Skip to main content
Top
Published in: Digestive Diseases and Sciences 9/2022

19-11-2021 | Gastric Cancer | Original Article

Troponin C-1 Activated by E2F1 Accelerates Gastric Cancer Progression via Regulating TGF-β/Smad Signaling

Authors: Can Fang, Xinxin Zhang, Chengyan Li, Fang Liu, Hui Liu

Published in: Digestive Diseases and Sciences | Issue 9/2022

Login to get access

Abstract

Background

Troponin C-1 (TNNC1) has been previously characterized as an oncogenic gene.

Aims

This study aimed to reveal the roles of TNNC1 in gastric cancer and the potential underlying mechanisms.

Methods

TNNC1 siRNAs and TNNC1 overexpression plasmid were used to alter its expression in AGS, MKN45, and HGC-27 cells. CCK-8 assay, colony formation, EdU assay, flow cytometry, transwell assay, and scratch test were conducted to measure the phenotype changes. In vivo effects of TNNC1 silence were confirmed by using a xenograft mouse model. Bioinformatics analysis was conducted to screen out the transcription factor and downstream signaling of TNNC1.

Results

TNNC1 was highly expressed in gastric cancer tissues and cell lines, and its expression was associated with poor prognosis. TNNC1 silence suppressed the proliferation, migration, and invasion of AGS and MKN45 cells. However, TNNC1 silence induced apoptosis by mediating the cleavage of caspase-3 and caspase-9. Overexpression of TNNC1 in HGC-27 cells led to the contrary effects. The anti-tumor effects of TNNC1 silence were also confirmed in a xenograft animal model. E2F1 was validated as an upstream transcription factor of TNNC1. Effects of TNNC1 silence on AGS cell migration and invasion were attenuated by E2F1 overexpression. Besides, TGF-β/Smad was a downstream signaling pathway of TNNC1. The anti-tumor impacts of TNNC1 silence were weaken by SB431542 (a specific inhibitor of TGF-β signaling) while accelerated by TGF-β.

Conclusion

TNNC1 activated by E2F1 functioned as an oncogenic gene through regulating TGF-β/Smad signaling. TNNC1 was suggested as a potential molecular drug target of gastric cancer.
Literature
1.
go back to reference Bucha S, Mukhopadhyay D, Bhattacharyya NP. E2F1 activates MFN2 expression by binding to the promoter and decreases mitochondrial fission and mitophagy in HeLa cells. FEBS J. 2019;286:4525–4541.CrossRef Bucha S, Mukhopadhyay D, Bhattacharyya NP. E2F1 activates MFN2 expression by binding to the promoter and decreases mitochondrial fission and mitophagy in HeLa cells. FEBS J. 2019;286:4525–4541.CrossRef
2.
go back to reference Chung WK, Kitner C, Maron BJ. Novel frameshift mutation in Troponin C (TNNC1) associated with hypertrophic cardiomyopathy and sudden death. Cardiol Young. 2011;21:345–348.CrossRef Chung WK, Kitner C, Maron BJ. Novel frameshift mutation in Troponin C (TNNC1) associated with hypertrophic cardiomyopathy and sudden death. Cardiol Young. 2011;21:345–348.CrossRef
3.
go back to reference Deng JY, Liang H. Clinical significance of lymph node metastasis in gastric cancer. World J Gastroenterol. 2014;20:3967–3975.CrossRef Deng JY, Liang H. Clinical significance of lymph node metastasis in gastric cancer. World J Gastroenterol. 2014;20:3967–3975.CrossRef
4.
go back to reference Digklia A, Wagner AD. Advanced gastric cancer: current treatment landscape and future perspectives. World J Gastroenterol. 2016;22:2403–2414.CrossRef Digklia A, Wagner AD. Advanced gastric cancer: current treatment landscape and future perspectives. World J Gastroenterol. 2016;22:2403–2414.CrossRef
5.
go back to reference Engelmann D, Pützer BM. The dark side of E2F1: in transit beyond apoptosis. Cancer Res. 2012;72:571–575.CrossRef Engelmann D, Pützer BM. The dark side of E2F1: in transit beyond apoptosis. Cancer Res. 2012;72:571–575.CrossRef
6.
go back to reference Farra R, Dapas B, Grassi M, Benedetti F, Grassi G. E2F1 as a molecular drug target in ovarian cancer. Expert Opin Therap Targets. 2019;23:161–164.CrossRef Farra R, Dapas B, Grassi M, Benedetti F, Grassi G. E2F1 as a molecular drug target in ovarian cancer. Expert Opin Therap Targets. 2019;23:161–164.CrossRef
7.
go back to reference Hata A, Chen YG. TGF-β signaling from receptors to Smads. Cold Spring Harbor Perspect Biol. 2016;8:a022061.CrossRef Hata A, Chen YG. TGF-β signaling from receptors to Smads. Cold Spring Harbor Perspect Biol. 2016;8:a022061.CrossRef
8.
go back to reference Hollern DP, Swiatnicki MR, Rennhack JP, Misek SA. E2F1 drives breast cancer metastasis by regulating the target gene FGF13 and altering cell migration. Sci Rep. 2019;9:10718.CrossRef Hollern DP, Swiatnicki MR, Rennhack JP, Misek SA. E2F1 drives breast cancer metastasis by regulating the target gene FGF13 and altering cell migration. Sci Rep. 2019;9:10718.CrossRef
9.
go back to reference Jeong MH, Park SY, Lee SH, Seo J, Yoo JY, Park SH et al. EPB41L5 mediates TGFβ-induced metastasis of gastric cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25:3617–3629.CrossRef Jeong MH, Park SY, Lee SH, Seo J, Yoo JY, Park SH et al. EPB41L5 mediates TGFβ-induced metastasis of gastric cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25:3617–3629.CrossRef
10.
go back to reference Jiang SX, Sheldrick M, Desbois A, Slinn J, Hou ST. Neuropilin-1 is a direct target of the transcription factor E2F1 during cerebral ischemia-induced neuronal death in vivo. Mol Cell Biol. 2007;27:1696–1705.CrossRef Jiang SX, Sheldrick M, Desbois A, Slinn J, Hou ST. Neuropilin-1 is a direct target of the transcription factor E2F1 during cerebral ischemia-induced neuronal death in vivo. Mol Cell Biol. 2007;27:1696–1705.CrossRef
11.
go back to reference Johnston JR, Chase PB, Pinto JR. Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget. 2018;9:1461–1482.CrossRef Johnston JR, Chase PB, Pinto JR. Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget. 2018;9:1461–1482.CrossRef
12.
go back to reference Kim S, Kim J, Jung Y, Jun Y, Lee HY, Keum J et al. Characterization of TNNC1 as a novel tumor suppressor of lung adenocarcinoma. Mol Cells. 2020;43:619–631.PubMedPubMedCentral Kim S, Kim J, Jung Y, Jun Y, Lee HY, Keum J et al. Characterization of TNNC1 as a novel tumor suppressor of lung adenocarcinoma. Mol Cells. 2020;43:619–631.PubMedPubMedCentral
13.
go back to reference Leung CS, Yeung TL, Yip KP, Pradeep S, Balasubramanian L, Liu J et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun. 2014;5:5092.CrossRef Leung CS, Yeung TL, Yip KP, Pradeep S, Balasubramanian L, Liu J et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun. 2014;5:5092.CrossRef
14.
go back to reference Li Y, Wang P, Ye D, Bai X, Zeng X, Zhao Q et al. IGHG1 induces EMT in gastric cancer cells by regulating TGF-β/SMAD3 signaling pathway. J Cancer. 2021;12:3458–3467.CrossRef Li Y, Wang P, Ye D, Bai X, Zeng X, Zhao Q et al. IGHG1 induces EMT in gastric cancer cells by regulating TGF-β/SMAD3 signaling pathway. J Cancer. 2021;12:3458–3467.CrossRef
15.
go back to reference Li Z, Liu ZM, Xu BH. A meta-analysis of the effect of microRNA-34a on the progression and prognosis of gastric cancer. Eur Rev Med Pharmacol Sci. 2018;22:8281–8287.PubMed Li Z, Liu ZM, Xu BH. A meta-analysis of the effect of microRNA-34a on the progression and prognosis of gastric cancer. Eur Rev Med Pharmacol Sci. 2018;22:8281–8287.PubMed
16.
go back to reference Ma F, Wang Z, Qiang Y, Xu L, Ding P, Wang Y et al. LukS-PV inhibits hepatocellular carcinoma cells migration via the TNNC1/PI3K/AKT Axis. OncoTargets Therapy. 2020;13:10221–10230.CrossRef Ma F, Wang Z, Qiang Y, Xu L, Ding P, Wang Y et al. LukS-PV inhibits hepatocellular carcinoma cells migration via the TNNC1/PI3K/AKT Axis. OncoTargets Therapy. 2020;13:10221–10230.CrossRef
17.
go back to reference Martínez-Campos C, Torres-Poveda K, Camorlinga-Ponce M, Flores-Luna L, Maldonado-Bernal C, Madrid-Marina V et al. Polymorphisms in IL-10 and TGF-β gene promoter are associated with lower risk to gastric cancer in a Mexican population. BMC Cancer. 2019;19:453.CrossRef Martínez-Campos C, Torres-Poveda K, Camorlinga-Ponce M, Flores-Luna L, Maldonado-Bernal C, Madrid-Marina V et al. Polymorphisms in IL-10 and TGF-β gene promoter are associated with lower risk to gastric cancer in a Mexican population. BMC Cancer. 2019;19:453.CrossRef
18.
go back to reference Massip A, Arcondéguy T, Touriol C, Basset C, Prats H, Lacazette E. E2F1 activates p53 transcription through its distal site and participates in apoptosis induction in HPV-positive cells. FEBS Lett. 2013;587:3188–3194.CrossRef Massip A, Arcondéguy T, Touriol C, Basset C, Prats H, Lacazette E. E2F1 activates p53 transcription through its distal site and participates in apoptosis induction in HPV-positive cells. FEBS Lett. 2013;587:3188–3194.CrossRef
19.
go back to reference Nadauld LD, Ford JM. Molecular profiling of gastric cancer: toward personalized cancer medicine. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:838–839.CrossRef Nadauld LD, Ford JM. Molecular profiling of gastric cancer: toward personalized cancer medicine. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:838–839.CrossRef
20.
go back to reference Nomura A, Grove JS, Stemmermann GN, Severson RK. A prospective study of stomach cancer and its relation to diet, cigarettes, and alcohol consumption. Cancer Res. 1990;50:627–631.PubMed Nomura A, Grove JS, Stemmermann GN, Severson RK. A prospective study of stomach cancer and its relation to diet, cigarettes, and alcohol consumption. Cancer Res. 1990;50:627–631.PubMed
21.
go back to reference Pak KH, Park KC, Cheong JH. VEGF-C induced by TGF- β1 signaling in gastric cancer enhances tumor-induced lymphangiogenesis. BMC Cancer. 2019;19:799.CrossRef Pak KH, Park KC, Cheong JH. VEGF-C induced by TGF- β1 signaling in gastric cancer enhances tumor-induced lymphangiogenesis. BMC Cancer. 2019;19:799.CrossRef
22.
go back to reference Parvatiyar MS, Landstrom AP, Figueiredo-Freitas C, Potter JD, Ackerman MJ, Pinto JR. A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation. J Biol Chem. 2012;287:31845–31855.CrossRef Parvatiyar MS, Landstrom AP, Figueiredo-Freitas C, Potter JD, Ackerman MJ, Pinto JR. A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation. J Biol Chem. 2012;287:31845–31855.CrossRef
23.
go back to reference Ploski R, Rydzanicz M, Ksiazczyk TM, Franaszczyk M, Pollak A, Kosinska J et al. Evidence for troponin C (TNNC1) as a gene for autosomal recessive restrictive cardiomyopathy with fatal outcome in infancy. Am J Med Genet Part A. 2016;170:3241–3248.CrossRef Ploski R, Rydzanicz M, Ksiazczyk TM, Franaszczyk M, Pollak A, Kosinska J et al. Evidence for troponin C (TNNC1) as a gene for autosomal recessive restrictive cardiomyopathy with fatal outcome in infancy. Am J Med Genet Part A. 2016;170:3241–3248.CrossRef
24.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.CrossRef
25.
go back to reference Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet (London, England). 2020;396:635–648.CrossRef Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet (London, England). 2020;396:635–648.CrossRef
26.
go back to reference Song WJ, Van Keuren ML, Drabkin HA, Cypser JR, Gemmill RM, Kurnit DM. Assignment of the human slow twitch skeletal muscle/cardiac troponin C gene (TNNC1) to human chromosome 3p21.3→3p14.3 using somatic cell hybrids. Cytogenet Cell Genet. 1996;75:36–37.CrossRef Song WJ, Van Keuren ML, Drabkin HA, Cypser JR, Gemmill RM, Kurnit DM. Assignment of the human slow twitch skeletal muscle/cardiac troponin C gene (TNNC1) to human chromosome 3p21.3→3p14.3 using somatic cell hybrids. Cytogenet Cell Genet. 1996;75:36–37.CrossRef
27.
go back to reference Tan Z. Recent advances in the surgical treatment of advanced gastric cancer: a review. Med Sci Monit Int Med J Exp Clin Res. 2019;25:3537–3541. Tan Z. Recent advances in the surgical treatment of advanced gastric cancer: a review. Med Sci Monit Int Med J Exp Clin Res. 2019;25:3537–3541.
28.
go back to reference Venerito M, Link A, Rokkas T, Malfertheiner P. Review: Gastric cancer—clinical aspects. Helicobacter. 2019;24:e12643.PubMed Venerito M, Link A, Rokkas T, Malfertheiner P. Review: Gastric cancer—clinical aspects. Helicobacter. 2019;24:e12643.PubMed
29.
go back to reference Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-β signaling in cancer metastasis. Acta Biochimica et Biophysica Sinica. 2018;50:121–132.CrossRef Xie F, Ling L, van Dam H, Zhou F, Zhang L. TGF-β signaling in cancer metastasis. Acta Biochimica et Biophysica Sinica. 2018;50:121–132.CrossRef
30.
go back to reference Yang X, Wu K, Li S, Hu L, Han J, Zhu D et al. MFAP5 and TNNC1: Potential markers for predicting occult cervical lymphatic metastasis and prognosis in early stage tongue cancer. Oncotarget. 2017;8:2525–2535.CrossRef Yang X, Wu K, Li S, Hu L, Han J, Zhu D et al. MFAP5 and TNNC1: Potential markers for predicting occult cervical lymphatic metastasis and prognosis in early stage tongue cancer. Oncotarget. 2017;8:2525–2535.CrossRef
31.
go back to reference Ye X, Xie G, Liu Z, Tang J, Cui M, Wang C et al. TNNC1 reduced gemcitabine sensitivity of nonsmall-cell lung cancer by increasing autophagy. Med Sci Monit Int Med J Exp Clin Res. 2020;26:e922703. Ye X, Xie G, Liu Z, Tang J, Cui M, Wang C et al. TNNC1 reduced gemcitabine sensitivity of nonsmall-cell lung cancer by increasing autophagy. Med Sci Monit Int Med J Exp Clin Res. 2020;26:e922703.
32.
go back to reference Yin JH, Elumalai P, Kim SY, Zhang SZ, Shin S, Lee M et al. TNNC1 knockout reverses metastatic potential of ovarian cancer cells by inactivating epithelial-mesenchymal transition and suppressing F-actin polymerization. Biochem Biophys Res Commun. 2021;547:44–51.CrossRef Yin JH, Elumalai P, Kim SY, Zhang SZ, Shin S, Lee M et al. TNNC1 knockout reverses metastatic potential of ovarian cancer cells by inactivating epithelial-mesenchymal transition and suppressing F-actin polymerization. Biochem Biophys Res Commun. 2021;547:44–51.CrossRef
Metadata
Title
Troponin C-1 Activated by E2F1 Accelerates Gastric Cancer Progression via Regulating TGF-β/Smad Signaling
Authors
Can Fang
Xinxin Zhang
Chengyan Li
Fang Liu
Hui Liu
Publication date
19-11-2021
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 9/2022
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-021-07287-6

Other articles of this Issue 9/2022

Digestive Diseases and Sciences 9/2022 Go to the issue