Skip to main content
Top
Published in: Documenta Ophthalmologica 3/2007

01-11-2007 | Original Research Article

The mouse pattern electroretinogram

Author: Vittorio Porciatti

Published in: Documenta Ophthalmologica | Issue 3/2007

Login to get access

Abstract

Mouse models of optic nerve disease such as glaucoma, optic neuritis, ischemic optic neuropathy, and mitochondrial optic neuropathy are being developed at increasing rate to investigate specific pathophysiological mechanisms and the effect of neuroprotective treatments. The use of these models may be greatly enhanced by the availability of non-invasive methods able to monitor retinal ganglion cell (RGC) function longitudinally such as the Pattern Electroretinogram (PERG). While the use of the PERG as a tool to probe inner retina function in mammals is known since 25 years, relatively less information is available for the mouse. Here, the PERG technique and the main applications in the mouse are reviewed.
Literature
1.
go back to reference Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus pattern. Science 144:567–568PubMedCrossRef Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus pattern. Science 144:567–568PubMedCrossRef
3.
go back to reference Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211(4485):953–955CrossRef Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211(4485):953–955CrossRef
4.
go back to reference Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York
5.
go back to reference Zrenner E (1990) The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G (eds) Progress in retinal research. vol 9. Pergamon Press, Oxford Zrenner E (1990) The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G (eds) Progress in retinal research. vol 9. Pergamon Press, Oxford
6.
go back to reference Bach M, Hawlina M, Holder GE et al (2000) Standard for pattern electroretinography. International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 101(1):11–18PubMedCrossRef Bach M, Hawlina M, Holder GE et al (2000) Standard for pattern electroretinography. International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 101(1):11–18PubMedCrossRef
7.
go back to reference Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111(1):161–168PubMedCrossRef Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111(1):161–168PubMedCrossRef
8.
go back to reference Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810PubMed Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810PubMed
9.
go back to reference Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46(4):1296–1302PubMedCrossRef Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46(4):1296–1302PubMedCrossRef
10.
11.
go back to reference Morrone C, Fiorentini A, Bisti S et al (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey. Vis Neurosci 11(5):873–884PubMed Morrone C, Fiorentini A, Bisti S et al (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey. Vis Neurosci 11(5):873–884PubMed
12.
go back to reference Morrone C, Porciatti V, Fiorentini A, Burr DC (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: I. Humans. Vis Neurosci 11(5):861–871PubMed Morrone C, Porciatti V, Fiorentini A, Burr DC (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: I. Humans. Vis Neurosci 11(5):861–871PubMed
13.
go back to reference Porciatti V, Morrone MC, Fiorentini A et al. (1994) The pattern electroretinogram in response to colour contrast in man and monkey. Int J Psychophysiol 16(2–3):185–189PubMedCrossRef Porciatti V, Morrone MC, Fiorentini A et al. (1994) The pattern electroretinogram in response to colour contrast in man and monkey. Int J Psychophysiol 16(2–3):185–189PubMedCrossRef
14.
go back to reference Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119(Pt 3):723–740PubMedCrossRef Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119(Pt 3):723–740PubMedCrossRef
15.
go back to reference Porciatti V, Di Bartolo E, Nardi N, Fiorentini A (1997) Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res 37(14):1975–1987PubMedCrossRef Porciatti V, Di Bartolo E, Nardi N, Fiorentini A (1997) Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res 37(14):1975–1987PubMedCrossRef
16.
go back to reference Sartucci F, Orlandi G, Bonuccelli U et al (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26(6):395–401PubMedCrossRef Sartucci F, Orlandi G, Bonuccelli U et al (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26(6):395–401PubMedCrossRef
17.
go back to reference Baker CL Jr, Hess RF (1984) Linear and nonlinear components of human electroretinogram. J Neurophysiol 51(5):952–967PubMed Baker CL Jr, Hess RF (1984) Linear and nonlinear components of human electroretinogram. J Neurophysiol 51(5):952–967PubMed
18.
go back to reference Hess RF, Baker CL Jr (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51(5):939–951PubMed Hess RF, Baker CL Jr (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51(5):939–951PubMed
19.
go back to reference Drasdo N, Thompson DA, Thompson CM, Edwards L (1987) Complementary components and local variations of the pattern electroretinogram. Invest Ophthalmol Vis Sci 28(1):158–162PubMed Drasdo N, Thompson DA, Thompson CM, Edwards L (1987) Complementary components and local variations of the pattern electroretinogram. Invest Ophthalmol Vis Sci 28(1):158–162PubMed
20.
go back to reference Stone C, Pinto LH (1993) Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31–39PubMedCrossRef Stone C, Pinto LH (1993) Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31–39PubMedCrossRef
21.
go back to reference Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol 48(2):745–751CrossRef Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol 48(2):745–751CrossRef
22.
go back to reference Drasdo N, Thompson DA, Arden GB (1990) A comparison of pattern ERG amplitudes and nuclear layer thickness in different zones of the retina. Clin Vision Sciences 5(4):415–420 Drasdo N, Thompson DA, Arden GB (1990) A comparison of pattern ERG amplitudes and nuclear layer thickness in different zones of the retina. Clin Vision Sciences 5(4):415–420
23.
go back to reference Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55(3):483–493PubMedCrossRef Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55(3):483–493PubMedCrossRef
24.
go back to reference Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59(2):423–425PubMedCrossRef Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59(2):423–425PubMedCrossRef
25.
go back to reference Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79(3):539–546PubMedCrossRef Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79(3):539–546PubMedCrossRef
26.
go back to reference Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86(3):579–584PubMedCrossRef Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86(3):579–584PubMedCrossRef
27.
go back to reference Porciatti V, Pizzorusso T, Cenni MC, Maffei L (1996) The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 93(25):14955–14959PubMedCrossRef Porciatti V, Pizzorusso T, Cenni MC, Maffei L (1996) The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 93(25):14955–14959PubMedCrossRef
28.
go back to reference Chierzi S, Cenni MC, Maffei L et al (1998) Protection or retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 38:1537–1543PubMedCrossRef Chierzi S, Cenni MC, Maffei L et al (1998) Protection or retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 38:1537–1543PubMedCrossRef
29.
go back to reference Ratto GM, Bonfanti L, Cenni MC et al (1997) Retinal ganglion cell anatomy and physiology after section of the optic nerve in mice overexpressing bcl-2. Adv Neurol 72:87–94PubMed Ratto GM, Bonfanti L, Cenni MC et al (1997) Retinal ganglion cell anatomy and physiology after section of the optic nerve in mice overexpressing bcl-2. Adv Neurol 72:87–94PubMed
30.
go back to reference Sieving PA, Steinberg RH (1987) Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57(1):104–120PubMed Sieving PA, Steinberg RH (1987) Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57(1):104–120PubMed
31.
go back to reference Baker CL Jr, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol 407:155–176PubMed Baker CL Jr, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol 407:155–176PubMed
32.
go back to reference Bagnoli P, Porciatti V, Francesconi W, Barsellotti R (1984) Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res 55(2):253–262PubMedCrossRef Bagnoli P, Porciatti V, Francesconi W, Barsellotti R (1984) Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res 55(2):253–262PubMedCrossRef
33.
go back to reference Blondeau P, Lamarche J, Lafond G, Brunette JR (1987) Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res 6(6):747–756PubMed Blondeau P, Lamarche J, Lafond G, Brunette JR (1987) Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res 6(6):747–756PubMed
34.
go back to reference Trimarchi C, Biral G, Domenici L et al (1990) The Flash- and pattern electroretinogram generators in the cat: a pharmacological approach. Clin Vision Sci 6:19–24 Trimarchi C, Biral G, Domenici L et al (1990) The Flash- and pattern electroretinogram generators in the cat: a pharmacological approach. Clin Vision Sci 6:19–24
35.
go back to reference Siliprandi R, Bucci MG, Canella R, Carmignoto G (1988) Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Invest Ophthalmol Vis Sci 29(4):558–565PubMed Siliprandi R, Bucci MG, Canella R, Carmignoto G (1988) Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Invest Ophthalmol Vis Sci 29(4):558–565PubMed
36.
go back to reference Feghali JG, Jin JC, Odom JV (1991) Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 32(8):2184–2189PubMed Feghali JG, Jin JC, Odom JV (1991) Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 32(8):2184–2189PubMed
37.
go back to reference Kline RP, Ripps H, Dowling JE (1978) Generation of b-wave currents in the skate retina. Proc Natl Acad Sci USA 75(11):5727–5731PubMedCrossRef Kline RP, Ripps H, Dowling JE (1978) Generation of b-wave currents in the skate retina. Proc Natl Acad Sci USA 75(11):5727–5731PubMedCrossRef
38.
go back to reference Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J Neurophysiol 67(5):1201–1212PubMed Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J Neurophysiol 67(5):1201–1212PubMed
39.
40.
go back to reference Grover S, Fishman GA, Birch DG et al (2003) Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. Ophthalmology 110(6):1159–1163PubMedCrossRef Grover S, Fishman GA, Birch DG et al (2003) Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. Ophthalmology 110(6):1159–1163PubMedCrossRef
41.
go back to reference Fraunfelder FT, Burns RP (1970) Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. Exp Eye Res 10(1):19–30PubMedCrossRef Fraunfelder FT, Burns RP (1970) Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. Exp Eye Res 10(1):19–30PubMedCrossRef
42.
go back to reference Ridder W 3rd, Nusinowitz S, Heckenlively JR (2002) Causes of cataract development in anesthetized mice. Exp Eye Res 75(3):365–370PubMedCrossRef Ridder W 3rd, Nusinowitz S, Heckenlively JR (2002) Causes of cataract development in anesthetized mice. Exp Eye Res 75(3):365–370PubMedCrossRef
43.
go back to reference Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31PubMedCrossRef Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31PubMedCrossRef
44.
go back to reference Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44(16):1857–1867PubMedCrossRef Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44(16):1857–1867PubMedCrossRef
45.
go back to reference Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39(18):3071–3081PubMedCrossRef Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39(18):3071–3081PubMedCrossRef
46.
go back to reference Rossi FM, Pizzorusso T, Porciatti V et al (2001) Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci USA 98(11):6453–6458PubMedCrossRef Rossi FM, Pizzorusso T, Porciatti V et al (2001) Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci USA 98(11):6453–6458PubMedCrossRef
47.
go back to reference Porciatti V, Pizzorusso T, Maffei L (1999) Vision in mice with neuronal redundancy due to inhibition of developmental cell death. Vis Neurosci 16(4):721–726PubMedCrossRef Porciatti V, Pizzorusso T, Maffei L (1999) Vision in mice with neuronal redundancy due to inhibition of developmental cell death. Vis Neurosci 16(4):721–726PubMedCrossRef
48.
go back to reference Porciatti V, Falsini B (2003) Physiological properties of the mouse pattern Electroretinogram. ARVO #2705 Porciatti V, Falsini B (2003) Physiological properties of the mouse pattern Electroretinogram. ARVO #2705
49.
go back to reference Maffei L, Fiorentini A (1982) Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 48(3):327–334PubMedCrossRef Maffei L, Fiorentini A (1982) Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 48(3):327–334PubMedCrossRef
50.
go back to reference Fiorentini A, Pirchio M, Sandini G (1984) Development of retinal acuity in infants evaluated with pattern electroretinogram. Hum Neurobiol 3(2):93–95PubMed Fiorentini A, Pirchio M, Sandini G (1984) Development of retinal acuity in infants evaluated with pattern electroretinogram. Hum Neurobiol 3(2):93–95PubMed
51.
go back to reference Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576PubMed Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576PubMed
52.
go back to reference Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617PubMedCrossRef Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617PubMedCrossRef
53.
go back to reference Sinex DG, Burdette LJ, Pearlman AL (1979) A psychophysical investigation of spatial vision in the normal and reeler mutant mouse. Vision Res 19(8):853–857PubMedCrossRef Sinex DG, Burdette LJ, Pearlman AL (1979) A psychophysical investigation of spatial vision in the normal and reeler mutant mouse. Vision Res 19(8):853–857PubMedCrossRef
54.
go back to reference Gianfranceschi L, Fiorentini A, Maffei L (1999) Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res 39(3):569–574PubMedCrossRef Gianfranceschi L, Fiorentini A, Maffei L (1999) Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res 39(3):569–574PubMedCrossRef
55.
go back to reference Prusky GT, Douglas RM (2004) Characterization of mouse cortical spatial vision. Vision Res 44(28):3411–3418PubMedCrossRef Prusky GT, Douglas RM (2004) Characterization of mouse cortical spatial vision. Vision Res 44(28):3411–3418PubMedCrossRef
56.
go back to reference Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616PubMedCrossRef Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616PubMedCrossRef
57.
go back to reference Schmucker C, Seeliger M, Humphries P et al (2005) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest Ophthalmol Vis Sci 46(1):398–407PubMedCrossRef Schmucker C, Seeliger M, Humphries P et al (2005) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest Ophthalmol Vis Sci 46(1):398–407PubMedCrossRef
58.
go back to reference Porciatti V, Falsini B (2000) Maturation of flash-cone ERG and pattern ERG in the mouse. ARVO abstract # 500 Porciatti V, Falsini B (2000) Maturation of flash-cone ERG and pattern ERG in the mouse. ARVO abstract # 500
59.
go back to reference Porciatti V, Pizzorusso T, Maffei L (2002) Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 104(1):69–82PubMedCrossRef Porciatti V, Pizzorusso T, Maffei L (2002) Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 104(1):69–82PubMedCrossRef
60.
go back to reference Huang ZJ, Kirkwood A, Pizzorusso T et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755PubMedCrossRef Huang ZJ, Kirkwood A, Pizzorusso T et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755PubMedCrossRef
61.
62.
go back to reference Feller MB, Wellis DP, Stellwagen D et al (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272(5265):1182–1187PubMedCrossRef Feller MB, Wellis DP, Stellwagen D et al (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272(5265):1182–1187PubMedCrossRef
63.
go back to reference Picciotto MR, Zoli M, Lena C et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374(6517):65–67PubMedCrossRef Picciotto MR, Zoli M, Lena C et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374(6517):65–67PubMedCrossRef
64.
go back to reference Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264PubMed Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264PubMed
65.
go back to reference Van der List DA, Coombs JL, Chalupa LM (2006) Normal development of retinal ganglion cell morphological properties in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. ARVO abstract # 3313 Van der List DA, Coombs JL, Chalupa LM (2006) Normal development of retinal ganglion cell morphological properties in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. ARVO abstract # 3313
66.
go back to reference Martinou JC, Dubois-Dauphin M, Staple JK et al (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13(4):1017–1030PubMedCrossRef Martinou JC, Dubois-Dauphin M, Staple JK et al (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13(4):1017–1030PubMedCrossRef
67.
go back to reference Cenni MC, Bonfanti L, Martinou J-C et al (1996) Long-term survival of retinal ganglion cells following optic nerve section in adult I bcl-2 transgenic mice. Eur J Neurosci 8:1735–1745PubMedCrossRef Cenni MC, Bonfanti L, Martinou J-C et al (1996) Long-term survival of retinal ganglion cells following optic nerve section in adult I bcl-2 transgenic mice. Eur J Neurosci 8:1735–1745PubMedCrossRef
68.
go back to reference Strettoi E, Volpini M (2002) Retinal organization in the bcl-2-overexpressing transgenic mouse. J Comp Neurol 446(1):1–10PubMedCrossRef Strettoi E, Volpini M (2002) Retinal organization in the bcl-2-overexpressing transgenic mouse. J Comp Neurol 446(1):1–10PubMedCrossRef
69.
go back to reference Libby RT, Li Y, Savinova OV et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26PubMedCrossRef Libby RT, Li Y, Savinova OV et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26PubMedCrossRef
70.
go back to reference John SW, Smith RS, Savinova OV et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962PubMed John SW, Smith RS, Savinova OV et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962PubMed
71.
go back to reference Libby RT, Anderson MG, Pang IH et al (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648PubMed Libby RT, Anderson MG, Pang IH et al (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648PubMed
72.
go back to reference Saleh M, Nagaraju M, Porciatti V (2007) The natural history of retinal ganglion cells and its relationship with IOP in DBA/2J mice. ARVO #210 Saleh M, Nagaraju M, Porciatti V (2007) The natural history of retinal ganglion cells and its relationship with IOP in DBA/2J mice. ARVO #210
73.
go back to reference Libby RT, Porciatti V, Tapia M et al (2006) Perg analysis detects physiological dysfunction prior to ganglion cell loss In DBA/2J Glaucoma. ARVO E-abstract # 4005 Libby RT, Porciatti V, Tapia M et al (2006) Perg analysis detects physiological dysfunction prior to ganglion cell loss In DBA/2J Glaucoma. ARVO E-abstract # 4005
74.
go back to reference Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325PubMedCrossRef Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325PubMedCrossRef
75.
go back to reference Aihara M, Lindsey JD, Weinreb RN (2003) Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res 27(6):355–362PubMedCrossRef Aihara M, Lindsey JD, Weinreb RN (2003) Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res 27(6):355–362PubMedCrossRef
76.
go back to reference Nagaraju M, Saleh M, Porciatti V (2007) Postural changes of IOP and pattern ERG in DBA/2J mice. ARVO abstract #211 Nagaraju M, Saleh M, Porciatti V (2007) Postural changes of IOP and pattern ERG in DBA/2J mice. ARVO abstract #211
Metadata
Title
The mouse pattern electroretinogram
Author
Vittorio Porciatti
Publication date
01-11-2007
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 3/2007
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-007-9059-8

Other articles of this Issue 3/2007

Documenta Ophthalmologica 3/2007 Go to the issue