinin-1 receptor system has been implicated in tumor cell proliferation. Neurokinin-1 receptor has been identified in different solid tumors but not frequently in hematopoietic malignant cells. We investigated the presence of the Neurokinin-1 receptor in acute myeloid leukemia cell lines (KG-1 and HL-60), demonstrating that acute myeloid leukemia cell lines overexpress the truncated Neurokinin-1 receptor isoform compared with lymphocytes from healthy donors. Using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we demonstrated that substance P induced cell proliferation in both acute myeloid leukemia cell lines. We also observed that four different Neurokinin-1 receptor antagonists (L-733,060, L-732,138, CP 96–345 and aprepitant) elicited inhibition of acute myeloid leukemia cell growth lines in a concentration-dependent manner, while growth inhibition was only marginal in lymphocytes; the specific antitumor action of Neurokinin-1 receptor antagonists occurs via the Neurokinin-1 receptor, and leukemia cell death is due to apoptosis. Finally, administration of high doses of daily intraperitoneal fosaprepitant to NOD scid gamma mice previously xenografted with the HL60 cell line increased the median survival from 4 days (control group) to 7 days (treated group) (p = 0.059). Taken together, these findings suggest that Neurokinin-1 receptor antagonists suppress leukemic cell growth and may be considered to be potential antitumor drugs for the treatment of human acute myeloid leukemia.
Literature
1.
go back to reference Deschler B, Lubbert M (2006) Acute myeloid leukemia: epidemiology and etiology. Cancer 107:2099–2107CrossRefPubMed Deschler B, Lubbert M (2006) Acute myeloid leukemia: epidemiology and etiology. Cancer 107:2099–2107CrossRefPubMed
2.
go back to reference Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance-P receptors in human primary neoplasms: tumoral and vascular localization. Int J Cancer 61(6):786–792CrossRefPubMed Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance-P receptors in human primary neoplasms: tumoral and vascular localization. Int J Cancer 61(6):786–792CrossRefPubMed
3.
go back to reference Luo W, Sharif TR, Sharif M (1996) Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway. Cancer Res 56(21):4983–4991PubMed Luo W, Sharif TR, Sharif M (1996) Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway. Cancer Res 56(21):4983–4991PubMed
4.
go back to reference Palma C (2006) Tachykinins and their receptors in human malignancies. Curr Drug Targets 7(8):1043–1052CrossRefPubMed Palma C (2006) Tachykinins and their receptors in human malignancies. Curr Drug Targets 7(8):1043–1052CrossRefPubMed
5.
go back to reference Patacchini R, Lecci A, Holzer P, Maggi CA (2004) Newly discovered tachykinins raise new questions about their peripheral roles and the tachykinin nomenclature. Trends Pharmacol Sci 25(1):1–3CrossRefPubMed Patacchini R, Lecci A, Holzer P, Maggi CA (2004) Newly discovered tachykinins raise new questions about their peripheral roles and the tachykinin nomenclature. Trends Pharmacol Sci 25(1):1–3CrossRefPubMed
6.
go back to reference Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V (2002) The tachykinin peptide family. Pharmacol Rev 54(2):285–322CrossRefPubMed Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V (2002) The tachykinin peptide family. Pharmacol Rev 54(2):285–322CrossRefPubMed
7.
go back to reference Beaujouan JC, Torrens Y, Saffroy M, Kemel ML, Glowinski J (2004) A 25 years adventure in the field of tachykinins. Peptides 25(3):339–357CrossRefPubMed Beaujouan JC, Torrens Y, Saffroy M, Kemel ML, Glowinski J (2004) A 25 years adventure in the field of tachykinins. Peptides 25(3):339–357CrossRefPubMed
8.
go back to reference Kavelaars A, Jeurissen F, Heijnen CJ (1994) Substance P receptors and signal transduction in leukocytes. ImmunoMethods 5(1):41–48CrossRefPubMed Kavelaars A, Jeurissen F, Heijnen CJ (1994) Substance P receptors and signal transduction in leukocytes. ImmunoMethods 5(1):41–48CrossRefPubMed
9.
go back to reference Akazawa T, Kwatra SG, Goldsmith LE, Richardson MD, Cox EA, Sampson JH, Kwatra MM (2009) A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated in glioblastomas. J Neurochem 109(4):1079–1086CrossRefPubMedPubMedCentral Akazawa T, Kwatra SG, Goldsmith LE, Richardson MD, Cox EA, Sampson JH, Kwatra MM (2009) A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated in glioblastomas. J Neurochem 109(4):1079–1086CrossRefPubMedPubMedCentral
10.
go back to reference Muñoz M, Coveñas R (2013) Involvement of substance P and the NK-1 receptor in cancer progression. Peptides 48:1–9CrossRefPubMed Muñoz M, Coveñas R (2013) Involvement of substance P and the NK-1 receptor in cancer progression. Peptides 48:1–9CrossRefPubMed
11.
