Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2015

01-04-2015 | Original Research Article

Molecular, anatomical and functional changes in the retinal ganglion cells after optic nerve crush in mice

Authors: Masayoshi Yukita, Shigeki Machida, Koji M. Nishiguchi, Satoru Tsuda, Yu Yokoyama, Masayuki Yasuda, Kazuichi Maruyama, Toru Nakazawa

Published in: Documenta Ophthalmologica | Issue 2/2015

Login to get access

Abstract

Purpose

Optic nerve crush (ONC) and subsequent axonal damage can be used in rodents to study the mechanism of retinal ganglion cell (RGC) degeneration. Here, we examined electroretinograms (ERGs) in post-ONC mice to investigate changes in the positive scotopic threshold response (pSTR). We then compared these changes with molecular and morphological changes to identify early objective biomarkers of RGC dysfunction.

Methods

Fifty 12-week-old C57BL/6 mice were included. ONC was used to induce axonal injury in the right eye of each animal, with the left eye used as a control. The expression of the RGC markers Brn3a and Brn3b was measured on days 1, 2, 3, 5 and 7 after ONC with quantitative real-time PCR. ERGs were recorded under dark adaptation with the stimulus intensity increasing from −6.2 to 0.43 log cd-s/m2 on days 1, 2, 3, 5, 7 and 10 after ONC. The pSTR, a- and b-wave amplitudes were measured. Inner retinal thickness around the optic nerve head was measured with spectral-domain optical coherence tomography on days 0, 2, 5, 7 and 10 after ONC.

Results

The expression of Brn3a and Brn3b began to significantly decrease on day 1 and day 2, respectively (P < 0.01). The amplitude of the pSTR underwent rapid, significant deterioration on day 3, after which it fell gradually (P < 0.01), while the a- and b-wave amplitudes remained unchanged throughout the experiment. Inner retinal thickness gradually decreased, with the most significant reduction on day 10 (P < 0.01).

Conclusions

Decrease in pSTR likely reflected the early loss of RGC function after ONC and that declining expression of RGC-specific genes preceded anatomical and functional changes in the RGCs.
Literature
1.
go back to reference Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279CrossRefPubMed Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120(10):1268–1279CrossRefPubMed
2.
go back to reference Collaborative Normal-Tension Glaucoma Study Group (1998) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 126(4):498–505CrossRef Collaborative Normal-Tension Glaucoma Study Group (1998) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 126(4):498–505CrossRef
4.
go back to reference Ryu M, Yasuda M, Shi D, Shanab AY, Watanabe R, Himori N, Omodaka K, Yokoyama Y, Takano J, Saido T, Nakazawa T (2012) Critical role of calpain in axonal damage-induced retinal ganglion cell death. J Neurosci Res 90(4):802–815. doi:10.1002/jnr.22800 CrossRefPubMed Ryu M, Yasuda M, Shi D, Shanab AY, Watanabe R, Himori N, Omodaka K, Yokoyama Y, Takano J, Saido T, Nakazawa T (2012) Critical role of calpain in axonal damage-induced retinal ganglion cell death. J Neurosci Res 90(4):802–815. doi:10.​1002/​jnr.​22800 CrossRefPubMed
5.
go back to reference Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, Nakazawa T (2013) Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 127(5):669–680. doi:10.1111/jnc.12325 CrossRefPubMed Himori N, Yamamoto K, Maruyama K, Ryu M, Taguchi K, Yamamoto M, Nakazawa T (2013) Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem 127(5):669–680. doi:10.​1111/​jnc.​12325 CrossRefPubMed
8.
go back to reference Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40(6):1124–1136PubMed Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40(6):1124–1136PubMed
9.
go back to reference Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42(2):514–522PubMed Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42(2):514–522PubMed
11.
go back to reference Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837. doi:10.1167/iovs.04-0458 CrossRefPubMed Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837. doi:10.​1167/​iovs.​04-0458 CrossRefPubMed
12.
go back to reference Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, Terasaki H (2007) Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci 48(2):820–824. doi:10.1167/iovs.06-0845 CrossRefPubMed Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, Terasaki H (2007) Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci 48(2):820–824. doi:10.​1167/​iovs.​06-0845 CrossRefPubMed
13.
go back to reference Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci 49(5):2201–2207. doi:10.1167/iovs.07-0887 CrossRefPubMed Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci 49(5):2201–2207. doi:10.​1167/​iovs.​07-0887 CrossRefPubMed
15.
go back to reference Machida S, Raz-Prag D, Fariss RN, Sieving PA, Bush RA (2008) Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest Ophthalmol Vis Sci 49(1):442–452. doi:10.1167/iovs.07-0291 CrossRefPubMed Machida S, Raz-Prag D, Fariss RN, Sieving PA, Bush RA (2008) Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest Ophthalmol Vis Sci 49(1):442–452. doi:10.​1167/​iovs.​07-0291 CrossRefPubMed
17.
go back to reference Sieving PA, Frishman LJ, Steinberg RH (1986) Scotopic threshold response of proximal retina in cat. J Neurophysiol 56(4):1049–1061PubMed Sieving PA, Frishman LJ, Steinberg RH (1986) Scotopic threshold response of proximal retina in cat. J Neurophysiol 56(4):1049–1061PubMed
18.
go back to reference Frishman LJ, Shen FF, Du L, Robson JG, Harwerth RS, Smith EL 3rd, Carter-Dawson L, Crawford ML (1996) The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 37(1):125–141PubMed Frishman LJ, Shen FF, Du L, Robson JG, Harwerth RS, Smith EL 3rd, Carter-Dawson L, Crawford ML (1996) The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 37(1):125–141PubMed
20.
go back to reference Smith BJ, Wang X, Chauhan BC, Cote PD, Tremblay F (2014) Contribution of retinal ganglion cells to the mouse electroretinogram. Doc Ophthalmol Adv Ophthalmol. doi:10.1007/s10633-014-9433-2 Smith BJ, Wang X, Chauhan BC, Cote PD, Tremblay F (2014) Contribution of retinal ganglion cells to the mouse electroretinogram. Doc Ophthalmol Adv Ophthalmol. doi:10.​1007/​s10633-014-9433-2
21.
go back to reference Shanab AY, Nakazawa T, Ryu M, Tanaka Y, Himori N, Taguchi K, Yasuda M, Watanabe R, Takano J, Saido T, Minegishi N, Miyata T, Abe T, Yamamoto M (2012) Metabolic stress response implicated in diabetic retinopathy: the role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiol Dis 48(3):556–567. doi:10.1016/j.nbd.2012.07.025 CrossRefPubMed Shanab AY, Nakazawa T, Ryu M, Tanaka Y, Himori N, Taguchi K, Yasuda M, Watanabe R, Takano J, Saido T, Minegishi N, Miyata T, Abe T, Yamamoto M (2012) Metabolic stress response implicated in diabetic retinopathy: the role of calpain, and the therapeutic impact of calpain inhibitor. Neurobiol Dis 48(3):556–567. doi:10.​1016/​j.​nbd.​2012.​07.​025 CrossRefPubMed
22.
go back to reference Alarcon-Martinez L, Aviles-Trigueros M, Galindo-Romero C, Valiente-Soriano J, Agudo-Barriuso M, Villa Pde L, Villegas-Perez MP, Vidal-Sanz M (2010) ERG changes in albino and pigmented mice after optic nerve transection. Vision Res 50(21):2176–2187. doi:10.1016/j.visres.2010.08.014 CrossRefPubMed Alarcon-Martinez L, Aviles-Trigueros M, Galindo-Romero C, Valiente-Soriano J, Agudo-Barriuso M, Villa Pde L, Villegas-Perez MP, Vidal-Sanz M (2010) ERG changes in albino and pigmented mice after optic nerve transection. Vision Res 50(21):2176–2187. doi:10.​1016/​j.​visres.​2010.​08.​014 CrossRefPubMed
26.
go back to reference Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF (2014) Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Invest Ophthalmol Vis Sci 55(6):3766–3774. doi:10.1167/iovs.14-13895 CrossRefPubMed Liu Y, McDowell CM, Zhang Z, Tebow HE, Wordinger RJ, Clark AF (2014) Monitoring retinal morphologic and functional changes in mice following optic nerve crush. Invest Ophthalmol Vis Sci 55(6):3766–3774. doi:10.​1167/​iovs.​14-13895 CrossRefPubMed
Metadata
Title
Molecular, anatomical and functional changes in the retinal ganglion cells after optic nerve crush in mice
Authors
Masayoshi Yukita
Shigeki Machida
Koji M. Nishiguchi
Satoru Tsuda
Yu Yokoyama
Masayuki Yasuda
Kazuichi Maruyama
Toru Nakazawa
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
Documenta Ophthalmologica / Issue 2/2015
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-014-9478-2

Other articles of this Issue 2/2015

Documenta Ophthalmologica 2/2015 Go to the issue