Skip to main content
Top
Published in: Digestive Diseases and Sciences 7/2022

08-07-2021 | Cholangiocarcinoma | Original Article

microRNA-206 Suppresses Cholangiocarcinoma Cell Growth and Invasion by Targeting Jumonji AT-Rich Interactive Domain 2

Authors: Chunying Xie, Zhenxing Huang, Zhaohui Huang, Xue Zhang, Siyuan Lou

Published in: Digestive Diseases and Sciences | Issue 7/2022

Login to get access

Abstract

Background

The current study set out to elucidate the specific role of microRNA (miR)-206 in cholangiocarcinoma (CCA) cell biological activities by negatively modulating jumonji AT-rich interactive domain 2 (JARID2).

Methods

Firstly, human intrahepatic biliary epithelial cells and CCA cell lines were selected via the analysis of miR-206 and JARID2 expression patterns in CCA by qRT-PCR. Next, the target relation between miR-206 and JARID2 was predicted by Targetscan and validated using dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Subsequently, CCK-8 method, colony formation assay, scratch test, Transwell assay, and western blot analysis were performed to evaluate cancer cell development after the overexpression of miR-206 and/or JARID2, with levels of invasion-related proteins assessed. In addition, xenograft transplantation was also employed to confirm the role of miR-206 in vivo. Lastly, Ki-67 expression pattern was also quantified with immunohistochemistry.

Results

It was found that miR-206 was poorly expressed and JARID2 was highly expressed in CCA cell lines. Also, miR-206 overexpression brought about a suppressive effect on cancer cell proliferation, migration, and invasion. Furthermore, miR-206 was observed to target JARID2. Meanwhile, JARID2 overexpression promoted cell growth, while simultaneous overexpression of miR-206 and JARID2 impeded malignant cancer progression, indicating that miR-206 overexpression inhibited cell progression via targeting JARID2. Finally, in vivo experimentation illustrated that miR-206 overexpression suppressed tumor growth and weight, and inhibited the expressions of JARID2 N-cadherin, vimentin, and Ki-67.

Conclusion

Altogether, our findings clarified that miR-206 inhibited CCA malignancy by negatively regulating JARID2.
Literature
1.
2.
go back to reference Khan AS, Dageforde LA. Cholangiocarcinoma. Surg Clin N Am. 2019;99:315–335.CrossRef Khan AS, Dageforde LA. Cholangiocarcinoma. Surg Clin N Am. 2019;99:315–335.CrossRef
3.
go back to reference Blechacz B. Cholangiocarcinoma: current knowledge and new developments. Gut Liver. 2017;11:13–26.CrossRef Blechacz B. Cholangiocarcinoma: current knowledge and new developments. Gut Liver. 2017;11:13–26.CrossRef
4.
go back to reference Doherty B, Nambudiri VE, Palmer WC. Update on the diagnosis and treatment of cholangiocarcinoma. Curr Gastroenterol Rep. 2017;19:2.CrossRef Doherty B, Nambudiri VE, Palmer WC. Update on the diagnosis and treatment of cholangiocarcinoma. Curr Gastroenterol Rep. 2017;19:2.CrossRef
5.
6.
go back to reference Squadroni M, Tondulli L, Gatta G, Mosconi S, Beretta G, Labianca R. Cholangiocarcinoma. Crit Rev Oncol/Hematol. 2017;116:11–31.CrossRef Squadroni M, Tondulli L, Gatta G, Mosconi S, Beretta G, Labianca R. Cholangiocarcinoma. Crit Rev Oncol/Hematol. 2017;116:11–31.CrossRef
7.
go back to reference Esnaola NF, Meyer JE, Karachristos A, Maranki JL, Camp ER, Denlinger CS. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer. 2016;122:1349–1369.CrossRef Esnaola NF, Meyer JE, Karachristos A, Maranki JL, Camp ER, Denlinger CS. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer. 2016;122:1349–1369.CrossRef
8.
go back to reference Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie. 2019;167:12–24.CrossRef Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie. 2019;167:12–24.CrossRef
9.
go back to reference Howell JA, Khan SA. The role of miRNAs in cholangiocarcinoma. Hepatic Oncol. 2016;3:167–180.CrossRef Howell JA, Khan SA. The role of miRNAs in cholangiocarcinoma. Hepatic Oncol. 2016;3:167–180.CrossRef
10.
go back to reference Jiao D, Chen J, Li Y et al. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT. J Cell Mol Med. 2018;22:3526–3536.CrossRef Jiao D, Chen J, Li Y et al. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT. J Cell Mol Med. 2018;22:3526–3536.CrossRef
11.
go back to reference Fu R, Yang P, Amin S, Li Z. A novel miR-206/hnRNPA1/PKM2 axis reshapes the Warburg effect to suppress colon cancer growth. Biochem Biophys Res Commun. 2020;531:465–471.CrossRef Fu R, Yang P, Amin S, Li Z. A novel miR-206/hnRNPA1/PKM2 axis reshapes the Warburg effect to suppress colon cancer growth. Biochem Biophys Res Commun. 2020;531:465–471.CrossRef
12.
go back to reference Wang X, Lyu J, Ji A, Zhang Q, Liao G. Jarid2 enhances the progression of bladder cancer through regulating PTEN/AKT signaling. Life Sci. 2019;230:162–168.CrossRef Wang X, Lyu J, Ji A, Zhang Q, Liao G. Jarid2 enhances the progression of bladder cancer through regulating PTEN/AKT signaling. Life Sci. 2019;230:162–168.CrossRef
13.
go back to reference Cao J, Li H, Liu G, Han S, Xu P. Knockdown of JARID2 inhibits the proliferation and invasion of ovarian cancer through the PI3K/Akt signaling pathway. Mol Med Rep. 2017;16:3600–3605.CrossRef Cao J, Li H, Liu G, Han S, Xu P. Knockdown of JARID2 inhibits the proliferation and invasion of ovarian cancer through the PI3K/Akt signaling pathway. Mol Med Rep. 2017;16:3600–3605.CrossRef
14.
go back to reference Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532:1–12.CrossRef Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532:1–12.CrossRef
15.
go back to reference Fang Y, Tao Y, Zhou H, Lai H. Promoting role of circ-Jarid2/miR-129–5p/Celf1 axis in cardiac hypertrophy. Gene Ther. 2020. Fang Y, Tao Y, Zhou H, Lai H. Promoting role of circ-Jarid2/miR-129–5p/Celf1 axis in cardiac hypertrophy. Gene Ther. 2020.
16.
go back to reference Peng L, Liu YH, Nie S, Gao M. LncRNA CASC2 inhibits cell proliferation, metastasis and EMT through miR-18a/SOCS5 axis in cholangiocarcinoma. Eur Rev Med Pharmacol Sci. 2020;24:8367–8376.PubMed Peng L, Liu YH, Nie S, Gao M. LncRNA CASC2 inhibits cell proliferation, metastasis and EMT through miR-18a/SOCS5 axis in cholangiocarcinoma. Eur Rev Med Pharmacol Sci. 2020;24:8367–8376.PubMed
17.
go back to reference Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci. 2020;111:1065–1075.CrossRef Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci. 2020;111:1065–1075.CrossRef
18.
go back to reference Vinod M, Chennamsetty I, Colin S et al. miR-206 controls LXRalpha expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta. 2014;1841:827–835.CrossRef Vinod M, Chennamsetty I, Colin S et al. miR-206 controls LXRalpha expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta. 2014;1841:827–835.CrossRef
19.
go back to reference Wang Y, Xu H, Si L et al. MiR-206 inhibits proliferation and migration of prostate cancer cells by targeting CXCL11. Prostate. 2018;78:479–490.CrossRef Wang Y, Xu H, Si L et al. MiR-206 inhibits proliferation and migration of prostate cancer cells by targeting CXCL11. Prostate. 2018;78:479–490.CrossRef
20.
go back to reference Dai C, Xie Y, Zhuang X, Yuan Z. MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother. 2018;104:763–770.CrossRef Dai C, Xie Y, Zhuang X, Yuan Z. MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. Biomed Pharmacother. 2018;104:763–770.CrossRef
21.
go back to reference Wang P, Gu J, Wang K, Shang J, Wang W. miR-206 inhibits thyroid cancer proliferation and invasion by targeting RAP1B. J Cell Biochem. 2019;120:18927–18936.CrossRef Wang P, Gu J, Wang K, Shang J, Wang W. miR-206 inhibits thyroid cancer proliferation and invasion by targeting RAP1B. J Cell Biochem. 2019;120:18927–18936.CrossRef
22.
go back to reference Samaeekia R, Adorno-Cruz V, Bockhorn J et al. miR-206 inhibits stemness and metastasis of breast cancer by targeting MKL1/IL11 pathway. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23:1091–1103.CrossRef Samaeekia R, Adorno-Cruz V, Bockhorn J et al. miR-206 inhibits stemness and metastasis of breast cancer by targeting MKL1/IL11 pathway. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23:1091–1103.CrossRef
23.
go back to reference Yang Q, Zhang L, Zhong Y, Lai L, Li X. miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci Rep. 2019;39. Yang Q, Zhang L, Zhong Y, Lai L, Li X. miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci Rep. 2019;39.
24.
go back to reference Liu C, Li J, Wang W, Zhong X, Xu F, Lu J. miR-206 inhibits liver cancer stem cell expansion by regulating EGFR expression. Cell Cycle. 2020;19:1077–1088.CrossRef Liu C, Li J, Wang W, Zhong X, Xu F, Lu J. miR-206 inhibits liver cancer stem cell expansion by regulating EGFR expression. Cell Cycle. 2020;19:1077–1088.CrossRef
25.
go back to reference Chen L, Li YS, Cui J e al. MiR-206 controls the phenotypic modulation of pulmonary arterial smooth muscle cells induced by serum from rats with hepatopulmonary syndrome by regulating the target gene, annexin A2. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2014;34:1768–1779.CrossRef Chen L, Li YS, Cui J e al. MiR-206 controls the phenotypic modulation of pulmonary arterial smooth muscle cells induced by serum from rats with hepatopulmonary syndrome by regulating the target gene, annexin A2. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2014;34:1768–1779.CrossRef
26.
go back to reference Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hemat. 2018;121:11–22.CrossRef Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hemat. 2018;121:11–22.CrossRef
27.
go back to reference Odero-Marah V, Hawsawi O, Henderson V, Sweeney J. Epithelial–mesenchymal transition (EMT) and prostate cancer. Adv Exp Med Biol. 2018;1095:101–110.CrossRef Odero-Marah V, Hawsawi O, Henderson V, Sweeney J. Epithelial–mesenchymal transition (EMT) and prostate cancer. Adv Exp Med Biol. 2018;1095:101–110.CrossRef
28.
go back to reference Jiang F, Fang DB, Lin J, Chen Q, Zhu LX, Yu HZ. Correlation of LARP1 and E-cadherin expression with prognosis of intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol. 2018;11:3559–3566.PubMedPubMedCentral Jiang F, Fang DB, Lin J, Chen Q, Zhu LX, Yu HZ. Correlation of LARP1 and E-cadherin expression with prognosis of intrahepatic cholangiocarcinoma. Int J Clin Exp Pathol. 2018;11:3559–3566.PubMedPubMedCentral
29.
go back to reference Mao X, Chen D, Wu J, Li J, Zhou H, Wu Y, Duan X. Differential expression of fascin, E-cadherin and vimentin: proteins associated with survival of cholangiocarcinoma patients. Am J Med Sci. 2013;346:261–268.CrossRef Mao X, Chen D, Wu J, Li J, Zhou H, Wu Y, Duan X. Differential expression of fascin, E-cadherin and vimentin: proteins associated with survival of cholangiocarcinoma patients. Am J Med Sci. 2013;346:261–268.CrossRef
30.
go back to reference Park YR, Seo SY, Kim SL et al. MiRNA-206 suppresses PGE2-induced colorectal cancer cell proliferation, migration, and invasion by targetting TM4SF1. Biosci Rep. 2018;38. Park YR, Seo SY, Kim SL et al. MiRNA-206 suppresses PGE2-induced colorectal cancer cell proliferation, migration, and invasion by targetting TM4SF1. Biosci Rep. 2018;38.
31.
go back to reference Xu M, Zuo D, Liu X et al. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochem Biophys Res Commun. 2017;488:6–14.CrossRef Xu M, Zuo D, Liu X et al. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochem Biophys Res Commun. 2017;488:6–14.CrossRef
32.
go back to reference Suzuki A, Li A, Gajera M et al. MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells. BMC Med Genomics. 2019;12:93.CrossRef Suzuki A, Li A, Gajera M et al. MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells. BMC Med Genomics. 2019;12:93.CrossRef
33.
go back to reference Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684.CrossRef Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684.CrossRef
34.
go back to reference Zhu XX, Yan YW, Ai CZ et al. Jarid2 is essential for the maintenance of tumor initiating cells in bladder cancer. Oncotarget. 2017;8:24483–24490.CrossRef Zhu XX, Yan YW, Ai CZ et al. Jarid2 is essential for the maintenance of tumor initiating cells in bladder cancer. Oncotarget. 2017;8:24483–24490.CrossRef
35.
go back to reference Yang C, Zhang J, Ding M et al. Ki67 targeted strategies for cancer therapy. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mexico. 2018;20:570–575. Yang C, Zhang J, Ding M et al. Ki67 targeted strategies for cancer therapy. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mexico. 2018;20:570–575.
36.
go back to reference Andersen JB, Spee B, Blechacz BR et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142:1021-1031e1015.CrossRef Andersen JB, Spee B, Blechacz BR et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142:1021-1031e1015.CrossRef
37.
go back to reference Du L, Huang GH, Mou KJ et al. MiR-206 is down-regulated and suppresses cell proliferation by targeting FOXP1 in brain gliomas. Int J Clin Exp Pathol. 2018;11:3405–3415.PubMedPubMedCentral Du L, Huang GH, Mou KJ et al. MiR-206 is down-regulated and suppresses cell proliferation by targeting FOXP1 in brain gliomas. Int J Clin Exp Pathol. 2018;11:3405–3415.PubMedPubMedCentral
38.
go back to reference Isanejad A, Alizadeh AM, Amani Shalamzari S et al. MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci. 2016;151:30–40.CrossRef Isanejad A, Alizadeh AM, Amani Shalamzari S et al. MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci. 2016;151:30–40.CrossRef
Metadata
Title
microRNA-206 Suppresses Cholangiocarcinoma Cell Growth and Invasion by Targeting Jumonji AT-Rich Interactive Domain 2
Authors
Chunying Xie
Zhenxing Huang
Zhaohui Huang
Xue Zhang
Siyuan Lou
Publication date
08-07-2021
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 7/2022
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-021-07121-z

Other articles of this Issue 7/2022

Digestive Diseases and Sciences 7/2022 Go to the issue