Skip to main content
Top
Published in: Documenta Ophthalmologica 3/2012

01-12-2012 | Original Research Article

Detailed functional and structural characterization of a macular lesion in a rhesus macaque

Authors: M. Dominik Fischer, Ditta Zobor, Georgios A. Keliris, Yibin Shao, Mathias W. Seeliger, Silke Haverkamp, Herbert Jägle, Nikos K. Logothetis, Stelios M. Smirnakis

Published in: Documenta Ophthalmologica | Issue 3/2012

Login to get access

Abstract

Purpose

Animal models are powerful tools to broaden our understanding of disease mechanisms and to develop future treatment strategies. Here we present detailed structural and functional findings of a rhesus macaque suffering from a naturally occurring bilateral macular dystrophy (BMD), partial optic atrophy and corresponding reduction of central V1 signals in visual fMRI experiments when compared to data in a healthy macaque (CTRL) of similar age.

Methods

Retinal imaging included infrared and autofluorescence recordings, fluorescein and indocyanine green angiography and spectral domain optical coherence tomography (OCT) on the Spectralis HRA + OCT platform. Electroretinography included multifocal and Ganzfeld-ERG recordings. Animals were killed and eyes analyzed by immunohistochemistry.

Results

Angiography showed reduced macular vascularization with significantly larger foveal avascular zones (FAZ) in the affected animal (FAZBMD = 8.85 mm2 vs. FAZCTRL = 0.32 mm2). OCT showed bilateral thinning of the macula within the FAZ (total retinal thickness, TRTBMD = 174 ± 9 µm) and partial optic nerve atrophy when compared to control (TRTCTRL = 303 ± 45 µm). Segmentation analysis revealed that inner retinal layers were primarily affected (inner retinal thickness, IRTBMD = 33 ± 9 µm vs. IRTCTRL = 143 ± 45 µm), while the outer retina essentially maintained its thickness (ORTBMD = 141 ± 7 µm vs. ORTCTRL = 160 ± 11 µm). Altered macular morphology corresponded to a preferential reduction of central signals in the multifocal electroretinography and to a specific attenuation of cone-derived responses in the Ganzfeld electroretinography, while rod function remained normal.

Conclusion

We provided detailed characterization of a primate macular disorder. This study aims to stimulate awareness and further investigation in primates with macular disorders eventually leading to the identification of a primate animal model and facilitating the preclinical development of therapeutic strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference El-Mofty A, Gouras P, Eisner G, Balazs EA (1978) Macular degeneration in rhesus monkey (Macaca mulatta). Exp Eye Res 27(4):499–502PubMedCrossRef El-Mofty A, Gouras P, Eisner G, Balazs EA (1978) Macular degeneration in rhesus monkey (Macaca mulatta). Exp Eye Res 27(4):499–502PubMedCrossRef
2.
go back to reference Dawson WW, Dawson JC, Lake KP, Gonzalez-Martinez J (2008) Maculas, monkeys, models, AMD and aging. Vision Res 48(3):360–365PubMedCrossRef Dawson WW, Dawson JC, Lake KP, Gonzalez-Martinez J (2008) Maculas, monkeys, models, AMD and aging. Vision Res 48(3):360–365PubMedCrossRef
3.
go back to reference Saperstein DA (1995) Advances in macular dystrophies. Int Ophthalmol Clin 35(4):19–35PubMed Saperstein DA (1995) Advances in macular dystrophies. Int Ophthalmol Clin 35(4):19–35PubMed
4.
go back to reference Williams RA, Brody BL, Thomas RG, Kaplan RM, Brown SI (1998) The psychosocial impact of macular degeneration. Arch Ophthalmol 116(4):514–520PubMed Williams RA, Brody BL, Thomas RG, Kaplan RM, Brown SI (1998) The psychosocial impact of macular degeneration. Arch Ophthalmol 116(4):514–520PubMed
5.
go back to reference Fletcher EL, Jobling AI, Vessey KA, Luu C, Guymer RH, Baird PN (2011) Animal models of retinal disease. Prog Mol Biol Transl Sci 100:211–286PubMedCrossRef Fletcher EL, Jobling AI, Vessey KA, Luu C, Guymer RH, Baird PN (2011) Animal models of retinal disease. Prog Mol Biol Transl Sci 100:211–286PubMedCrossRef
6.
go back to reference Wikler KC, Williams RW, Rakic P (1990) Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J Comp Neurol 297(4):499–508PubMedCrossRef Wikler KC, Williams RW, Rakic P (1990) Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina. J Comp Neurol 297(4):499–508PubMedCrossRef
7.
go back to reference Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2(6):555–562PubMedCrossRef Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2(6):555–562PubMedCrossRef
8.
go back to reference Keliris GA, Shmuel A, Ku SP, Pfeuffer J, Oeltermann A, Steudel T, Logothetis NK (2007) Robust controlled functional MRI in alert monkeys at high magnetic field: effects of jaw and body movements. Neuroimage 36(3):550–570PubMedCrossRef Keliris GA, Shmuel A, Ku SP, Pfeuffer J, Oeltermann A, Steudel T, Logothetis NK (2007) Robust controlled functional MRI in alert monkeys at high magnetic field: effects of jaw and body movements. Neuroimage 36(3):550–570PubMedCrossRef
9.
go back to reference Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39(2):647–660PubMedCrossRef Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. Neuroimage 39(2):647–660PubMedCrossRef
10.
go back to reference Wandell BA, Chial S, Backus BT (2000) Visualization and measurement of the cortical surface. J Cogn Neurosci 12(5):739–752PubMedCrossRef Wandell BA, Chial S, Backus BT (2000) Visualization and measurement of the cortical surface. J Cogn Neurosci 12(5):739–752PubMedCrossRef
11.
go back to reference Tootell RB, Switkes E, Silverman MS, Hamilton SL (1988) Functional anatomy of macaque striate cortex. II. Retinotopic organization. J Neurosci 8(5):1531–1568PubMed Tootell RB, Switkes E, Silverman MS, Hamilton SL (1988) Functional anatomy of macaque striate cortex. II. Retinotopic organization. J Neurosci 8(5):1531–1568PubMed
12.
go back to reference Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24(5):429–448PubMedCrossRef Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res 24(5):429–448PubMedCrossRef
13.
go back to reference LeVay S, Connolly M, Houde J, Van Essen DC (1985) The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. J Neurosci 5(2):486–501PubMed LeVay S, Connolly M, Houde J, Van Essen DC (1985) The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. J Neurosci 5(2):486–501PubMed
14.
go back to reference Dow BM, Vautin RG, Bauer R (1985) The mapping of visual space onto foveal striate cortex in the macaque monkey. J Neurosci 5(4):890–902PubMed Dow BM, Vautin RG, Bauer R (1985) The mapping of visual space onto foveal striate cortex in the macaque monkey. J Neurosci 5(4):890–902PubMed
15.
go back to reference Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, Grimm C, Wenzel A, Reme CE, van de Pavert SA, Wijnholds J, Pacal M, Bremner R, Seeliger MW (2009) Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 4(10):e7507PubMedCrossRef Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, Grimm C, Wenzel A, Reme CE, van de Pavert SA, Wijnholds J, Pacal M, Bremner R, Seeliger MW (2009) Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 4(10):e7507PubMedCrossRef
16.
go back to reference Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Paquet-Durand F, Wenzel A, Humphries P, Redmond TM, Seeliger MW, Fischer MD (2009) Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50(12):5888–5895PubMedCrossRef Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Paquet-Durand F, Wenzel A, Humphries P, Redmond TM, Seeliger MW, Fischer MD (2009) Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50(12):5888–5895PubMedCrossRef
17.
go back to reference Huber G, Heynen S, Imsand C, vom Hagen F, Muehlfriedel R, Tanimoto N, Feng Y, Hammes HP, Grimm C, Peichl L, Seeliger MW, Beck SC (2010) Novel rodent models for macular research. PLoS One 5(10):e13403PubMedCrossRef Huber G, Heynen S, Imsand C, vom Hagen F, Muehlfriedel R, Tanimoto N, Feng Y, Hammes HP, Grimm C, Peichl L, Seeliger MW, Beck SC (2010) Novel rodent models for macular research. PLoS One 5(10):e13403PubMedCrossRef
18.
go back to reference Helb HM, Charbel Issa P, Fleckenstein M, Schmitz-Valckenberg S, Scholl HP, Meyer CH, Eter N, Holz FG (2010) Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography. Acta Ophthalmol 88(8):842–849PubMedCrossRef Helb HM, Charbel Issa P, Fleckenstein M, Schmitz-Valckenberg S, Scholl HP, Meyer CH, Eter N, Holz FG (2010) Clinical evaluation of simultaneous confocal scanning laser ophthalmoscopy imaging combined with high-resolution, spectral-domain optical coherence tomography. Acta Ophthalmol 88(8):842–849PubMedCrossRef
19.
go back to reference Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77PubMedCrossRef Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77PubMedCrossRef
20.
go back to reference Kong X, Wang K, Sun X, Witt RE (2010) Comparative study of the retinal vessel anatomy of rhesus monkeys and humans. Clin Exp Ophthalmol 38(6):629–634CrossRef Kong X, Wang K, Sun X, Witt RE (2010) Comparative study of the retinal vessel anatomy of rhesus monkeys and humans. Clin Exp Ophthalmol 38(6):629–634CrossRef
21.
go back to reference Bertram B, Wolf S, Fiehofer S, Schulte K, Arend O, Reim M (1991) Retinal circulation times in diabetes mellitus type 1. Br J Ophthalmol 75(8):462–465PubMedCrossRef Bertram B, Wolf S, Fiehofer S, Schulte K, Arend O, Reim M (1991) Retinal circulation times in diabetes mellitus type 1. Br J Ophthalmol 75(8):462–465PubMedCrossRef
22.
go back to reference Walter P, Mazinani B (2010) Macular dystrophies–hereditary macular degenerations. Klin Monatsbl Augenh 227(1):R1–R14CrossRef Walter P, Mazinani B (2010) Macular dystrophies–hereditary macular degenerations. Klin Monatsbl Augenh 227(1):R1–R14CrossRef
23.
go back to reference Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78(6):1117–1125PubMedCrossRef Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78(6):1117–1125PubMedCrossRef
24.
go back to reference Fischer MD, Fleischhauer JC, Gillies MC, Sutter FK, Helbig H, Barthelmes D (2008) A new method to monitor visual field defects caused by photoreceptor degeneration by quantitative optical coherence tomography. Invest Ophthalmol Vis Sci 49(8):3617–3621PubMedCrossRef Fischer MD, Fleischhauer JC, Gillies MC, Sutter FK, Helbig H, Barthelmes D (2008) A new method to monitor visual field defects caused by photoreceptor degeneration by quantitative optical coherence tomography. Invest Ophthalmol Vis Sci 49(8):3617–3621PubMedCrossRef
25.
go back to reference Fortune B, Wang L, Bui BV, Burgoyne CF, Cioffi GA (2005) Idiopathic bilateral optic atrophy in the rhesus macaque. Invest Ophthalmol Vis Sci 46(11):3943–3956PubMedCrossRef Fortune B, Wang L, Bui BV, Burgoyne CF, Cioffi GA (2005) Idiopathic bilateral optic atrophy in the rhesus macaque. Invest Ophthalmol Vis Sci 46(11):3943–3956PubMedCrossRef
26.
go back to reference Moura FC, Monteiro ML (2010) Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy. Indian J Ophthalmol 58(2):143–146PubMedCrossRef Moura FC, Monteiro ML (2010) Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy. Indian J Ophthalmol 58(2):143–146PubMedCrossRef
27.
go back to reference Newman NM, Stevens RA, Heckenlively JR (1987) Nerve fibre layer loss in diseases of the outer retinal layer. Brit J Ophthalmol 71(1):21–26CrossRef Newman NM, Stevens RA, Heckenlively JR (1987) Nerve fibre layer loss in diseases of the outer retinal layer. Brit J Ophthalmol 71(1):21–26CrossRef
28.
29.
go back to reference Provis JM, Hendrickson AE (2008) The foveal avascular region of developing human retina. Arch Ophthalmol 126(4):507–511PubMedCrossRef Provis JM, Hendrickson AE (2008) The foveal avascular region of developing human retina. Arch Ophthalmol 126(4):507–511PubMedCrossRef
30.
go back to reference Azuma N, Nishina S, Yanagisawa H, Okuyama T, Yamada M (1996) PAX6 missense mutation in isolated foveal hypoplasia. Nat Genet 13(2):141–142PubMedCrossRef Azuma N, Nishina S, Yanagisawa H, Okuyama T, Yamada M (1996) PAX6 missense mutation in isolated foveal hypoplasia. Nat Genet 13(2):141–142PubMedCrossRef
31.
go back to reference Parodi MB, Visintin F, Della Rupe P, Ravalico G (1995) Foveal avascular zone in macular branch retinal vein occlusion. Int Ophthalmol 19(1):25–28PubMedCrossRef Parodi MB, Visintin F, Della Rupe P, Ravalico G (1995) Foveal avascular zone in macular branch retinal vein occlusion. Int Ophthalmol 19(1):25–28PubMedCrossRef
32.
go back to reference Drasdo N, Fowler CW (1974) Non-linear projection of the retinal image in a wide-angle schematic eye. Brit J Ophthalmol 58(8):709–714CrossRef Drasdo N, Fowler CW (1974) Non-linear projection of the retinal image in a wide-angle schematic eye. Brit J Ophthalmol 58(8):709–714CrossRef
Metadata
Title
Detailed functional and structural characterization of a macular lesion in a rhesus macaque
Authors
M. Dominik Fischer
Ditta Zobor
Georgios A. Keliris
Yibin Shao
Mathias W. Seeliger
Silke Haverkamp
Herbert Jägle
Nikos K. Logothetis
Stelios M. Smirnakis
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 3/2012
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-012-9340-3

Other articles of this Issue 3/2012

Documenta Ophthalmologica 3/2012 Go to the issue