go back to reference Nowicki M, Mískowiak B, Ostalska-Nowicka D (2003) Detection of substance P and its mRNA in human blast cells in childhood lymphoblastic leukaemia using immunocytochemistry and in situ hybridisation. Folia Histochem Cytobiol 41(1):33–36PubMed Nowicki M, Mískowiak B, Ostalska-Nowicka D (2003) Detection of substance P and its mRNA in human blast cells in childhood lymphoblastic leukaemia using immunocytochemistry and in situ hybridisation. Folia Histochem Cytobiol 41(1):33–36PubMed
12.
go back to reference Klassert TE, Patel SA, Rameshwar P (2010) Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. J Receptor Ligand Channel Res 3:51–61 Klassert TE, Patel SA, Rameshwar P (2010) Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. J Receptor Ligand Channel Res 3:51–61
13.
go back to reference Goto T, Tanaka T (2002) Tachykinins and tachykinin receptors in bone. Microsc Res Tech 58(2):91–97CrossRefPubMed Goto T, Tanaka T (2002) Tachykinins and tachykinin receptors in bone. Microsc Res Tech 58(2):91–97CrossRefPubMed
14.
go back to reference Rameshwar P, Gascón P (1996) Induction of negative hematopoietic regulators by neurokinin-a in bone marrow stroma. Blood 88(1):98–106PubMed Rameshwar P, Gascón P (1996) Induction of negative hematopoietic regulators by neurokinin-a in bone marrow stroma. Blood 88(1):98–106PubMed
15.
go back to reference Greco SJ, Corcoran KE, Cho KJ, Rameshwar P (2004) Tachykinins in the emerging immune system: relevance to bone marrow homeostasis and maintenance of hematopoietic stem cells. Front Biosci 9:1782–1793CrossRefPubMed Greco SJ, Corcoran KE, Cho KJ, Rameshwar P (2004) Tachykinins in the emerging immune system: relevance to bone marrow homeostasis and maintenance of hematopoietic stem cells. Front Biosci 9:1782–1793CrossRefPubMed
16.
go back to reference Rameshwar P, Zhu G, Donnelly RJ, Qian J, Ge H, Goldstein KR, Denny TN, Gascón P (2001) The dynamics of bone marrow stromal cells in the proliferation of multipotent hematopoietic progenitors by substance P: an understanding of the effects of a neurotransmitter on the differentiating hematopoietic stem cell. J Neuroimmunol 121:22–31CrossRefPubMed Rameshwar P, Zhu G, Donnelly RJ, Qian J, Ge H, Goldstein KR, Denny TN, Gascón P (2001) The dynamics of bone marrow stromal cells in the proliferation of multipotent hematopoietic progenitors by substance P: an understanding of the effects of a neurotransmitter on the differentiating hematopoietic stem cell. J Neuroimmunol 121:22–31CrossRefPubMed
17.
go back to reference Rameshwar P, Ganea D, Gascón P (1993) In vitro stimulatory effect of substance P on hematopoiesis. Blood 81(2):391–398PubMed Rameshwar P, Ganea D, Gascón P (1993) In vitro stimulatory effect of substance P on hematopoiesis. Blood 81(2):391–398PubMed
18.
go back to reference Rameshwar P, Oh HS, Yook C, Gascon P, Chang VT (2003) Substance p-fibronectin-cytokine interactions in myeloproliferative disorders with bone marrow fibrosis. Acta Haematol 109(1):1–10CrossRefPubMed Rameshwar P, Oh HS, Yook C, Gascon P, Chang VT (2003) Substance p-fibronectin-cytokine interactions in myeloproliferative disorders with bone marrow fibrosis. Acta Haematol 109(1):1–10CrossRefPubMed
19.
go back to reference Nowicki M, Ostalska-Nowicka D, Kondraciuk B, Miskowiak B (2007) The significance of substance P in physiological and malignant haematopoiesis. J Clin Pathol 60(7):749–755CrossRefPubMed Nowicki M, Ostalska-Nowicka D, Kondraciuk B, Miskowiak B (2007) The significance of substance P in physiological and malignant haematopoiesis. J Clin Pathol 60(7):749–755CrossRefPubMed
20.
go back to reference Rameshwar P, Joshi DD, Yadav P, Gascón P, Qian J, Chang VT, Anjaria A, Harrison JS, Xiaosong S (2001) Mimicry between neurokinin-1 and fibronectin may explain the transport and stability of increased substance P-immunoreactivity in patients with bone marrow fibrosis. Blood 97:3025–3031CrossRefPubMed Rameshwar P, Joshi DD, Yadav P, Gascón P, Qian J, Chang VT, Anjaria A, Harrison JS, Xiaosong S (2001) Mimicry between neurokinin-1 and fibronectin may explain the transport and stability of increased substance P-immunoreactivity in patients with bone marrow fibrosis. Blood 97:3025–3031CrossRefPubMed
21.
go back to reference Suzuki R, Furuno T, Okamoto K, Teshima R, Nakanishi M (2007) ATP plays a role in neurite stimulation with activated mast cells. J Neuroimmunol 192(1–2):49–56CrossRefPubMed Suzuki R, Furuno T, Okamoto K, Teshima R, Nakanishi M (2007) ATP plays a role in neurite stimulation with activated mast cells. J Neuroimmunol 192(1–2):49–56CrossRefPubMed
22.
go back to reference Muñoz M, González-Ortega A, Coveñas R (2012) The NK-1 receptor is expressed in human leukemia and is involved in the antitumor action of aprepitant and other NK-1 receptor antagonists on acute lymphoblastic leukemia cell lines. Investig New Drugs 30(2):529–540CrossRef Muñoz M, González-Ortega A, Coveñas R (2012) The NK-1 receptor is expressed in human leukemia and is involved in the antitumor action of aprepitant and other NK-1 receptor antagonists on acute lymphoblastic leukemia cell lines. Investig New Drugs 30(2):529–540CrossRef
23.
go back to reference Muñoz M, Rosso M (2010) The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Investig New Drugs 28(2):187–193CrossRef Muñoz M, Rosso M (2010) The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Investig New Drugs 28(2):187–193CrossRef
24.
go back to reference Garcia-Recio S, Fuster G, Fernandez-Nogueira P, Pastor-Arroyo EM, Park SY, Mayordomo C et al (2013) Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer. Cancer Res 73(21):6424–6434CrossRefPubMed Garcia-Recio S, Fuster G, Fernandez-Nogueira P, Pastor-Arroyo EM, Park SY, Mayordomo C et al (2013) Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer. Cancer Res 73(21):6424–6434CrossRefPubMed
25.
go back to reference Gillespie E, Leeman SE, Watts LA, Coukos JA, O’Brien MJ, Cerda SR, Farraye FA, Stucchi AF, Becker JM (2011) Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc Natl Acad Sci U S A 108(42):17420–17425CrossRefPubMedPubMedCentral Gillespie E, Leeman SE, Watts LA, Coukos JA, O’Brien MJ, Cerda SR, Farraye FA, Stucchi AF, Becker JM (2011) Truncated neurokinin-1 receptor is increased in colonic epithelial cells from patients with colitis-associated cancer. Proc Natl Acad Sci U S A 108(42):17420–17425CrossRefPubMedPubMedCentral
26.
go back to reference Muñoz M, Coveñas R, Esteban F, Redondo M (2015) The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci 40(2):441–463CrossRefPubMed Muñoz M, Coveñas R, Esteban F, Redondo M (2015) The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci 40(2):441–463CrossRefPubMed
27.
go back to reference Mravec B, Gidron Y, Kukanova B, Bizik J, Kiss A, Hulin I (2006) Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol 180(1–2):104–116CrossRefPubMed Mravec B, Gidron Y, Kukanova B, Bizik J, Kiss A, Hulin I (2006) Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol 180(1–2):104–116CrossRefPubMed
28.
go back to reference Gidron Y, Perry H, Glennie M (2005) Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol 6(4):245–248CrossRefPubMed Gidron Y, Perry H, Glennie M (2005) Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol 6(4):245–248CrossRefPubMed
29.
go back to reference Wang X, Douglas SD, Lai JP, Tuluc F, Tebas P, Ho WZ (2007) Neurokinin-1 receptor antagonist (aprepitant) inhibits drug-resistant HIV-1 infection of macrophages in vitro. J NeuroImmune Pharmacol 2(1):42–48CrossRefPubMed Wang X, Douglas SD, Lai JP, Tuluc F, Tebas P, Ho WZ (2007) Neurokinin-1 receptor antagonist (aprepitant) inhibits drug-resistant HIV-1 infection of macrophages in vitro. J NeuroImmune Pharmacol 2(1):42–48CrossRefPubMed
30.
go back to reference Berger M, Neth O, Ilmer M, Garnier A, Salinas-Martín MV, de Agustín Asencio JC, von Schweinitz D, Kappler R, Muñoz M (2014) Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol 60(5):985–994CrossRefPubMed Berger M, Neth O, Ilmer M, Garnier A, Salinas-Martín MV, de Agustín Asencio JC, von Schweinitz D, Kappler R, Muñoz M (2014) Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol 60(5):985–994CrossRefPubMed
31.
