Skip to main content
Top
Published in: Documenta Ophthalmologica 1/2017

Open Access 01-02-2017 | Original Research Article

The morphology of human rod ERGs obtained by silent substitution stimulation

Authors: J. Maguire, N. R. A. Parry, J. Kremers, I. J. Murray, D. McKeefry

Published in: Documenta Ophthalmologica | Issue 1/2017

Login to get access

Abstract

Purpose

To record transient ERGs from the light-adapted human retina using silent substitution stimuli which selectively reflect the activity of rod photoreceptors. We aim to describe the morphology of these waveforms and examine how they are affected by the use of less selective stimuli and by retinal pathology.

Methods

Rod-isolating stimuli with square-wave temporal profiles (250/250 ms onset/offset) were presented using a 4 primary LED ganzfeld stimulator. Experiment 1: ERGs were recorded using a rod-isolating stimulus (63 ph Td, rod contrast, C rod = 0.25) from a group (n = 20) of normal trichromatic observers. Experiment 2: Rod ERGs were recorded from a group (n = 5) using a rod-isolating stimulus (C rod = 0.25) which varied in retinal illuminance from 40 to 10,000 ph Td. Experiment 3: ERGs were elicited using 2 kinds of non-isolating stimuli; (1) broadband and (2) rod-isolating stimuli which contained varying degrees of L- and M-cone excitation. Experiment 4: Rod ERGs were recorded from two patient groups with rod monochromacy (n = 3) and CSNB (type 1; n = 2).

Results

The rod-isolated ERGs elicited from normal subjects had a waveform with a positive onset component followed by a negative offset. Response amplitude was maximal at retinal illuminances <100 ph Td and was virtually abolished at 400 ph Td. The use of non-selective stimuli altered the ERG waveform eliciting more photopic-like ERG responses. Rod ERGs recorded from rod monochromats had similar features to those recorded from normal trichromats, in contrast to those recorded from participants with CSNB which had an electronegative appearance.

Conclusions

Our results demonstrate that ERGs elicited by silent substitution stimuli can selectively reflect the operation of rod photoreceptors in the normal, light-adapted human retina.
Literature
1.
go back to reference Kremers J (2003) The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina. Prog Ret Eye Res 22(5):79–605CrossRef Kremers J (2003) The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina. Prog Ret Eye Res 22(5):79–605CrossRef
2.
go back to reference Berson EL, Gouras P, Gunkel RD (1968) Rod responses in retinitis pigmentosa, dominantly inherited. Arch Ophthalmol 80:58–67CrossRefPubMed Berson EL, Gouras P, Gunkel RD (1968) Rod responses in retinitis pigmentosa, dominantly inherited. Arch Ophthalmol 80:58–67CrossRefPubMed
3.
go back to reference Berson EL, Gouras P, Gunkel RD, Myrianthopoulos NC (1969) Rod and cone responses in sex-linked retinitis pigmentosa. Arch Ophthalmol 81:215–225CrossRefPubMed Berson EL, Gouras P, Gunkel RD, Myrianthopoulos NC (1969) Rod and cone responses in sex-linked retinitis pigmentosa. Arch Ophthalmol 81:215–225CrossRefPubMed
4.
go back to reference Gouras P, Eggers HM, MacKay CJ (1983) Cone dystrophy, nyctalopia and supernormal rod responses. A new retinal degeneration. Arch Ophthalmol 101:718–724CrossRefPubMed Gouras P, Eggers HM, MacKay CJ (1983) Cone dystrophy, nyctalopia and supernormal rod responses. A new retinal degeneration. Arch Ophthalmol 101:718–724CrossRefPubMed
5.
6.
go back to reference Scholl HPN, Langrova H, Weber BH, Zrenner E, Apfelstedt-Sylla E (2001) Clinical electrophysiology of two rod pathways: normative values and clinical application. Graefes Arch Clin Exp Ophthalmol 239(2):71–80CrossRefPubMed Scholl HPN, Langrova H, Weber BH, Zrenner E, Apfelstedt-Sylla E (2001) Clinical electrophysiology of two rod pathways: normative values and clinical application. Graefes Arch Clin Exp Ophthalmol 239(2):71–80CrossRefPubMed
7.
go back to reference Petzold A, Plant GT (2006) Clinical disorders affecting mesopic vision. Ophthal Physiol Opt 26(3):326–341CrossRef Petzold A, Plant GT (2006) Clinical disorders affecting mesopic vision. Ophthal Physiol Opt 26(3):326–341CrossRef
8.
go back to reference Marmor M, Fulton AB, Holder GE et al (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77CrossRefPubMed Marmor M, Fulton AB, Holder GE et al (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77CrossRefPubMed
10.
go back to reference Estevez O, Spekreijse H (1982) The “silent substitution” method in visual research. Vis Res 22(6):681–691CrossRefPubMed Estevez O, Spekreijse H (1982) The “silent substitution” method in visual research. Vis Res 22(6):681–691CrossRefPubMed
11.
go back to reference Shapiro AG, Pokorny J, Smith VC (1996) Cone–rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra. J Opt Soc Am A 13(12):2319–2328CrossRef Shapiro AG, Pokorny J, Smith VC (1996) Cone–rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra. J Opt Soc Am A 13(12):2319–2328CrossRef
12.
13.
go back to reference Maguire J, Parry NRA, Kremers J et al (2016) Rod electroretinograms elicited by silent substitution stimuli from the light adapted human eye. Trans Vis Sci Tech 5(4):10CrossRef Maguire J, Parry NRA, Kremers J et al (2016) Rod electroretinograms elicited by silent substitution stimuli from the light adapted human eye. Trans Vis Sci Tech 5(4):10CrossRef
14.
go back to reference Allen AE, Lucas RJ (2016) Using silent substitution to track the mesopic transition from rod- to cone-based vision in mice. Invest Ophthalmol Vis Sci 57:276–287CrossRefPubMed Allen AE, Lucas RJ (2016) Using silent substitution to track the mesopic transition from rod- to cone-based vision in mice. Invest Ophthalmol Vis Sci 57:276–287CrossRefPubMed
15.
go back to reference Alpern M, Falls HF, Lee GB (1960) The enigma of typical total monochromacy. Am J Ophthalmol 50:996–1012CrossRefPubMed Alpern M, Falls HF, Lee GB (1960) The enigma of typical total monochromacy. Am J Ophthalmol 50:996–1012CrossRefPubMed
16.
go back to reference Kohl S, Marx T, Giddings I et al (1998) Total colour blindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 19:257–259CrossRefPubMed Kohl S, Marx T, Giddings I et al (1998) Total colour blindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 19:257–259CrossRefPubMed
17.
go back to reference Khan NW, Wissinger B, Kohl S, Sieving PA (2007) CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophthalmol Vis Sci 48:3864–3871CrossRefPubMed Khan NW, Wissinger B, Kohl S, Sieving PA (2007) CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest Ophthalmol Vis Sci 48:3864–3871CrossRefPubMed
18.
go back to reference Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Ret Eye Res 45:58–110CrossRef Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Ret Eye Res 45:58–110CrossRef
19.
go back to reference Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T (1986) Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 104:1013–1020CrossRefPubMed Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T (1986) Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 104:1013–1020CrossRefPubMed
20.
go back to reference Dryja TP, McGee TL, Berson EL et al (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102:4884–4889CrossRefPubMedPubMedCentral Dryja TP, McGee TL, Berson EL et al (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102:4884–4889CrossRefPubMedPubMedCentral
21.
go back to reference Sergouniotis PI, Robson AG, Li Z et al (2011) A phenotypic study of congenital stationary night blindness (CSNB) associated with mutations in the GRM6 gene. Acta Ophthalmol 90:192–197CrossRef Sergouniotis PI, Robson AG, Li Z et al (2011) A phenotypic study of congenital stationary night blindness (CSNB) associated with mutations in the GRM6 gene. Acta Ophthalmol 90:192–197CrossRef
22.
go back to reference Stockman A, MacLeod DI, Johnson NE (1993) Spectral sensitivities of the human cones. J Opt Soc Am A 10(12):2491–2521CrossRef Stockman A, MacLeod DI, Johnson NE (1993) Spectral sensitivities of the human cones. J Opt Soc Am A 10(12):2491–2521CrossRef
23.
go back to reference Wyszecki G, Stiles WS (1982) Color science; concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York Wyszecki G, Stiles WS (1982) Color science; concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New York
24.
go back to reference Gouras P, Gunkel RD (1964) The frequency response of normal, rod achromat and nyctalope ERGs to sinusoidal monochromatic light stimulation. Doc Ophthalmol 18:137–150CrossRefPubMed Gouras P, Gunkel RD (1964) The frequency response of normal, rod achromat and nyctalope ERGs to sinusoidal monochromatic light stimulation. Doc Ophthalmol 18:137–150CrossRefPubMed
25.
go back to reference Stockman A, Sharpe LT, Ruther K, Nordby K (1995) Two signals in the human rod visual system: a model based on electrophysiological data. Vis Neurosci 12(5):951–970CrossRefPubMed Stockman A, Sharpe LT, Ruther K, Nordby K (1995) Two signals in the human rod visual system: a model based on electrophysiological data. Vis Neurosci 12(5):951–970CrossRefPubMed
26.
go back to reference Bijveld MMC, Kappers AML, Riemslag FCC et al (2011) An extended 15 Hz ERG protocol (1): the contributions of primary and secondary rod pathways and the cone pathway. Doc Ophthalmol 123(3):149–159CrossRefPubMed Bijveld MMC, Kappers AML, Riemslag FCC et al (2011) An extended 15 Hz ERG protocol (1): the contributions of primary and secondary rod pathways and the cone pathway. Doc Ophthalmol 123(3):149–159CrossRefPubMed
27.
go back to reference Bijveld MM, Riemslag FC, Kappers AM, Hoeben FP, van Genderen MM (2011) An extended 15 Hz erg protocol (2): data of normal subjects and patients with achromatopsia, csnb1 and csnb2. Doc Ophthalmol 123(3):161–172CrossRefPubMed Bijveld MM, Riemslag FC, Kappers AM, Hoeben FP, van Genderen MM (2011) An extended 15 Hz erg protocol (2): data of normal subjects and patients with achromatopsia, csnb1 and csnb2. Doc Ophthalmol 123(3):161–172CrossRefPubMed
28.
go back to reference Robson JG, Frishman LJ (1998) Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 95:187–215CrossRefPubMed Robson JG, Frishman LJ (1998) Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 95:187–215CrossRefPubMed
29.
go back to reference Sieving PA, Frishman LJ, Steinberg R (1986) Scotopic threshold response of proximal retina in cat. J Neurophysiol 56:1049–1061PubMed Sieving PA, Frishman LJ, Steinberg R (1986) Scotopic threshold response of proximal retina in cat. J Neurophysiol 56:1049–1061PubMed
30.
go back to reference Sieving PA, Murayama K, Naarendorp F (1994) Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532CrossRefPubMed Sieving PA, Murayama K, Naarendorp F (1994) Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532CrossRefPubMed
31.
go back to reference Wang I, Khan NW, Branham K, Wissinger B, Kohl S, Heckenlively JR (2012) Establishing baseline rod electroretinogram values in achromatopsia and cone dystrophy. Doc Ophthalmol 125:229–233CrossRefPubMed Wang I, Khan NW, Branham K, Wissinger B, Kohl S, Heckenlively JR (2012) Establishing baseline rod electroretinogram values in achromatopsia and cone dystrophy. Doc Ophthalmol 125:229–233CrossRefPubMed
32.
go back to reference Audo I, Robson AG, Holder GE, Moore AT (2008) The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol 53:16–40CrossRefPubMed Audo I, Robson AG, Holder GE, Moore AT (2008) The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol 53:16–40CrossRefPubMed
33.
go back to reference Remmer MH, Rastogi N, Ranka MP, Ceisler EJ (2015) Achromatopsia: a review. Curr Opin Ophthalmol 26:333–340CrossRefPubMed Remmer MH, Rastogi N, Ranka MP, Ceisler EJ (2015) Achromatopsia: a review. Curr Opin Ophthalmol 26:333–340CrossRefPubMed
34.
go back to reference Moskowitz A, Hansen RM, Akula JD, Eklund SE, Fulton AB (2009) Rod and rod-driven function in achromatopsia and blue cone monochromatism. Invest Ophthalmol Vis Sci 50:950–958CrossRefPubMed Moskowitz A, Hansen RM, Akula JD, Eklund SE, Fulton AB (2009) Rod and rod-driven function in achromatopsia and blue cone monochromatism. Invest Ophthalmol Vis Sci 50:950–958CrossRefPubMed
35.
go back to reference Genead MA, Fishman GA, Rha J, Dubis AM, Bonci DMO, Dubra A, Stone EM, Neitz M, Carroll J (2011) Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci 52:7298–7308CrossRefPubMedPubMedCentral Genead MA, Fishman GA, Rha J, Dubis AM, Bonci DMO, Dubra A, Stone EM, Neitz M, Carroll J (2011) Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci 52:7298–7308CrossRefPubMedPubMedCentral
36.
go back to reference Stockman A, Sharpe LT (2006) Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Ophthal Physiol Opt 26:225–239CrossRef Stockman A, Sharpe LT (2006) Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Ophthal Physiol Opt 26:225–239CrossRef
37.
go back to reference Smith RG, Freed MA, Sterling P (1986) Microcircuitry of the dark-adapted retina: functional architecture of the rod-cone network. J Neurosci 6:3505–3517PubMed Smith RG, Freed MA, Sterling P (1986) Microcircuitry of the dark-adapted retina: functional architecture of the rod-cone network. J Neurosci 6:3505–3517PubMed
38.
go back to reference Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Ret Eye Res 20:351–384CrossRef Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Ret Eye Res 20:351–384CrossRef
39.
go back to reference Sterling P, Freed M, Smith RG (1988) Architecture of rod and cone circuits to the On-beta ganglion cell. J Neurosci 8:623–642PubMed Sterling P, Freed M, Smith RG (1988) Architecture of rod and cone circuits to the On-beta ganglion cell. J Neurosci 8:623–642PubMed
40.
go back to reference Slaughter MM, Miller RF (1985) Characterization of an extended glutamate receptor of the ON bipolar neuron in the vertebrate retina. J Neurosci 5:224–233PubMed Slaughter MM, Miller RF (1985) Characterization of an extended glutamate receptor of the ON bipolar neuron in the vertebrate retina. J Neurosci 5:224–233PubMed
41.
go back to reference Witkovsky P, Dudek FE, Ripps H (1975) Slow PIII component of the carp electroretinogram. J Gen Physiol 65:119–134CrossRefPubMed Witkovsky P, Dudek FE, Ripps H (1975) Slow PIII component of the carp electroretinogram. J Gen Physiol 65:119–134CrossRefPubMed
42.
go back to reference Frishman LJ, Steinberg R (1990) Origin of negative potentials in the light-adapted ERG of cat retina. J Neurophysiol 63:1333–1346PubMed Frishman LJ, Steinberg R (1990) Origin of negative potentials in the light-adapted ERG of cat retina. J Neurophysiol 63:1333–1346PubMed
43.
44.
go back to reference Granit R (1947) Sensory mechanisms of the retina. Oxford University Press, London Granit R (1947) Sensory mechanisms of the retina. Oxford University Press, London
45.
go back to reference Eksandh L, Kohl S, Wissinger B (2002) Clinical features of achromatopsia in Swedish patients with defined genotypes. Ophthalmic Genet 23:109–120CrossRefPubMed Eksandh L, Kohl S, Wissinger B (2002) Clinical features of achromatopsia in Swedish patients with defined genotypes. Ophthalmic Genet 23:109–120CrossRefPubMed
46.
go back to reference Nishiguchi KM, Sandberg MA, Gorji N, Berson EL, Dryja TP (2005) Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum Mutat 25:248–258CrossRefPubMed Nishiguchi KM, Sandberg MA, Gorji N, Berson EL, Dryja TP (2005) Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum Mutat 25:248–258CrossRefPubMed
47.
go back to reference Brown KT, Murakami M (1967) Delayed decay of the late receptor potential of monkey cones as a function of stimulus intensity. Vis Res 7:179–189CrossRefPubMed Brown KT, Murakami M (1967) Delayed decay of the late receptor potential of monkey cones as a function of stimulus intensity. Vis Res 7:179–189CrossRefPubMed
48.
49.
go back to reference Scholl HPN, Kremers J (2001) Electroretinograms in s-cone monochromacy using s-cone and rod isolating stimuli. Color Res Appl 26:S136–S139CrossRef Scholl HPN, Kremers J (2001) Electroretinograms in s-cone monochromacy using s-cone and rod isolating stimuli. Color Res Appl 26:S136–S139CrossRef
50.
go back to reference Chen C, Zuo C, Piao C, Miyake Y (2005) Recording rod ON and OFF responses in ERG and multifocal ERG. Doc Ophthalmol 111:73–81CrossRefPubMed Chen C, Zuo C, Piao C, Miyake Y (2005) Recording rod ON and OFF responses in ERG and multifocal ERG. Doc Ophthalmol 111:73–81CrossRefPubMed
51.
go back to reference Hood DC, Finkelstein MA (1986) Sensitivity to light. In: Boff K, Kaufman L, Thomas J (eds) Handbook of Perception and Human Performance, vol 1. Wiley, New York, p 5-1–5-66 Hood DC, Finkelstein MA (1986) Sensitivity to light. In: Boff K, Kaufman L, Thomas J (eds) Handbook of Perception and Human Performance, vol 1. Wiley, New York, p 5-1–5-66
52.
go back to reference Aguilar M, Stiles W (1954) Saturation of the rod mechanism of the retina at high levels of stimulation. J Mod Opt 1:59–65 Aguilar M, Stiles W (1954) Saturation of the rod mechanism of the retina at high levels of stimulation. J Mod Opt 1:59–65
53.
go back to reference Cameron MA, Lucas RJ (2009) Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG. Mol Vis 15:2209–2216PubMedPubMedCentral Cameron MA, Lucas RJ (2009) Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG. Mol Vis 15:2209–2216PubMedPubMedCentral
54.
go back to reference Frumkes TE, Naarendorp F, Goldberg SH (1986) The influence of cone adaptation upon rod mediated flicker. Vis Res 26:1167–1176CrossRefPubMed Frumkes TE, Naarendorp F, Goldberg SH (1986) The influence of cone adaptation upon rod mediated flicker. Vis Res 26:1167–1176CrossRefPubMed
55.
go back to reference Heikkinen H, Vinberg F, Nymark S, Koskelainen A (2011) Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. J Neurophysiol 105:2309–2318CrossRefPubMed Heikkinen H, Vinberg F, Nymark S, Koskelainen A (2011) Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. J Neurophysiol 105:2309–2318CrossRefPubMed
56.
go back to reference Farrow K, Teixeira M, Szikra T et al (2013) Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 78:1–14CrossRef Farrow K, Teixeira M, Szikra T et al (2013) Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 78:1–14CrossRef
57.
go back to reference Volgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192CrossRefPubMedPubMedCentral Volgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192CrossRefPubMedPubMedCentral
Metadata
Title
The morphology of human rod ERGs obtained by silent substitution stimulation
Authors
J. Maguire
N. R. A. Parry
J. Kremers
I. J. Murray
D. McKeefry
Publication date
01-02-2017
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 1/2017
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-017-9571-4

Other articles of this Issue 1/2017

Documenta Ophthalmologica 1/2017 Go to the issue