Skip to main content
Top
Published in: Documenta Ophthalmologica 1/2015

01-08-2015 | Original Research Article

Comparison of human expert and computer-automated systems using magnitude-squared coherence (MSC) and bootstrap distribution statistics for the interpretation of pattern electroretinograms (PERGs) in infants with optic nerve hypoplasia (ONH)

Authors: Anthony C. Fisher, Daphne L. McCulloch, Mark S. Borchert, Pamela Garcia-Filion, Cassandra Fink, Antonio Eleuteri, David M. Simpson

Published in: Documenta Ophthalmologica | Issue 1/2015

Login to get access

Abstract

Purpose

Pattern electroretinograms (PERGs) have inherently low signal-to-noise ratios and can be difficult to detect when degraded by pathology or noise. We compare an objective system for automated PERG analysis with expert human interpretation in children with optic nerve hypoplasia (ONH) with PERGs ranging from clear to undetectable.

Methods

PERGs were recorded uniocularly with chloral hydrate sedation in children with ONH (aged 3.5–35 months). Stimuli were reversing checks of four sizes focused using an optical system incorporating the cycloplegic refraction. Forty PERG records were analysed; 20 selected at random and 20 from eyes with good vision (fellow eyes or eyes with mild ONH) from over 300 records. Two experts identified P50 and N95 of the PERGs after manually deleting trials with movement artefact, slow-wave EEG (4–8 Hz) or other noise from raw data for 150 check reversals. The automated system first identified present/not-present responses using a magnitude-squared coherence criterion and then, for responses confirmed as present, estimated the P50 and N95 cardinal positions as the turning points in local third-order polynomials fitted in the −3 dB bandwidth [0.25 … 45] Hz. Confidence limits were estimated from bootstrap re-sampling with replacement. The automated system uses an interactive Internet-available webpage tool (see http://​clinengnhs.​liv.​ac.​uk/​esp_​perg_​1.​htm).

Results

The automated system detected 28 PERG signals above the noise level (p ≤ 0.05 for H0). Good subjective quality ratings were indicative of significant PERGs; however, poor subjective quality did not necessarily predict non-significant signals. P50 and N95 implicit times showed good agreement between the two experts and between experts and the automated system. For the N95 amplitude measured to P50, the experts differed by an average of 13 % consistent with differing interpretations of peaks within noise, while the automated amplitude measure was highly correlated with the expert measures but was proportionally larger. Trial-by-trial review of these data required approximately 6.5 h for each human expert, while automated data processing required <4 min, excluding overheads relating to data transfer.

Conclusions

An automated computer system for PERG analysis, using a panel of signal processing and statistical techniques, provides objective present/not-present detection and cursor positioning with explicit confidence intervals. The system achieves, within an efficient and robust statistical framework, estimates of P50 and N95 amplitudes and implicit times similar to those of clinical experts.
Literature
1.
go back to reference Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561PubMedCrossRef Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20(4):531–561PubMedCrossRef
3.
go back to reference Holder GE et al (1998) Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95(3–4):217–228PubMedCrossRef Holder GE et al (1998) Electrophysiological findings in dominant optic atrophy (DOA) linking to the OPA1 locus on chromosome 3q 28-qter. Doc Ophthalmol 95(3–4):217–228PubMedCrossRef
4.
go back to reference Harrison JM et al (1987) The pattern erg in man following surgical resection of the optic-nerve. Invest Ophthalmol Vis Sci 28(3):492–499PubMed Harrison JM et al (1987) The pattern erg in man following surgical resection of the optic-nerve. Invest Ophthalmol Vis Sci 28(3):492–499PubMed
5.
6.
go back to reference Borchert M et al (1995) Clinical-assessment, optic disk measurements, and visual-evoked potential in optic-nerve hypoplasia. Am J Ophthalmol 120(5):605–612PubMedCrossRef Borchert M et al (1995) Clinical-assessment, optic disk measurements, and visual-evoked potential in optic-nerve hypoplasia. Am J Ophthalmol 120(5):605–612PubMedCrossRef
7.
go back to reference Hoyt CS, Billson FA (1986) Optic-nerve hypoplasia—changing perspectives. Aust N Z J Ophthalmol 14(4):325–331PubMedCrossRef Hoyt CS, Billson FA (1986) Optic-nerve hypoplasia—changing perspectives. Aust N Z J Ophthalmol 14(4):325–331PubMedCrossRef
8.
go back to reference Skarf B, Hoyt CS (1984) Optic-nerve hypoplasia in children—association with anomalies of the endocrine and CNS. Arch Ophthalmol 102(1):62–67PubMedCrossRef Skarf B, Hoyt CS (1984) Optic-nerve hypoplasia in children—association with anomalies of the endocrine and CNS. Arch Ophthalmol 102(1):62–67PubMedCrossRef
9.
go back to reference Zeki SM, Dudgeon J, Dutton GN (1991) Reappraisal of the ratio of disk to macula disk diameter in optic-nerve hypoplasia. Br J Ophthalmol 75(9):538–541PubMedCentralPubMedCrossRef Zeki SM, Dudgeon J, Dutton GN (1991) Reappraisal of the ratio of disk to macula disk diameter in optic-nerve hypoplasia. Br J Ophthalmol 75(9):538–541PubMedCentralPubMedCrossRef
10.
go back to reference Janaky M et al (1994) Electrophysiologic alterations in patients with optic-nerve hypoplasia. Doc Ophthalmol 86(3):247–257PubMedCrossRef Janaky M et al (1994) Electrophysiologic alterations in patients with optic-nerve hypoplasia. Doc Ophthalmol 86(3):247–257PubMedCrossRef
11.
go back to reference Hoyt CS, Good WV (1992) Do we really understand the difference between optic-nerve hypoplasia and atrophy. Eye 6:201–204PubMedCrossRef Hoyt CS, Good WV (1992) Do we really understand the difference between optic-nerve hypoplasia and atrophy. Eye 6:201–204PubMedCrossRef
12.
13.
go back to reference Kriss A, Russelleggitt I (1992) Electrophysiological assessment of visual pathway function in infants. Eye 6:145–153PubMedCrossRef Kriss A, Russelleggitt I (1992) Electrophysiological assessment of visual pathway function in infants. Eye 6:145–153PubMedCrossRef
14.
go back to reference McCulloch DL et al (2007) Retinal function in infants with optic nerve hypoplasia: electroretinograms to large patterns and photopic flash. Eye 21(6):712–720PubMedCrossRef McCulloch DL et al (2007) Retinal function in infants with optic nerve hypoplasia: electroretinograms to large patterns and photopic flash. Eye 21(6):712–720PubMedCrossRef
15.
go back to reference McCulloch DL et al (2010) Clinical electrophysiology and visual outcome in optic nerve hypoplasia. Br J Ophthalmol 94(8):1017–1023PubMedCrossRef McCulloch DL et al (2010) Clinical electrophysiology and visual outcome in optic nerve hypoplasia. Br J Ophthalmol 94(8):1017–1023PubMedCrossRef
16.
go back to reference Garcia-Filion P et al (2008) Neuroradiographic, endocrinologic, and ophthalmic correlates of adverse developmental outcomes in children with optic nerve hypoplasia: a prospective study. Pediatrics 121(3):E653–E659PubMedCrossRef Garcia-Filion P et al (2008) Neuroradiographic, endocrinologic, and ophthalmic correlates of adverse developmental outcomes in children with optic nerve hypoplasia: a prospective study. Pediatrics 121(3):E653–E659PubMedCrossRef
17.
go back to reference Chaplin C et al (2009) Light-adapted electroretinograms in optic nerve hypoplasia. Doc Ophthalmol 119(2):123–132PubMedCrossRef Chaplin C et al (2009) Light-adapted electroretinograms in optic nerve hypoplasia. Doc Ophthalmol 119(2):123–132PubMedCrossRef
18.
go back to reference Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18(9):988–991PubMed Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18(9):988–991PubMed
19.
go back to reference McCulloch DL, Van Boemel GB, Borchert MS (1997) Comparisons of contact lens, foil, fiber and skin electrodes for patterns electroretinograms. Doc Ophthalmol 94(4):327–340PubMedCrossRef McCulloch DL, Van Boemel GB, Borchert MS (1997) Comparisons of contact lens, foil, fiber and skin electrodes for patterns electroretinograms. Doc Ophthalmol 94(4):327–340PubMedCrossRef
20.
go back to reference Bach M et al (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126(1):1–7PubMedCrossRef Bach M et al (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126(1):1–7PubMedCrossRef
22.
go back to reference Barnett V, Lewis T (1994) Outliers in statistical data. Wiley Series in probability and Mathematical Statistics. Wiley, Chichester Barnett V, Lewis T (1994) Outliers in statistical data. Wiley Series in probability and Mathematical Statistics. Wiley, Chichester
23.
go back to reference Carter GC, Knapp CH, Nuttall AH (1973) Estimation of magnitude-squared coherence function via overlapped fast Fourier-transform processing. IEEE Trans Audio Electroacoust 21(4):337–344CrossRef Carter GC, Knapp CH, Nuttall AH (1973) Estimation of magnitude-squared coherence function via overlapped fast Fourier-transform processing. IEEE Trans Audio Electroacoust 21(4):337–344CrossRef
24.
go back to reference Dobie RA, Wilson MJ (1989) Analysis of auditory evoked-potentials by magnitude-squared coherence. Ear Hear 10(1):2–13PubMedCrossRef Dobie RA, Wilson MJ (1989) Analysis of auditory evoked-potentials by magnitude-squared coherence. Ear Hear 10(1):2–13PubMedCrossRef
25.
go back to reference Oppenheim AVS, Schafer RW (1975) Digital signal processing. Prentice-Hall International, Hemel Hempstead Oppenheim AVS, Schafer RW (1975) Digital signal processing. Prentice-Hall International, Hemel Hempstead
26.
go back to reference Koopmans LH (1974) The spectral analysis of time series. Academic Press, San Diego Koopmans LH (1974) The spectral analysis of time series. Academic Press, San Diego
27.
go back to reference Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, Boca RatonCrossRef Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall/CRC, Boca RatonCrossRef
28.
go back to reference Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810PubMed Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810PubMed
29.
go back to reference Bland JM, Altman DG (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47(8):931–936CrossRef Bland JM, Altman DG (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47(8):931–936CrossRef
30.
go back to reference Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11:S41–S49PubMed Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11:S41–S49PubMed
31.
go back to reference Bach M, Gerling J, Geiger K (1992) Optic atrophy reduces the pattern-electroretinogram for both fine and coarse stimulus patterns. Clin Vis Sci 7(4):327–333 Bach M, Gerling J, Geiger K (1992) Optic atrophy reduces the pattern-electroretinogram for both fine and coarse stimulus patterns. Clin Vis Sci 7(4):327–333
32.
go back to reference Mashima Y, Oguchi Y (1985) Clinical-study of the pattern electroretinogram in patients with optic-nerve damage. Doc Ophthalmol 61(1):91–96PubMedCrossRef Mashima Y, Oguchi Y (1985) Clinical-study of the pattern electroretinogram in patients with optic-nerve damage. Doc Ophthalmol 61(1):91–96PubMedCrossRef
33.
go back to reference Thompson DA, Drasdo N (1994) The origins of luminance and pattern responses of the pattern electroretinogram. Int J Psychophysiol 16(2–3):219–227PubMedCrossRef Thompson DA, Drasdo N (1994) The origins of luminance and pattern responses of the pattern electroretinogram. Int J Psychophysiol 16(2–3):219–227PubMedCrossRef
34.
go back to reference Ver Hoeve JN et al (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617PubMed Ver Hoeve JN et al (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617PubMed
35.
go back to reference Bach M, Hoffmann MB (2008) Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 85(6):386–395PubMedCrossRef Bach M, Hoffmann MB (2008) Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 85(6):386–395PubMedCrossRef
36.
go back to reference Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98(3):207–232PubMedCrossRef Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98(3):207–232PubMedCrossRef
37.
go back to reference Preiser D et al (2013) Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci 54(2):1182–1191PubMedCrossRef Preiser D et al (2013) Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci 54(2):1182–1191PubMedCrossRef
38.
go back to reference Miyata K et al (2007) Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci 48(2):820–824PubMedCrossRef Miyata K et al (2007) Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci 48(2):820–824PubMedCrossRef
39.
go back to reference Gotoh Y, Machida S, Tazawa Y (2004) Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol 122(3):341–346PubMedCrossRef Gotoh Y, Machida S, Tazawa Y (2004) Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol 122(3):341–346PubMedCrossRef
Metadata
Title
Comparison of human expert and computer-automated systems using magnitude-squared coherence (MSC) and bootstrap distribution statistics for the interpretation of pattern electroretinograms (PERGs) in infants with optic nerve hypoplasia (ONH)
Authors
Anthony C. Fisher
Daphne L. McCulloch
Mark S. Borchert
Pamela Garcia-Filion
Cassandra Fink
Antonio Eleuteri
David M. Simpson
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 1/2015
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-015-9493-y

Other articles of this Issue 1/2015

Documenta Ophthalmologica 1/2015 Go to the issue