go back to reference Razani E, Bayati S, Safaroghli Azar A, Ghaffari SH (2017) Anti-cancer effect of aprepitant on Nb4 leukemic cells. J Babol Univ Med Sci 19(10):28–34 Razani E, Bayati S, Safaroghli Azar A, Ghaffari SH (2017) Anti-cancer effect of aprepitant on Nb4 leukemic cells. J Babol Univ Med Sci 19(10):28–34
32.
go back to reference Fong TM, Anderson SA, Yu H, Huang RR, Strader CD (1992) Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor. Mol Pharmacol 41(1):24–30PubMed Fong TM, Anderson SA, Yu H, Huang RR, Strader CD (1992) Differential activation of intracellular effector by two isoforms of human neurokinin-1 receptor. Mol Pharmacol 41(1):24–30PubMed
33.
go back to reference Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94(1):265–301CrossRefPubMedPubMedCentral Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94(1):265–301CrossRefPubMedPubMedCentral
34.
go back to reference Merck, Co I (2008) Emend (fosaprepitant dimeglumine) for injection White House, Station. USA, NJ Merck, Co I (2008) Emend (fosaprepitant dimeglumine) for injection White House, Station. USA, NJ
35.
go back to reference Palma C, Bigioni M, Irrissuto C, Nardelli F, Maggi CA, Manzini S (2000) Anti-tumour activity of tachykinin NK1 receptor antagonists on human glioma U373 MG xenograft. Br J Cancer 82(2):480–487CrossRefPubMedPubMedCentral Palma C, Bigioni M, Irrissuto C, Nardelli F, Maggi CA, Manzini S (2000) Anti-tumour activity of tachykinin NK1 receptor antagonists on human glioma U373 MG xenograft. Br J Cancer 82(2):480–487CrossRefPubMedPubMedCentral
36.
go back to reference Bigioni M, Benzo A, Irrissuto C, Maggi CA, Goso C (2005) Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231. Anti-Cancer Drugs 16(10):1083–1089CrossRefPubMed Bigioni M, Benzo A, Irrissuto C, Maggi CA, Goso C (2005) Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231. Anti-Cancer Drugs 16(10):1083–1089CrossRefPubMed
37.
go back to reference Harford-Wright E, Lewis KM, Vink R, Ghabriel MN (2014) Evaluating the role of substance P in the growth of brain tumors. Neuroscience 261:85–94CrossRefPubMed Harford-Wright E, Lewis KM, Vink R, Ghabriel MN (2014) Evaluating the role of substance P in the growth of brain tumors. Neuroscience 261:85–94CrossRefPubMed
38.
go back to reference Muñoz M, Berger M, Rosso M, Gonzalez-Ortega A, Carranza A, Coveñas R (2014) Antitumor activity of neurokinin-1 receptor antagonists in MG-63 human osteosarcoma xenografts. Int J Oncol 44(1):137–146CrossRefPubMed Muñoz M, Berger M, Rosso M, Gonzalez-Ortega A, Carranza A, Coveñas R (2014) Antitumor activity of neurokinin-1 receptor antagonists in MG-63 human osteosarcoma xenografts. Int J Oncol 44(1):137–146CrossRefPubMed
39.
go back to reference Muñoz M, Coveñas R (2013) Safety of neurokinin-1 receptor antagonists. Expert Opin Drug Saf 12(5):673–685CrossRefPubMed Muñoz M, Coveñas R (2013) Safety of neurokinin-1 receptor antagonists. Expert Opin Drug Saf 12(5):673–685CrossRefPubMed
40.
go back to reference Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281(5383):1640–1645CrossRefPubMed Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves RJ, Rupniak NM (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281(5383):1640–1645CrossRefPubMed
41.
go back to reference Tebas P, Spitsin S, Barrett JS, Tuluc F, Elci O, Korelitz JJ, Wagner W, Winters A, Kim D, Catalano R, Evans DL, Douglas SD (2015) Reduction of soluble CD163, substance P, programmed death 1 and inflammatory markers: phase 1B trial of aprepitant in HIV-1-infected adults. AIDS 29(8):931–939CrossRefPubMedPubMedCentral Tebas P, Spitsin S, Barrett JS, Tuluc F, Elci O, Korelitz JJ, Wagner W, Winters A, Kim D, Catalano R, Evans DL, Douglas SD (2015) Reduction of soluble CD163, substance P, programmed death 1 and inflammatory markers: phase 1B trial of aprepitant in HIV-1-infected adults. AIDS 29(8):931–939CrossRefPubMedPubMedCentral
Metadata
Title
Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists
Authors
A. Molinos-Quintana
P. Trujillo-Hacha
J. I. Piruat
J. A. Bejarano-García
E. García-Guerrero
J. A. Pérez-Simón
Miguel Muñoz
Publication date
01-02-2019
Publisher
Springer US
Published in
Investigational New Drugs / Issue 1/2019
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-018-0607-8

Other articles of this Issue 1/2019

Investigational New Drugs 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine