Skip to main content
Top
Published in: Investigational New Drugs 4/2015

Open Access 01-08-2015 | REVIEW

Targeting the plasma membrane of neoplastic cells through alkylation: a novel approach to cancer chemotherapy

Authors: Matthew Trendowski, Thomas P. Fondy

Published in: Investigational New Drugs | Issue 4/2015

Login to get access

Summary

Background Although DNA-directed alkylating agents and related compounds have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of malignant cells, their clinical utility is limited by DNA repair mechanisms and immunosuppression. However, the same destructive nature of alkylation can be reciprocated at the cell surface using novel plasma membrane alkylating agents. Results Plasma membrane alkylating agents have elicited long term survival in mammalian models challenged with carcinomas, sarcomas, and leukemias. Further, a specialized group of plasma membrane alkylating agents known as tetra-O-acetate haloacetamido carbohydrate analogs (Tet-OAHCs) potentiates a substantial leukocyte influx at the administration and primary tumor site, indicative of a potent immune response. The effects of plasma membrane alkylating agents may be further potentiated through the use of another novel class of chemotherapeutic agents, known as dihydroxyacetone phosphate (DHAP) inhibitors, since many cancer types are known to rely on the DHAP pathway for lipid synthesis. Conclusion Despite these compelling data, preliminary clinical trials for plasma membrane-directed agents have yet to be considered. Therefore, this review is intended for academics and clinicians to postulate a novel approach of chemotherapy; altering critical malignant cell signaling at the plasma membrane surface through alkylation, thereby inducing irreversible changes to functions needed for cell survival.
Literature
1.
2.
go back to reference Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12(2):104–120PubMedCentralPubMed Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12(2):104–120PubMedCentralPubMed
3.
go back to reference Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279PubMedCrossRef Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279PubMedCrossRef
4.
go back to reference Chabner BA, Longo DL (2011) Cancer chemotherapy and biotherapy: principles and practice, 5th edn. Lipincott Williams & Wilkins, Philadelphia Chabner BA, Longo DL (2011) Cancer chemotherapy and biotherapy: principles and practice, 5th edn. Lipincott Williams & Wilkins, Philadelphia
5.
go back to reference Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354PubMedCrossRef Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354PubMedCrossRef
6.
go back to reference Shiraishi A, Sakumi K, Sekiguchi M (2000) Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase. Carcinogenesis 21(10):1879–1883PubMedCrossRef Shiraishi A, Sakumi K, Sekiguchi M (2000) Increased susceptibility to chemotherapeutic alkylating agents of mice deficient in DNA repair methyltransferase. Carcinogenesis 21(10):1879–1883PubMedCrossRef
7.
go back to reference Wang G, Reed E, Li QQ (2004) Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (Review). Oncol Rep 12(5):955–965PubMed Wang G, Reed E, Li QQ (2004) Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (Review). Oncol Rep 12(5):955–965PubMed
8.
go back to reference Rosell R, Taron M, Barnadas A, Scagliotti G, Sarries C, Roig B (2003) Nucleotide excision repair pathways involved in Cisplatin resistance in non-small-cell lung cancer. Cancer Control 10(4):297–305PubMed Rosell R, Taron M, Barnadas A, Scagliotti G, Sarries C, Roig B (2003) Nucleotide excision repair pathways involved in Cisplatin resistance in non-small-cell lung cancer. Cancer Control 10(4):297–305PubMed
9.
go back to reference Nishio K, Nakamura T, Koh Y, Suzuki T, Fukumoto H, Saijo N (1999) Drug resistance in lung cancer. Curr Opin Oncol 11(2):109–115PubMedCrossRef Nishio K, Nakamura T, Koh Y, Suzuki T, Fukumoto H, Saijo N (1999) Drug resistance in lung cancer. Curr Opin Oncol 11(2):109–115PubMedCrossRef
10.
go back to reference Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792PubMedCrossRef Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792PubMedCrossRef
11.
go back to reference Leth-Larsen R, Lund RR, Ditzel HJ (2010) Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 9(7):1369–1382PubMedCentralPubMedCrossRef Leth-Larsen R, Lund RR, Ditzel HJ (2010) Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 9(7):1369–1382PubMedCentralPubMedCrossRef
12.
go back to reference Kohnke PL, Mulligan SP, Christopherson RI (2009) Membrane proteomics for leukemia classification and drug target identification. Curr Opin Mol Ther 11(6): 603–610 Kohnke PL, Mulligan SP, Christopherson RI (2009) Membrane proteomics for leukemia classification and drug target identification. Curr Opin Mol Ther 11(6): 603–610
13.
14.
go back to reference Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD (2012) ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev Cell 23(6):1129–1140PubMedCrossRef Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD (2012) ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev Cell 23(6):1129–1140PubMedCrossRef
15.
go back to reference Shukla HD, Vaitiekunas P, Cotter RJ (2012) Advances in membrane proteomics and cancer biomarker discovery: current status and future perspective. Proteomics 12(19–20):3085–3104PubMedCrossRef Shukla HD, Vaitiekunas P, Cotter RJ (2012) Advances in membrane proteomics and cancer biomarker discovery: current status and future perspective. Proteomics 12(19–20):3085–3104PubMedCrossRef
16.
go back to reference Pero RW, Babiarz-Tracy P, Fondy TP (1977) 3-Fluoro-1-hydroxypropan-2-one (fluorohydroxyacetone) and some esters. Syntheses and effects in BDF mice. J Med Chem 20(5):644–647PubMedCrossRef Pero RW, Babiarz-Tracy P, Fondy TP (1977) 3-Fluoro-1-hydroxypropan-2-one (fluorohydroxyacetone) and some esters. Syntheses and effects in BDF mice. J Med Chem 20(5):644–647PubMedCrossRef
17.
go back to reference Fondy TP, Roberts SB (1978) Haloacetamido analogues of 2-amino-2-deoxy-D-glucose and 2-amino-2-deoxy-D-galactose. Syntheses and effects on the Friend murine erythroleukemia. J Med Chem 21(12):1222–1225PubMedCrossRef Fondy TP, Roberts SB (1978) Haloacetamido analogues of 2-amino-2-deoxy-D-glucose and 2-amino-2-deoxy-D-galactose. Syntheses and effects on the Friend murine erythroleukemia. J Med Chem 21(12):1222–1225PubMedCrossRef
18.
go back to reference Fondy TP, Emlich CA (1981) Haloacetamido analogues of 2-amino-2-deoxy-D-mannose. Syntheses and effects on tumor-bearing mice. J Med Chem 24(7):848–852PubMedCrossRef Fondy TP, Emlich CA (1981) Haloacetamido analogues of 2-amino-2-deoxy-D-mannose. Syntheses and effects on tumor-bearing mice. J Med Chem 24(7):848–852PubMedCrossRef
19.
go back to reference Ihlenfeldt M, Gantner G, Harrer M, Puschendorf B, Putzer H, Grunicke H (1981) Interaction of the alkylating antitumor agent 2,3,5-tris(ethyleneimino)benzoquinone with the plasma membrane of Ehrlich ascites tumor cells. Cancer Res 41(1):289–293PubMed Ihlenfeldt M, Gantner G, Harrer M, Puschendorf B, Putzer H, Grunicke H (1981) Interaction of the alkylating antitumor agent 2,3,5-tris(ethyleneimino)benzoquinone with the plasma membrane of Ehrlich ascites tumor cells. Cancer Res 41(1):289–293PubMed
20.
go back to reference Simon P, Burlingham WJ, Conklin R, Fondy TP (1979) N-bromoacetyl-beta-D-glucosamine tetra-O-acetate and N-bromoacetyl-beta-D-galactosamine tetra-O-acetate as chemotherapeutic agents with immunopotentiating effects in Ehrlich ascites tumor-bearing mice. Cancer Res 39(10):3897–3902PubMed Simon P, Burlingham WJ, Conklin R, Fondy TP (1979) N-bromoacetyl-beta-D-glucosamine tetra-O-acetate and N-bromoacetyl-beta-D-galactosamine tetra-O-acetate as chemotherapeutic agents with immunopotentiating effects in Ehrlich ascites tumor-bearing mice. Cancer Res 39(10):3897–3902PubMed
21.
go back to reference Trendowski M, Christen TD, Zoino JN, Fondy TP (2015) Effects of alkylation and immunopotentiation against ehrlich ascites murine carcinoma in vivo using novel tetra-O-acetate haloacetamido carbohydrate analogs. Eur J Med Chem 98:149–159 Trendowski M, Christen TD, Zoino JN, Fondy TP (2015) Effects of alkylation and immunopotentiation against ehrlich ascites murine carcinoma in vivo using novel tetra-O-acetate haloacetamido carbohydrate analogs. Eur J Med Chem 98:149–159
22.
go back to reference Mattes WB, Lee CS, Laval J, O’Connor TR (1996) Excision of DNA adducts of nitrogen mustards by bacterial and mammalian 3-methyladenine-DNA glycosylases. Carcinogenesis 17(4):643–648PubMedCrossRef Mattes WB, Lee CS, Laval J, O’Connor TR (1996) Excision of DNA adducts of nitrogen mustards by bacterial and mammalian 3-methyladenine-DNA glycosylases. Carcinogenesis 17(4):643–648PubMedCrossRef
23.
go back to reference Hadfield AF, Mella SL, Sartorelli AC (1983) N-acetyl-D-mannosamine analogues as potential inhibitors of sialic acid biosynthesis. J Pharm Sci 72(7):748–751PubMedCrossRef Hadfield AF, Mella SL, Sartorelli AC (1983) N-acetyl-D-mannosamine analogues as potential inhibitors of sialic acid biosynthesis. J Pharm Sci 72(7):748–751PubMedCrossRef
24.
go back to reference Schwartz EL, Hadfield AF, Brown AE, Sartorelli AC (1983) Modification of sialic acid metabolism of murine erythroleukemia cells by analogs of N-acetylmannosamine. Biochim Biophys Acta 762(4):489–497PubMedCrossRef Schwartz EL, Hadfield AF, Brown AE, Sartorelli AC (1983) Modification of sialic acid metabolism of murine erythroleukemia cells by analogs of N-acetylmannosamine. Biochim Biophys Acta 762(4):489–497PubMedCrossRef
25.
go back to reference Broxterman HJG, van der Marel GA, van Boom JH (1991) Synthesis of 2-acetamido-2-deoxy-D-mannose analogues as potential inhibitors of sialic acid biosynthesis. J Carbohydr Chem 10(2):215–237CrossRef Broxterman HJG, van der Marel GA, van Boom JH (1991) Synthesis of 2-acetamido-2-deoxy-D-mannose analogues as potential inhibitors of sialic acid biosynthesis. J Carbohydr Chem 10(2):215–237CrossRef
26.
go back to reference Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542PubMedCrossRef Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542PubMedCrossRef
27.
go back to reference Pochechueva T, Jacob F, Fedier A, Heinzelmann-Schwarz V (2012) Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites 2(4):913–939PubMedCentralPubMedCrossRef Pochechueva T, Jacob F, Fedier A, Heinzelmann-Schwarz V (2012) Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites 2(4):913–939PubMedCentralPubMedCrossRef
28.
go back to reference Hooper LV, Manzella SM, Baenziger JU (1996) From legumes to leukocytes: biological roles for sulfated carbohydrates. FASEB J 10(10): 1137–1146 Hooper LV, Manzella SM, Baenziger JU (1996) From legumes to leukocytes: biological roles for sulfated carbohydrates. FASEB J 10(10): 1137–1146
29.
go back to reference Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112(1):1–23PubMedCrossRef Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112(1):1–23PubMedCrossRef
30.
go back to reference Patel KD, Cuvelier SL, Wiehler S (2002) Selectins: critical mediators of leukocyte recruitment. Semin Immunol 14(2):73–81PubMedCrossRef Patel KD, Cuvelier SL, Wiehler S (2002) Selectins: critical mediators of leukocyte recruitment. Semin Immunol 14(2):73–81PubMedCrossRef
31.
go back to reference Babiarz-Tracy P, McCarthy D, Simon P, Burlingham WJ, Fondy TP (1980) Esters of chlorohydroxyacetone in chemotherapy of murine tumors. Cancer Res 40(9):3274–3280PubMed Babiarz-Tracy P, McCarthy D, Simon P, Burlingham WJ, Fondy TP (1980) Esters of chlorohydroxyacetone in chemotherapy of murine tumors. Cancer Res 40(9):3274–3280PubMed
32.
go back to reference Ting CC, Rodnigues D, Bushar GS, Herbenman AB (1976) Cell mediated immunity to Friend virus-induced leukemia. II. Characteristics of primary cell-mediated cytotoxic response. J Immunol 116:236–243PubMed Ting CC, Rodnigues D, Bushar GS, Herbenman AB (1976) Cell mediated immunity to Friend virus-induced leukemia. II. Characteristics of primary cell-mediated cytotoxic response. J Immunol 116:236–243PubMed
33.
go back to reference Cheever MA, Kempf AA, Fefen A (1977) Tumor neutralization, immunotherapy, and chemotherapy of a Friend leukemia with cells secondarily sensitized in vitro. J Immunol 119:714–718PubMed Cheever MA, Kempf AA, Fefen A (1977) Tumor neutralization, immunotherapy, and chemotherapy of a Friend leukemia with cells secondarily sensitized in vitro. J Immunol 119:714–718PubMed
34.
go back to reference Criss WE (1971) A review of isozymes in cancer. Cancer Res 31(11):1523–1542PubMed Criss WE (1971) A review of isozymes in cancer. Cancer Res 31(11):1523–1542PubMed
35.
go back to reference Benjamin DI, Cozzo A, Ji X, Roberts LS, Louie SM, Mulvihill MM, Luo K, Nomura DK (2013) Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc Natl Acad Sci U S A 110(37):14912–14917PubMedCentralPubMedCrossRef Benjamin DI, Cozzo A, Ji X, Roberts LS, Louie SM, Mulvihill MM, Luo K, Nomura DK (2013) Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc Natl Acad Sci U S A 110(37):14912–14917PubMedCentralPubMedCrossRef
36.
go back to reference Rittmann LS, Johnston SM, Fondy TP (1977) Forms of cytosolic nicotinamide adenine dinucleotide-linked glycerol-3-phosphate dehydrogenase in normal and neoplastic mouse tissues. Cancer Res 37(8 Pt 1):2673–2679PubMed Rittmann LS, Johnston SM, Fondy TP (1977) Forms of cytosolic nicotinamide adenine dinucleotide-linked glycerol-3-phosphate dehydrogenase in normal and neoplastic mouse tissues. Cancer Res 37(8 Pt 1):2673–2679PubMed
37.
go back to reference Agranoff BW, Hajra AK (1971) The acyl dihydroxyacetone phosphate pathway for glycerolipid biosynthesis in mouse liver and Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A 68(2):411–415PubMedCentralPubMedCrossRef Agranoff BW, Hajra AK (1971) The acyl dihydroxyacetone phosphate pathway for glycerolipid biosynthesis in mouse liver and Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A 68(2):411–415PubMedCentralPubMedCrossRef
38.
go back to reference Howard BV, Morris HP, Bailey JM (1972) Ether-lipids, −glycerol phosphate dehydrogenase, and growth rate in tumors and cultured cells. Cancer Res 32(7):1533–1538PubMed Howard BV, Morris HP, Bailey JM (1972) Ether-lipids, −glycerol phosphate dehydrogenase, and growth rate in tumors and cultured cells. Cancer Res 32(7):1533–1538PubMed
39.
go back to reference Fhaner CJ, Liu S, Ji H, Simpson RJ, Reid GE (2012) Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem 84(21):8917–8926PubMedCentralPubMed Fhaner CJ, Liu S, Ji H, Simpson RJ, Reid GE (2012) Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem 84(21):8917–8926PubMedCentralPubMed
41.
go back to reference Fondy TP, Ghangas GS, Reza MJ (1970) Synthesis of 1-halo analogs of DL-glycerol 3-phosphate and their effects on glycerol phosphate dehydrogenase. Biochemistry 9(16):3272–3280PubMedCrossRef Fondy TP, Ghangas GS, Reza MJ (1970) Synthesis of 1-halo analogs of DL-glycerol 3-phosphate and their effects on glycerol phosphate dehydrogenase. Biochemistry 9(16):3272–3280PubMedCrossRef
42.
go back to reference Fondy TP, Pero RW, Karker KL, Ghangas GS, Batzold FH (1974) Synthesis of L-1-deoxyfluoroglycerol and its 3-phosphate ester. Effects of the L and D enantiomers in BDF1 mice. J Med Chem 17(7):697–702PubMedCrossRef Fondy TP, Pero RW, Karker KL, Ghangas GS, Batzold FH (1974) Synthesis of L-1-deoxyfluoroglycerol and its 3-phosphate ester. Effects of the L and D enantiomers in BDF1 mice. J Med Chem 17(7):697–702PubMedCrossRef
43.
go back to reference Silverman JB, Babiarz PS, Mahajan KP, Buschek J, Fondy TP (1975) 1-Halo analogs of dihydroxyacetone 3-phosphate. The effects of the fluoro analog on cytosolic glycerol-3-phosphate dehydrogenase and triosephosphate isomerase. Biochemistry 14(10):2252–2258PubMedCrossRef Silverman JB, Babiarz PS, Mahajan KP, Buschek J, Fondy TP (1975) 1-Halo analogs of dihydroxyacetone 3-phosphate. The effects of the fluoro analog on cytosolic glycerol-3-phosphate dehydrogenase and triosephosphate isomerase. Biochemistry 14(10):2252–2258PubMedCrossRef
44.
go back to reference Rao GV, Que L Jr, Hall LD, Fondy TP (1975) Deoxyfluoroketohexoses: 4-deoxy-4-fluoro-D-sorbose and -tagatose and 5-deoxy-5-fluoro-L-sorbose. Carbohydr Res 40(02):311–321PubMedCrossRef Rao GV, Que L Jr, Hall LD, Fondy TP (1975) Deoxyfluoroketohexoses: 4-deoxy-4-fluoro-D-sorbose and -tagatose and 5-deoxy-5-fluoro-L-sorbose. Carbohydr Res 40(02):311–321PubMedCrossRef
45.
go back to reference LaBelle EF Jr, Hajra AK (1974) Purification and kinetic properties of acyl and alkyl dihydroxyacetone phosphate oxidoreductase. J Biol Chem 249(21):6936–6944PubMed LaBelle EF Jr, Hajra AK (1974) Purification and kinetic properties of acyl and alkyl dihydroxyacetone phosphate oxidoreductase. J Biol Chem 249(21):6936–6944PubMed
46.
go back to reference Siegfried JA, Kennedy KA, Sartorelli AC, Tritton TR (1983) The role of membranes in the mechanism of action of the antineoplastic agent adriamycin. Spin-labeling studies with chronically hypoxic and drug-resistant tumor cells. J Biol Chem 258(1):339–343PubMed Siegfried JA, Kennedy KA, Sartorelli AC, Tritton TR (1983) The role of membranes in the mechanism of action of the antineoplastic agent adriamycin. Spin-labeling studies with chronically hypoxic and drug-resistant tumor cells. J Biol Chem 258(1):339–343PubMed
47.
go back to reference Sugiyama M, Sakanashi T, Okamoto K, Chinami M, Hidaka T, Ogura R (1986) Membrane fluidity in Ehrlich ascites tumor cells treated with adriamycin. Biotechnol Appl Biochem 8(2–3):217–221PubMed Sugiyama M, Sakanashi T, Okamoto K, Chinami M, Hidaka T, Ogura R (1986) Membrane fluidity in Ehrlich ascites tumor cells treated with adriamycin. Biotechnol Appl Biochem 8(2–3):217–221PubMed
48.
go back to reference Goormaghtigh E, Brasseur R, Huart P, Ruysschaert JM (1987) Study of the adriamycin-cardiolipin complex structure using attenuated total reflection infrared spectroscopy. Biochemistry 26(6):1789–1794PubMedCrossRef Goormaghtigh E, Brasseur R, Huart P, Ruysschaert JM (1987) Study of the adriamycin-cardiolipin complex structure using attenuated total reflection infrared spectroscopy. Biochemistry 26(6):1789–1794PubMedCrossRef
49.
go back to reference Heywang C, Saint-Pierre Chazalet M, Masson CM, Bolard J (1998) Orientation of anthracyclines in lipid monolayers and planar asymmetrical bilayers: a surface-enhanced resonance Raman scattering study. Biophys J 75(5):2368–2381PubMedCentralPubMedCrossRef Heywang C, Saint-Pierre Chazalet M, Masson CM, Bolard J (1998) Orientation of anthracyclines in lipid monolayers and planar asymmetrical bilayers: a surface-enhanced resonance Raman scattering study. Biophys J 75(5):2368–2381PubMedCentralPubMedCrossRef
50.
go back to reference Triton TR, Yee G (1982) The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science 217(4556):248–250PubMedCrossRef Triton TR, Yee G (1982) The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science 217(4556):248–250PubMedCrossRef
51.
go back to reference Nicolini A, Mancini P, Ferrari P, Anselmi L, Tartarelli G, Bonazzi V, Carpi A, Giardino R (2004) Oral low-dose cyclophosphamide in metastatic hormone refractory prostate cancer (MHRPC). Biomed Pharmacother 58(8):447–450PubMedCrossRef Nicolini A, Mancini P, Ferrari P, Anselmi L, Tartarelli G, Bonazzi V, Carpi A, Giardino R (2004) Oral low-dose cyclophosphamide in metastatic hormone refractory prostate cancer (MHRPC). Biomed Pharmacother 58(8):447–450PubMedCrossRef
52.
go back to reference Weinberg RA (2013) The biology of cancer, 2nd Edition. Garland Science, New York Weinberg RA (2013) The biology of cancer, 2nd Edition. Garland Science, New York
Metadata
Title
Targeting the plasma membrane of neoplastic cells through alkylation: a novel approach to cancer chemotherapy
Authors
Matthew Trendowski
Thomas P. Fondy
Publication date
01-08-2015
Publisher
Springer US
Published in
Investigational New Drugs / Issue 4/2015
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-015-0263-1

Other articles of this Issue 4/2015

Investigational New Drugs 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine