Skip to main content
Top
Published in: Documenta Ophthalmologica 3/2012

01-12-2012 | Original Research Article

Assessment of macular function of glaucomatous eyes by multifocal electroretinograms

Authors: Nobuhide Hori, Shinya Komori, Hiroki Yamada, Akira Sawada, Yasunori Nomura, Kiyofumi Mochizuki, Tetsuya Yamamoto

Published in: Documenta Ophthalmologica | Issue 3/2012

Login to get access

Abstract

Purpose

To determine whether significant correlations existed between the morphological and functional parameters of the macular region of eyes with open-angle glaucoma (OAG).

Methods

Forty eyes of 40 OAG patients were studied. The morphological parameters were obtained by optical coherence tomography (OCT), and the functional parameters were acquired by automated Humphrey Field Analyzer (HFA) and multifocal electroretinograms (mfERGs). All of the tests were performed within 6 months of each other. The retinal thickness was determined by OCT in the nine Early Treatment of Diabetic Retinopathy Study (ETDRS) sectors of the macula, the fovea, and the four quadrants of the inner and an outer ring. The amplitudes of the second-order kernel responses of the mfERGs in the central 5° including the amplitude ratio of the nasal to temporal hemispheres (N/T amplitude ratio) were analyzed. The total mean deviation of the HFA corresponding to each OCT region was measured. The correlation between the different parameters was determined by coefficients of correlation and linear regression analyses.

Results

The N/T amplitude ratio of the second-order kernel responses of the mfERGs was significantly correlated with the retinal thickness in the inferior quadrant (r = −0.44; P = 0.004). There was a significant correlation between the N/T amplitude ratio and the threshold in the superior quadrant measured by the HFA Central 10-2 program (r = −0.40; P = 0.011) and also between the N/T amplitude ratio and the total deviation in the superior quadrant (r = −0.40; P = 0.010). There were significant correlations between the inferior retinal thickness and the average threshold and the TD in superior (r = 0.70, P < 0.001; r = 0.692, P < 0.001, respectively), nasal (r = 0.53, P < 0.001; r = 0.53, P < 0.001, respectively), and temporal (r = 0.46, P = 0.003; r = 0.44, P = 0.004, respectively) quadrants.

Conclusions

Functional glaucomatous changes determined by mfERGs and perimetry are significantly correlated with the morphological changes determined by OCT.
Literature
1.
go back to reference Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83PubMedCrossRef Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83PubMedCrossRef
2.
go back to reference Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH (2011) Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vision Res 51:243–250PubMedCrossRef Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH (2011) Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vision Res 51:243–250PubMedCrossRef
3.
go back to reference Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28PubMed Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28PubMed
4.
go back to reference Zeyen TG, Caprioli J (1993) Progression of disc and field damage in early glaucoma. Arch Ophthalmol 111:62–65PubMedCrossRef Zeyen TG, Caprioli J (1993) Progression of disc and field damage in early glaucoma. Arch Ophthalmol 111:62–65PubMedCrossRef
5.
go back to reference Park SB, Sung KR, Kang SY, Kim KR, Kook MS (2009) Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127:1603–1609PubMedCrossRef Park SB, Sung KR, Kang SY, Kim KR, Kook MS (2009) Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127:1603–1609PubMedCrossRef
6.
go back to reference Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 105:224–231PubMedCrossRef Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 105:224–231PubMedCrossRef
7.
go back to reference Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG, Mattox C (2003) Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol 135:838–843PubMedCrossRef Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG, Mattox C (2003) Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol 135:838–843PubMedCrossRef
8.
go back to reference Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, Voskanian S, Velazquez L, Pakter HM, Pedut-Kloizman T, Fujimoto JG, Mattox C (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189PubMedCrossRef Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, Voskanian S, Velazquez L, Pakter HM, Pedut-Kloizman T, Fujimoto JG, Mattox C (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189PubMedCrossRef
9.
go back to reference Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46PubMedCrossRef Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46PubMedCrossRef
10.
go back to reference Parikh RS, Parikh SR, Thomas R (2010) Diagnostic capability of macular parameters of Stratus OCT 3 in detection of early glaucoma. Br J Ophthalmol 94:197–201PubMedCrossRef Parikh RS, Parikh SR, Thomas R (2010) Diagnostic capability of macular parameters of Stratus OCT 3 in detection of early glaucoma. Br J Ophthalmol 94:197–201PubMedCrossRef
11.
go back to reference Velten IM, Korth M, Horn FK (2001) The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected? Br J Ophthalmol 85:397–402PubMedCrossRef Velten IM, Korth M, Horn FK (2001) The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected? Br J Ophthalmol 85:397–402PubMedCrossRef
12.
go back to reference Sehi M, Pinzon-Plazas M, Feuer WJ, Greenfield DS (2009) Relationship between pattern electroretinogram, standard automated perimetry, and optic nerve structural assessments. J Glaucoma 18:608–617PubMedCrossRef Sehi M, Pinzon-Plazas M, Feuer WJ, Greenfield DS (2009) Relationship between pattern electroretinogram, standard automated perimetry, and optic nerve structural assessments. J Glaucoma 18:608–617PubMedCrossRef
13.
go back to reference Machida S, Tamada K, Oikawa T, Yokoyama D, Kaneko M, Kurosaka D (2010) Sensitivity and specificity of photopic negative response of focal electoretinogram to detect glaucomatous eyes. Br J Ophthalmol 94:202–208PubMedCrossRef Machida S, Tamada K, Oikawa T, Yokoyama D, Kaneko M, Kurosaka D (2010) Sensitivity and specificity of photopic negative response of focal electoretinogram to detect glaucomatous eyes. Br J Ophthalmol 94:202–208PubMedCrossRef
14.
go back to reference Vincent A, Shetty R, Devi SA, Kurian MK, Balu R, Shetty B (2010) Functional involvement of cone photoreceptors in advanced glaucoma: a multifocal electroretinogram study. Doc Ophthalmol 121:21–27PubMedCrossRef Vincent A, Shetty R, Devi SA, Kurian MK, Balu R, Shetty B (2010) Functional involvement of cone photoreceptors in advanced glaucoma: a multifocal electroretinogram study. Doc Ophthalmol 121:21–27PubMedCrossRef
15.
go back to reference Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579PubMed Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579PubMed
16.
go back to reference Asano E, Mochizuki K, Sawada A, Nagasaka E, Kondo Y, Yamamoto T (2007) Decreased nasal-temporal asymmetry of the second-order kernel response of multifocal electroretinograms in eyes with normal-tension glaucoma. Jpn J Ophthalmol 51:379–389PubMedCrossRef Asano E, Mochizuki K, Sawada A, Nagasaka E, Kondo Y, Yamamoto T (2007) Decreased nasal-temporal asymmetry of the second-order kernel response of multifocal electroretinograms in eyes with normal-tension glaucoma. Jpn J Ophthalmol 51:379–389PubMedCrossRef
17.
go back to reference Nakamura H, Hangai M, Mori S, Hirose F, Yoshimura N (2011) Hemispherical focal macular photopic negative response and macular inner retinal thickness in open-angle glaucoma. Am J Ophthalmol 151:494–506PubMedCrossRef Nakamura H, Hangai M, Mori S, Hirose F, Yoshimura N (2011) Hemispherical focal macular photopic negative response and macular inner retinal thickness in open-angle glaucoma. Am J Ophthalmol 151:494–506PubMedCrossRef
18.
go back to reference Falsini B, Marangoni D, Salgarello T, Stifano G, Montrone L, Campagna F, Aliberti S, Balestrazzi E, Colotto A (2008) Structure–function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol 246:1153–1162PubMedCrossRef Falsini B, Marangoni D, Salgarello T, Stifano G, Montrone L, Campagna F, Aliberti S, Balestrazzi E, Colotto A (2008) Structure–function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol 246:1153–1162PubMedCrossRef
19.
go back to reference Vaegan, Graham SL, Goldberg I, Buckland L, Hollows FC (1995) Flash and pattern electroretinogram changes with optic atrophy and glaucoma. Exp Eye Res 60:697–706 Vaegan, Graham SL, Goldberg I, Buckland L, Hollows FC (1995) Flash and pattern electroretinogram changes with optic atrophy and glaucoma. Exp Eye Res 60:697–706
20.
go back to reference Weiner A, Ripkin DJ, Patel S, Kaufman SR, Kohn HD, Weidenthal DT (1998) Foveal dysfunction and central visual field loss in glaucoma. Arch Ophthalmol 116:1169–1174PubMed Weiner A, Ripkin DJ, Patel S, Kaufman SR, Kohn HD, Weidenthal DT (1998) Foveal dysfunction and central visual field loss in glaucoma. Arch Ophthalmol 116:1169–1174PubMed
21.
go back to reference Bearse MA Jr, Sim D, Sutter EE, Stamper R, Leiberman M (1996) Application of the multi-focal ERG to glaucoma. Invest Ophthalmol Vis Sci 37:S511 Bearse MA Jr, Sim D, Sutter EE, Stamper R, Leiberman M (1996) Application of the multi-focal ERG to glaucoma. Invest Ophthalmol Vis Sci 37:S511
22.
go back to reference Hasegawa S, Takagi M, Usui T, Takada R, Abe H (2000) Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Invest Ophthalmol Vis Sci 41:1597–1603PubMed Hasegawa S, Takagi M, Usui T, Takada R, Abe H (2000) Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Invest Ophthalmol Vis Sci 41:1597–1603PubMed
23.
go back to reference Fortune B, Johnson CA, Cioffi GA (2001) The topographic relationship between multifocal electroretinographic and behavioral perimetric measures of function in glaucoma. Optom Vis Sci 78:206–214PubMedCrossRef Fortune B, Johnson CA, Cioffi GA (2001) The topographic relationship between multifocal electroretinographic and behavioral perimetric measures of function in glaucoma. Optom Vis Sci 78:206–214PubMedCrossRef
24.
go back to reference Jonas JB, Schneider U, Naumann GO (1992) Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 230:505–510PubMedCrossRef Jonas JB, Schneider U, Naumann GO (1992) Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 230:505–510PubMedCrossRef
25.
go back to reference Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523PubMedCrossRef Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523PubMedCrossRef
26.
go back to reference Chan HH, Brown B (2000) Pilot study of the multifocal electroretinogram in ocular hypertension. Br J Ophthalmol 84:1147–1153PubMedCrossRef Chan HH, Brown B (2000) Pilot study of the multifocal electroretinogram in ocular hypertension. Br J Ophthalmol 84:1147–1153PubMedCrossRef
27.
go back to reference Chan HL, Brown B (1999) Multifocal ERG changes in glaucoma. Ophthalmic Physiol 19:306–316CrossRef Chan HL, Brown B (1999) Multifocal ERG changes in glaucoma. Ophthalmic Physiol 19:306–316CrossRef
28.
go back to reference Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM, International Society For Clinical Electrophysiology of Vision (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124:1–13 Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM, International Society For Clinical Electrophysiology of Vision (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124:1–13
29.
go back to reference Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vision Res 39:419–436PubMedCrossRef Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vision Res 39:419–436PubMedCrossRef
30.
go back to reference Hood DC, Raza AS (2011) Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Biomed Opt Express 2:1097–1105PubMedCrossRef Hood DC, Raza AS (2011) Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Biomed Opt Express 2:1097–1105PubMedCrossRef
31.
go back to reference Luo X, Patel NB, Harwerth RS, Frishman LJ (2011) Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci 52:3792–3804PubMedCrossRef Luo X, Patel NB, Harwerth RS, Frishman LJ (2011) Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci 52:3792–3804PubMedCrossRef
32.
go back to reference Fortune B, Bearse MA Jr, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647PubMed Fortune B, Bearse MA Jr, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647PubMed
33.
go back to reference Hood DC, Zhang X (2000) Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol 100:115–137PubMedCrossRef Hood DC, Zhang X (2000) Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol 100:115–137PubMedCrossRef
34.
go back to reference Palmowski-Wolfe AM, Allgayer RJ, Vernaleken B, Schötzau A, Ruprecht KW (2006) Slow-stimulated multifocal ERG in high- and normal-tension glaucoma. Doc Ophthalmol 112:157–168PubMedCrossRef Palmowski-Wolfe AM, Allgayer RJ, Vernaleken B, Schötzau A, Ruprecht KW (2006) Slow-stimulated multifocal ERG in high- and normal-tension glaucoma. Doc Ophthalmol 112:157–168PubMedCrossRef
35.
go back to reference Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47:929–937PubMedCrossRef Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47:929–937PubMedCrossRef
36.
go back to reference Chu PH, Ng YF, Ting PW, Lung JC, Ho WC, So KF, To CH, Chan HH (2011) Effect of inner retinal dysfunction on slow double-stimulation multifocal electroretinogram. Br J Ophthalmol 95:1597–1602PubMedCrossRef Chu PH, Ng YF, Ting PW, Lung JC, Ho WC, So KF, To CH, Chan HH (2011) Effect of inner retinal dysfunction on slow double-stimulation multifocal electroretinogram. Br J Ophthalmol 95:1597–1602PubMedCrossRef
37.
go back to reference Hood DC (2000) Assessing retinal function with the multifocal technique. Prog Retin Eye Res 19:607–646PubMedCrossRef Hood DC (2000) Assessing retinal function with the multifocal technique. Prog Retin Eye Res 19:607–646PubMedCrossRef
38.
go back to reference Kawabata H, Adachi-Usami E (1997) Multifocal electroretinogram in myopia. Invest Ophthalmol Vis Sci 38:2844–2851PubMed Kawabata H, Adachi-Usami E (1997) Multifocal electroretinogram in myopia. Invest Ophthalmol Vis Sci 38:2844–2851PubMed
39.
go back to reference Chan HL, Mohidin N (2003) Variation of multifocal electroretinogram with axial length. Ophthalmic Physiol Opt 23:133–140PubMedCrossRef Chan HL, Mohidin N (2003) Variation of multifocal electroretinogram with axial length. Ophthalmic Physiol Opt 23:133–140PubMedCrossRef
40.
41.
go back to reference Luu CD, Lau AM, Lee SY (2006) Multifocal electroretinogram in adults and children with myopia. Arch Ophthalmol 124:328–334PubMedCrossRef Luu CD, Lau AM, Lee SY (2006) Multifocal electroretinogram in adults and children with myopia. Arch Ophthalmol 124:328–334PubMedCrossRef
42.
go back to reference Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y, Tajimi Study Group (2006) Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology 113:1613–1617 Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y, Tajimi Study Group (2006) Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology 113:1613–1617
43.
go back to reference Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 34:395–400PubMed Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 34:395–400PubMed
44.
go back to reference Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, Fujimoto JG, Ishikawa H (2004) Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 138:218–225PubMedCrossRef Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, Fujimoto JG, Ishikawa H (2004) Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 138:218–225PubMedCrossRef
45.
go back to reference Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, Puliafito CA (2008) Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 39(Suppl):S43–S49PubMed Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, Puliafito CA (2008) Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 39(Suppl):S43–S49PubMed
46.
go back to reference Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS (2010) Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 30:235–245PubMedCrossRef Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS (2010) Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 30:235–245PubMedCrossRef
47.
go back to reference Chu PH, Ng YF, To CH, So KF, Brown B, Chan HH (2012) Luminance-modulated adaptation in the global flash mfERG: a preliminary study of early retinal functional changes in high-risk glaucoma patients. Graefes Arch Clin Exp Ophthalmol 250:261–270PubMedCrossRef Chu PH, Ng YF, To CH, So KF, Brown B, Chan HH (2012) Luminance-modulated adaptation in the global flash mfERG: a preliminary study of early retinal functional changes in high-risk glaucoma patients. Graefes Arch Clin Exp Ophthalmol 250:261–270PubMedCrossRef
48.
go back to reference Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N (2011) Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1412–1421PubMedCrossRef Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N (2011) Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1412–1421PubMedCrossRef
49.
go back to reference Sato A, Fukui E, Ohta K (2010) Retinal thickness of myopic eyes determined by spectralis optical coherence tomography. Br J Ophthalmol 94:1624–1628PubMedCrossRef Sato A, Fukui E, Ohta K (2010) Retinal thickness of myopic eyes determined by spectralis optical coherence tomography. Br J Ophthalmol 94:1624–1628PubMedCrossRef
50.
go back to reference Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314PubMedCrossRef Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314PubMedCrossRef
51.
go back to reference Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, Liebmann JM, Ritch R, Hood DC (2011) Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol 129:1529–1536PubMedCrossRef Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, Liebmann JM, Ritch R, Hood DC (2011) Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol 129:1529–1536PubMedCrossRef
52.
go back to reference Bowd C, Tafreshi A, Zangwill LM, Medeiros FA, Sample PA, Weinreb RN (2011) Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye 25:224–232PubMedCrossRef Bowd C, Tafreshi A, Zangwill LM, Medeiros FA, Sample PA, Weinreb RN (2011) Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye 25:224–232PubMedCrossRef
Metadata
Title
Assessment of macular function of glaucomatous eyes by multifocal electroretinograms
Authors
Nobuhide Hori
Shinya Komori
Hiroki Yamada
Akira Sawada
Yasunori Nomura
Kiyofumi Mochizuki
Tetsuya Yamamoto
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 3/2012
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-012-9351-0

Other articles of this Issue 3/2012

Documenta Ophthalmologica 3/2012 Go to the issue