Skip to main content
Top
Published in: Digestive Diseases and Sciences 1/2021

01-01-2021 | Endoscopy | Review

Evolving Role and Future Directions of Natural Language Processing in Gastroenterology

Authors: Fredy Nehme, Keith Feldman

Published in: Digestive Diseases and Sciences | Issue 1/2021

Login to get access

Abstract

In line with the current trajectory of healthcare reform, significant emphasis has been placed on improving the utilization of data collected during a clinical encounter. Although the structured fields of electronic health records have provided a convenient foundation on which to begin such efforts, it was well understood that a substantial portion of relevant information is confined in the free-text narratives documenting care. Unfortunately, extracting meaningful information from such narratives is a non-trivial task, traditionally requiring significant manual effort. Today, computational approaches from a field known as Natural Language Processing (NLP) are poised to make a transformational impact in the analysis and utilization of these documents across healthcare practice and research, particularly in procedure-heavy sub-disciplines such as gastroenterology (GI). As such, this manuscript provides a clinically focused review of NLP systems in GI practice. It begins with a detailed synopsis around the state of NLP techniques, presenting state-of-the-art methods and typical use cases in both clinical settings and across other domains. Next, it will present a robust literature review around current applications of NLP within four prominent areas of gastroenterology including endoscopy, inflammatory bowel disease, pancreaticobiliary, and liver diseases. Finally, it concludes with a discussion of open problems and future opportunities of this technology in the field of gastroenterology and health care as a whole.
Literature
1.
go back to reference Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008;17:128–144.CrossRef Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008;17:128–144.CrossRef
2.
3.
4.
go back to reference Velupillai S, Suominen H, Liakata M, et al. Using clinical Natural Language Processing for health outcomes research: overview and actionable suggestions for future advances. J Biomed Inform. 2018;88:11–19.PubMedPubMedCentralCrossRef Velupillai S, Suominen H, Liakata M, et al. Using clinical Natural Language Processing for health outcomes research: overview and actionable suggestions for future advances. J Biomed Inform. 2018;88:11–19.PubMedPubMedCentralCrossRef
5.
go back to reference Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natural language processing in languages other than english: opportunities and challenges. J Biomed Semant. 2018;9:12.CrossRef Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical natural language processing in languages other than english: opportunities and challenges. J Biomed Semant. 2018;9:12.CrossRef
6.
go back to reference Carrell DS, Schoen RE, Leffler DA, et al. Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings. J Am Med Inform Assoc JAMIA. 2017;24:986–991.PubMedCrossRef Carrell DS, Schoen RE, Leffler DA, et al. Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings. J Am Med Inform Assoc JAMIA. 2017;24:986–991.PubMedCrossRef
8.
go back to reference Wang Y, Wang L, Rastegar-Mojarad M, et al. Clinical information extraction applications: a literature review. J Biomed Inform. 2018;77:34–49.PubMedCrossRef Wang Y, Wang L, Rastegar-Mojarad M, et al. Clinical information extraction applications: a literature review. J Biomed Inform. 2018;77:34–49.PubMedCrossRef
9.
go back to reference Luque C, Luna JM, Luque M, Ventura S. An advanced review on text mining in medicine. WIREs Data Min Knowl Discov. 2019;9:e1302. Luque C, Luna JM, Luque M, Ventura S. An advanced review on text mining in medicine. WIREs Data Min Knowl Discov. 2019;9:e1302.
10.
go back to reference Simpson MS, Demner-Fushman D. Biomedical text mining: a survey of recent progress. In: Aggarwal CC, Zhai C, eds. Mining Text Data. Boston: Springer; 2012:465–517.CrossRef Simpson MS, Demner-Fushman D. Biomedical text mining: a survey of recent progress. In: Aggarwal CC, Zhai C, eds. Mining Text Data. Boston: Springer; 2012:465–517.CrossRef
11.
go back to reference Belskaja IK. Machine translation of languages. Research. 1957;10:383–389. Belskaja IK. Machine translation of languages. Research. 1957;10:383–389.
12.
go back to reference Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press; 2008.CrossRef Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press; 2008.CrossRef
13.
go back to reference Jurafsky D, Martin JH. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River: Pearson Prentice Hall; 2009. Jurafsky D, Martin JH. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. Upper Saddle River: Pearson Prentice Hall; 2009.
15.
go back to reference Lloret E. Palomar M Text summarisation in progress: a literature review. Artif Intell Rev. 2012;37:1–41.CrossRef Lloret E. Palomar M Text summarisation in progress: a literature review. Artif Intell Rev. 2012;37:1–41.CrossRef
16.
go back to reference Gentzkow M, Kelly B, Taddy M. Text as data. J Econ Lit.. 2019;57:535–574.CrossRef Gentzkow M, Kelly B, Taddy M. Text as data. J Econ Lit.. 2019;57:535–574.CrossRef
17.
go back to reference Crawford M, Khoshgoftaar TM, Prusa JD, Richter AN, Al Najada H. Survey of review spam detection using machine learning techniques. J Big Data. 2015;2:23.CrossRef Crawford M, Khoshgoftaar TM, Prusa JD, Richter AN, Al Najada H. Survey of review spam detection using machine learning techniques. J Big Data. 2015;2:23.CrossRef
18.
go back to reference Liddy ED. Natural language processing. In: Drake MA, ed. Encyclopedia of Library and Information Science, 2nd Ed. New York: Marcel Decker, Inc.; 2001. Liddy ED. Natural language processing. In: Drake MA, ed. Encyclopedia of Library and Information Science, 2nd Ed. New York: Marcel Decker, Inc.; 2001.
19.
20.
go back to reference Manning CD. Part-of-speech tagging from 97% to 100%: Is it time for some linguistics? In: Gelbukh AF, ed. Computational Linguistics and Intelligent Text Processing. Berlin: Springer; 2011:171–189.CrossRef Manning CD. Part-of-speech tagging from 97% to 100%: Is it time for some linguistics? In: Gelbukh AF, ed. Computational Linguistics and Intelligent Text Processing. Berlin: Springer; 2011:171–189.CrossRef
21.
go back to reference Ferraro JP, Daumé H, DuVall SL, Chapman WW, Harkema H, Haug PJ. Improving performance of natural language processing part-of-speech tagging on clinical narratives through domain adaptation. J Am Med Inform Assoc JAMIA. 2013;20:931–939.PubMedCrossRef Ferraro JP, Daumé H, DuVall SL, Chapman WW, Harkema H, Haug PJ. Improving performance of natural language processing part-of-speech tagging on clinical narratives through domain adaptation. J Am Med Inform Assoc JAMIA. 2013;20:931–939.PubMedCrossRef
22.
go back to reference Goyal A, Gupta V, Kumar M. Recent Named Entity Recognition and Classification techniques: a systematic review. Comput Sci Rev. 2018;29:21–43.CrossRef Goyal A, Gupta V, Kumar M. Recent Named Entity Recognition and Classification techniques: a systematic review. Comput Sci Rev. 2018;29:21–43.CrossRef
23.
go back to reference Kübler S, McDonald R, Nivre J. Dependency parsing. Synth Lect Hum Lang Technol. 2008;2:1–127. Kübler S, McDonald R, Nivre J. Dependency parsing. Synth Lect Hum Lang Technol. 2008;2:1–127.
24.
go back to reference Shen W, Wang J, Han J. Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans Knowl Data Eng. 2015;27:443–460.CrossRef Shen W, Wang J, Han J. Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans Knowl Data Eng. 2015;27:443–460.CrossRef
25.
go back to reference Giatsoglou M, Vozalis MG, Diamantaras K, Vakali A, Sarigiannidis G, Chatzisavvas KCh. Sentiment analysis leveraging emotions and word embeddings. Expert Syst Appl. 2017;69:214–224.CrossRef Giatsoglou M, Vozalis MG, Diamantaras K, Vakali A, Sarigiannidis G, Chatzisavvas KCh. Sentiment analysis leveraging emotions and word embeddings. Expert Syst Appl. 2017;69:214–224.CrossRef
26.
go back to reference Mitra B, Craswell N. Neural text embeddings for information retrieval. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. Association for Computing Machinery, New York, NY, USA; 2017:813–814. Mitra B, Craswell N. Neural text embeddings for information retrieval. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. Association for Computing Machinery, New York, NY, USA; 2017:813–814.
27.
go back to reference Bengio S, Heigold G. Word embeddings for speech recognition. In: Interspeech; 2014:1053–1057. Bengio S, Heigold G. Word embeddings for speech recognition. In: Interspeech; 2014:1053–1057.
28.
go back to reference Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning; volume 32; 2014. Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on International Conference on Machine Learning; volume 32; 2014.
29.
go back to reference Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics; 2016:1715–1725. Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics; 2016:1715–1725.
30.
go back to reference Kim Y, Jernite Y, Sontag D, Rush AM. Character-aware neural language models. CoRR, 2015. Kim Y, Jernite Y, Sontag D, Rush AM. Character-aware neural language models. CoRR, 2015.
31.
go back to reference Wieting J, Bansal M, Gimpel K, Livescu K. Charagram: embedding words and sentences via character n-grams. In: EMNLP. 2016. Wieting J, Bansal M, Gimpel K, Livescu K. Charagram: embedding words and sentences via character n-grams. In: EMNLP. 2016.
33.
go back to reference Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc JAMIA. 2011;18:544–551.PubMedCrossRef Nadkarni PM, Ohno-Machado L, Chapman WW. Natural language processing: an introduction. J Am Med Inform Assoc JAMIA. 2011;18:544–551.PubMedCrossRef
34.
go back to reference Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications. Radiogr Rev Publ Radiol Soc N Am Inc. 2016;36:176–191. Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications. Radiogr Rev Publ Radiol Soc N Am Inc. 2016;36:176–191.
35.
go back to reference Yim W-W, Yetisgen M, Harris WP, Kwan SW. Natural language processing in oncology: a review. JAMA Oncol. 2016;2:797–804.PubMedCrossRef Yim W-W, Yetisgen M, Harris WP, Kwan SW. Natural language processing in oncology: a review. JAMA Oncol. 2016;2:797–804.PubMedCrossRef
36.
go back to reference Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language processing in radiology: a systematic review. Radiology. 2016;279:329–343.PubMedCrossRef Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language processing in radiology: a systematic review. Radiology. 2016;279:329–343.PubMedCrossRef
37.
go back to reference Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 2011;306:848–855.PubMed Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 2011;306:848–855.PubMed
38.
go back to reference Vo E, Davila JA, Hou J, et al. Differentiation of ileostomy from colostomy procedures: assessing the accuracy of current procedural terminology codes and the utility of natural language processing. Surgery. 2013;154:411–417.PubMedCrossRef Vo E, Davila JA, Hou J, et al. Differentiation of ileostomy from colostomy procedures: assessing the accuracy of current procedural terminology codes and the utility of natural language processing. Surgery. 2013;154:411–417.PubMedCrossRef
39.
go back to reference Elkin PL, Froehling DA, Wahner-Roedler DL, Brown SH, Bailey KR. Comparison of natural language processing biosurveillance methods for identifying influenza from encounter notes. Ann Intern Med. 2012;156:11–18.PubMedCrossRef Elkin PL, Froehling DA, Wahner-Roedler DL, Brown SH, Bailey KR. Comparison of natural language processing biosurveillance methods for identifying influenza from encounter notes. Ann Intern Med. 2012;156:11–18.PubMedCrossRef
40.
go back to reference Calvo RA, Milne DN, Hussain MS, Christensen H. Natural language processing in mental health applications using non-clinical texts. Nat Lang Eng. 2017;23:649–685.CrossRef Calvo RA, Milne DN, Hussain MS, Christensen H. Natural language processing in mental health applications using non-clinical texts. Nat Lang Eng. 2017;23:649–685.CrossRef
41.
42.
go back to reference Sun W, Cai Z, Li Y, Liu, F, Fang S, Wang G. Data processing and text mining technologies on electronic medical records: a review. J Healthc Eng. 2018;2018:4302425.PubMedPubMedCentralCrossRef Sun W, Cai Z, Li Y, Liu, F, Fang S, Wang G. Data processing and text mining technologies on electronic medical records: a review. J Healthc Eng. 2018;2018:4302425.PubMedPubMedCentralCrossRef
43.
go back to reference Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32:267–270.CrossRef Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32:267–270.CrossRef
44.
go back to reference McCray AT. An upper-level ontology for the biomedical domain. Int J Genom. 2003;4:80–84. McCray AT. An upper-level ontology for the biomedical domain. Int J Genom. 2003;4:80–84.
46.
go back to reference Gero Z, Ho J. PMCVec: distributed phrase representation for biomedical text processing. J Biomed Inform. 2019;3:100047. Gero Z, Ho J. PMCVec: distributed phrase representation for biomedical text processing. J Biomed Inform. 2019;3:100047.
47.
go back to reference Bai T, Chanda AK, Egleston BL, Vucetic S. EHR phenotyping via jointly embedding medical concepts and words into a unified vector space. BMC Med Inform Decis Mak. 2018;18:123.PubMedPubMedCentralCrossRef Bai T, Chanda AK, Egleston BL, Vucetic S. EHR phenotyping via jointly embedding medical concepts and words into a unified vector space. BMC Med Inform Decis Mak. 2018;18:123.PubMedPubMedCentralCrossRef
48.
go back to reference Liu K, Hogan WR, Crowley RS. Natural Language Processing methods and systems for biomedical ontology learning. J Biomed Inform. 2011;44:163–179.PubMedCrossRef Liu K, Hogan WR, Crowley RS. Natural Language Processing methods and systems for biomedical ontology learning. J Biomed Inform. 2011;44:163–179.PubMedCrossRef
49.
go back to reference Feczko PJ, Ackerman LV, Halpert RD, Simms SM. A computer-based gastrointestinal information management system. Radiology. 1984;152:297–300.PubMedCrossRef Feczko PJ, Ackerman LV, Halpert RD, Simms SM. A computer-based gastrointestinal information management system. Radiology. 1984;152:297–300.PubMedCrossRef
50.
go back to reference Rex DK, Schoenfeld PS, Cohen J, et al. Quality indicators for colonoscopy. Am J Gastroenterol. 2015;110:72–90.PubMedCrossRef Rex DK, Schoenfeld PS, Cohen J, et al. Quality indicators for colonoscopy. Am J Gastroenterol. 2015;110:72–90.PubMedCrossRef
52.
go back to reference Barclay RL, Vicari JJ, Doughty AS, Johanson JF, Greenlaw RL. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med. 2006;355:2533–2541.PubMedCrossRef Barclay RL, Vicari JJ, Doughty AS, Johanson JF, Greenlaw RL. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med. 2006;355:2533–2541.PubMedCrossRef
53.
go back to reference Adler A, Wegscheider K, Lieberman D, et al. Factors determining the quality of screening colonoscopy: a prospective study on adenoma detection rates, from 12,134 examinations (Berlin colonoscopy project 3, BECOP-3). Gut. 2013;62:236–241.PubMedCrossRef Adler A, Wegscheider K, Lieberman D, et al. Factors determining the quality of screening colonoscopy: a prospective study on adenoma detection rates, from 12,134 examinations (Berlin colonoscopy project 3, BECOP-3). Gut. 2013;62:236–241.PubMedCrossRef
55.
go back to reference Pike IM. Quality improvement in gastroenterology: a US perspective. Nat Clin Pract Gastroenterol Hepatol. 2008;5:550–551.PubMedCrossRef Pike IM. Quality improvement in gastroenterology: a US perspective. Nat Clin Pract Gastroenterol Hepatol. 2008;5:550–551.PubMedCrossRef
56.
go back to reference Imler TD, Morea J, Kahi C, et al. Multi-center colonoscopy quality measurement utilizing natural language processing. Am J Gastroenterol. 2015;110:543–552.PubMedCrossRef Imler TD, Morea J, Kahi C, et al. Multi-center colonoscopy quality measurement utilizing natural language processing. Am J Gastroenterol. 2015;110:543–552.PubMedCrossRef
57.
go back to reference Imler TD, Morea J, Kahi C, Imperiale TF. Natural language processing accurately categorizes findings from colonoscopy and pathology reports. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2013;11:689–694. Imler TD, Morea J, Kahi C, Imperiale TF. Natural language processing accurately categorizes findings from colonoscopy and pathology reports. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2013;11:689–694.
58.
go back to reference Mehrotra A, Dellon ES, Schoen RE, et al. Applying a natural language processing tool to electronic health records to assess performance on colonoscopy quality measures. Gastrointest Endosc. 2012;75:1233–1239.PubMedCrossRef Mehrotra A, Dellon ES, Schoen RE, et al. Applying a natural language processing tool to electronic health records to assess performance on colonoscopy quality measures. Gastrointest Endosc. 2012;75:1233–1239.PubMedCrossRef
59.
go back to reference Harkema H, Chapman WW, Saul M, Dellon ES, Schoen RE, Mehrotra A. Developing a natural language processing application for measuring the quality of colonoscopy procedures. J Am Med Inform Assoc JAMIA. 2011;18:i150–i156.PubMedCrossRef Harkema H, Chapman WW, Saul M, Dellon ES, Schoen RE, Mehrotra A. Developing a natural language processing application for measuring the quality of colonoscopy procedures. J Am Med Inform Assoc JAMIA. 2011;18:i150–i156.PubMedCrossRef
60.
go back to reference Gawron AJ, Thompson WK, Keswani RN, Rasmussen LV, Kho AN. Anatomic and advanced adenoma detection rates as quality metrics determined via natural language processing. Am J Gastroenterol. 2014;109:1844–1849.PubMedCrossRef Gawron AJ, Thompson WK, Keswani RN, Rasmussen LV, Kho AN. Anatomic and advanced adenoma detection rates as quality metrics determined via natural language processing. Am J Gastroenterol. 2014;109:1844–1849.PubMedCrossRef
61.
go back to reference Lee JK, Jensen CD, Levin TR, et al. Accurate identification of colonoscopy quality and polyp findings using natural language processing. J Clin Gastroenterol. 2019;53:e25–e30.PubMedPubMedCentralCrossRef Lee JK, Jensen CD, Levin TR, et al. Accurate identification of colonoscopy quality and polyp findings using natural language processing. J Clin Gastroenterol. 2019;53:e25–e30.PubMedPubMedCentralCrossRef
62.
go back to reference Raju GS, Lum PJ, Slack RS, et al. Natural language processing as an alternative to manual reporting of colonoscopy quality metrics. Gastrointest Endosc. 2015;82:512–519.PubMedPubMedCentralCrossRef Raju GS, Lum PJ, Slack RS, et al. Natural language processing as an alternative to manual reporting of colonoscopy quality metrics. Gastrointest Endosc. 2015;82:512–519.PubMedPubMedCentralCrossRef
63.
go back to reference Deutsch JC. Colonoscopy quality, quality measures, and a natural language processing tool for electronic health records. Gastrointest Endosc. 2012;75:1240–1242.PubMedCrossRef Deutsch JC. Colonoscopy quality, quality measures, and a natural language processing tool for electronic health records. Gastrointest Endosc. 2012;75:1240–1242.PubMedCrossRef
66.
go back to reference Abdul-Baki H, Schoen RE, Dean K, et al. Public reporting of colonoscopy quality is associated with an increase in endoscopist adenoma detection rate. Gastrointest Endosc. 2015;82:676–682.PubMedPubMedCentralCrossRef Abdul-Baki H, Schoen RE, Dean K, et al. Public reporting of colonoscopy quality is associated with an increase in endoscopist adenoma detection rate. Gastrointest Endosc. 2015;82:676–682.PubMedPubMedCentralCrossRef
67.
go back to reference Mehrotra A, Morris M, Gourevitch RA, et al. Physician characteristics associated with higher adenoma detection rate. Gastrointest Endosc. 2018;87:778–786.PubMedCrossRef Mehrotra A, Morris M, Gourevitch RA, et al. Physician characteristics associated with higher adenoma detection rate. Gastrointest Endosc. 2018;87:778–786.PubMedCrossRef
68.
go back to reference Crockett SD, Gourevitch RA, Morris M, et al. Endoscopist factors that influence serrated polyp detection: a multicenter study. Endoscopy. 2018;50:984–992.PubMedPubMedCentralCrossRef Crockett SD, Gourevitch RA, Morris M, et al. Endoscopist factors that influence serrated polyp detection: a multicenter study. Endoscopy. 2018;50:984–992.PubMedPubMedCentralCrossRef
69.
go back to reference Gourevitch RA, Rose S, Crockett SD, et al. Variation in pathologist classification of colorectal adenomas and serrated polyps. Am J Gastroenterol. 2018;113:431–439.PubMedPubMedCentralCrossRef Gourevitch RA, Rose S, Crockett SD, et al. Variation in pathologist classification of colorectal adenomas and serrated polyps. Am J Gastroenterol. 2018;113:431–439.PubMedPubMedCentralCrossRef
70.
go back to reference Hong SN, Son HJ, Choi SK, et al. A prediction model for advanced colorectal neoplasia in an asymptomatic screening population. PloS One. 2017;12:e0181040.PubMedPubMedCentralCrossRef Hong SN, Son HJ, Choi SK, et al. A prediction model for advanced colorectal neoplasia in an asymptomatic screening population. PloS One. 2017;12:e0181040.PubMedPubMedCentralCrossRef
71.
go back to reference Blumenthal DM, Singal G, Mangla SS, Macklin EA, Chung DC. Predicting non-adherence with outpatient colonoscopy using a novel electronic tool that measures prior non-adherence. J Gen Intern Med. 2015;30:724–731.PubMedPubMedCentralCrossRef Blumenthal DM, Singal G, Mangla SS, Macklin EA, Chung DC. Predicting non-adherence with outpatient colonoscopy using a novel electronic tool that measures prior non-adherence. J Gen Intern Med. 2015;30:724–731.PubMedPubMedCentralCrossRef
72.
go back to reference Thrift AP, Natarajan Y, Mansour NM, et al. Tu1117—using natural language processing to accurately identify dysplasia in pathology reports for patients with Barrett’s Esophagus. Gastroenterology. 2018;154:896–897. Thrift AP, Natarajan Y, Mansour NM, et al. Tu1117—using natural language processing to accurately identify dysplasia in pathology reports for patients with Barrett’s Esophagus. Gastroenterology. 2018;154:896–897.
73.
go back to reference Hou JK, Soysal E, Moon S, et al. Su1815 natural language processing accurately identifies colorectal dysplasia in a national cohort of veterans with inflammatory bowel disease. Gastroenterology. 2016;150:S560–S561.CrossRef Hou JK, Soysal E, Moon S, et al. Su1815 natural language processing accurately identifies colorectal dysplasia in a national cohort of veterans with inflammatory bowel disease. Gastroenterology. 2016;150:S560–S561.CrossRef
74.
go back to reference Ananthakrishnan AN, Cai T, Cheng S-C, et al. Tu1276 improving case definition of Crohn’s disease and ulcerative colitis in electronic medical records using natural language processing—a novel informatics approach. Gastroenterology. 2012;142:S-791.CrossRef Ananthakrishnan AN, Cai T, Cheng S-C, et al. Tu1276 improving case definition of Crohn’s disease and ulcerative colitis in electronic medical records using natural language processing—a novel informatics approach. Gastroenterology. 2012;142:S-791.CrossRef
75.
go back to reference Cai T, Lin T-C, Bond A, et al. The association between arthralgia and Vedolizumab using natural language processing. Inflamm Bowel Dis. 2018;24:2242–2246.PubMedPubMedCentralCrossRef Cai T, Lin T-C, Bond A, et al. The association between arthralgia and Vedolizumab using natural language processing. Inflamm Bowel Dis. 2018;24:2242–2246.PubMedPubMedCentralCrossRef
77.
go back to reference ASGE Standards of Practice Committee, Anderson MA, Fisher L, et al. Complications of ERCP. Gastrointest Endosc. 2012;75:467–473.CrossRef ASGE Standards of Practice Committee, Anderson MA, Fisher L, et al. Complications of ERCP. Gastrointest Endosc. 2012;75:467–473.CrossRef
78.
go back to reference Imler TD, Sherman S, Imperiale TF, et al. Provider-specific quality measurement for ERCP using natural language processing. Gastrointest Endosc. 2018;87:164–173.PubMedCrossRef Imler TD, Sherman S, Imperiale TF, et al. Provider-specific quality measurement for ERCP using natural language processing. Gastrointest Endosc. 2018;87:164–173.PubMedCrossRef
79.
go back to reference Al-Haddad MA, Friedlin J, Kesterson J, Waters JA, Aguilar-Saavedra JR, Schmidt CM. Natural language processing for the development of a clinical registry: a validation study in intraductal papillary mucinous neoplasms. HPB. 2010;12:688–695.PubMedPubMedCentralCrossRef Al-Haddad MA, Friedlin J, Kesterson J, Waters JA, Aguilar-Saavedra JR, Schmidt CM. Natural language processing for the development of a clinical registry: a validation study in intraductal papillary mucinous neoplasms. HPB. 2010;12:688–695.PubMedPubMedCentralCrossRef
80.
go back to reference Mehrabi S, Schmidt CM, Waters JA, et al. An efficient pancreatic cyst identification methodology using natural language processing. Stud Health Technol Inform. 2013;192:822–826.PubMed Mehrabi S, Schmidt CM, Waters JA, et al. An efficient pancreatic cyst identification methodology using natural language processing. Stud Health Technol Inform. 2013;192:822–826.PubMed
81.
go back to reference Chang EK, Yu CY, Clarke R, et al. Mo1050 using an automated diagnostic algorithm that utilizes electronic health records and natural language processing to define a population with cirrhosis. Gastroenterology.. 2015;148:S-1074.CrossRef Chang EK, Yu CY, Clarke R, et al. Mo1050 using an automated diagnostic algorithm that utilizes electronic health records and natural language processing to define a population with cirrhosis. Gastroenterology.. 2015;148:S-1074.CrossRef
82.
go back to reference Kung R, Ma A, Dever JB, et al. Mo1043 a natural language processing algorithm for identification of patients with cirrhosis from electronic medical records. Gastroenterology. 2015;148:1071–1072.CrossRef Kung R, Ma A, Dever JB, et al. Mo1043 a natural language processing algorithm for identification of patients with cirrhosis from electronic medical records. Gastroenterology. 2015;148:1071–1072.CrossRef
84.
go back to reference Sada Y, Hou J, Richardson P, El-Serag H, Davila J. Validation of case finding algorithms for hepatocellular cancer from administrative data and electronic health records using natural language processing. Med Care. 2016;54:e9–e14.PubMedPubMedCentralCrossRef Sada Y, Hou J, Richardson P, El-Serag H, Davila J. Validation of case finding algorithms for hepatocellular cancer from administrative data and electronic health records using natural language processing. Med Care. 2016;54:e9–e14.PubMedPubMedCentralCrossRef
85.
86.
go back to reference Imler TD, Ring N, Crabb DW. Su1403 medical, social, and legal risks to predict alcoholic liver disease using natural language processing and advanced analytics. Gastroenterology. 2015;148:S-499.CrossRef Imler TD, Ring N, Crabb DW. Su1403 medical, social, and legal risks to predict alcoholic liver disease using natural language processing and advanced analytics. Gastroenterology. 2015;148:S-499.CrossRef
87.
go back to reference Jha AK. The promise of electronic records: around the corner or down the road? JAMA. 2011;306:880–881.PubMedCrossRef Jha AK. The promise of electronic records: around the corner or down the road? JAMA. 2011;306:880–881.PubMedCrossRef
88.
go back to reference Imler TD, Morea J, Imperiale TF. Clinical decision support with natural language processing facilitates determination of colonoscopy surveillance intervals. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2014;12:1130–1136. Imler TD, Morea J, Imperiale TF. Clinical decision support with natural language processing facilitates determination of colonoscopy surveillance intervals. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2014;12:1130–1136.
89.
go back to reference Bhat S, Zahorian T, Robert R, Farraye FA. Advocating for patients with inflammatory bowel disease: how to navigate the prior authorization process. Inflamm Bowel Dis. 2019;25:1621–1628.PubMedCrossRef Bhat S, Zahorian T, Robert R, Farraye FA. Advocating for patients with inflammatory bowel disease: how to navigate the prior authorization process. Inflamm Bowel Dis. 2019;25:1621–1628.PubMedCrossRef
91.
go back to reference Coiera E. When conversation is better than computation. J Am Med Inform Assoc JAMIA. 2000;7:277–286.PubMedCrossRef Coiera E. When conversation is better than computation. J Am Med Inform Assoc JAMIA. 2000;7:277–286.PubMedCrossRef
92.
go back to reference Maybury M. Advances in Automatic Text Summarization. New York: MIT Press; 1999. Maybury M. Advances in Automatic Text Summarization. New York: MIT Press; 1999.
93.
go back to reference Friedman C, Hripcsak G. Natural language processing and its future in medicine. Acad Med. 1999;74:890–895.PubMedCrossRef Friedman C, Hripcsak G. Natural language processing and its future in medicine. Acad Med. 1999;74:890–895.PubMedCrossRef
95.
go back to reference Trugenberger CA, Wälti C, Peregrim D, Sharp ME, Bureeva S. Discovery of novel biomarkers and phenotypes by semantic technologies. BMC Bioinform. 2013;14:51.CrossRef Trugenberger CA, Wälti C, Peregrim D, Sharp ME, Bureeva S. Discovery of novel biomarkers and phenotypes by semantic technologies. BMC Bioinform. 2013;14:51.CrossRef
97.
go back to reference McCoy AB, Wright A, Eysenbach G, et al. State of the art in clinical informatics: evidence and examples. Yearb Med Inform. 2013;8:13–19.PubMedCrossRef McCoy AB, Wright A, Eysenbach G, et al. State of the art in clinical informatics: evidence and examples. Yearb Med Inform. 2013;8:13–19.PubMedCrossRef
98.
go back to reference Zheng X, Feng J, Chen Y, Peng H, Zhang W. Learning context—specific word/character embeddings. In: Proceedings of AAAI Conference on Artificial Intelligence; 2017:3393–3399. Zheng X, Feng J, Chen Y, Peng H, Zhang W. Learning context—specific word/character embeddings. In: Proceedings of AAAI Conference on Artificial Intelligence; 2017:3393–3399.
99.
go back to reference Li P, Bing L, Lam W, Li H, Liao Y. Reader-aware multi-document summarization via sparse coding. In: IJCAI; 2015. Li P, Bing L, Lam W, Li H, Liao Y. Reader-aware multi-document summarization via sparse coding. In: IJCAI; 2015.
100.
go back to reference Forbush TB, Gundlapalli AV, Palmer MN, et al. Sitting on Pins and needles: characterization of symptom descriptions in clinical notes. AMIA Summits Transl Sci Proc. 2013;2013:67–71.PubMedPubMedCentral Forbush TB, Gundlapalli AV, Palmer MN, et al. Sitting on Pins and needles: characterization of symptom descriptions in clinical notes. AMIA Summits Transl Sci Proc. 2013;2013:67–71.PubMedPubMedCentral
101.
go back to reference Koleck TA, Dreisbach C, Bourne PE, Bakken S. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc. 2019;26:364–379.PubMedPubMedCentralCrossRef Koleck TA, Dreisbach C, Bourne PE, Bakken S. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. J Am Med Inform Assoc. 2019;26:364–379.PubMedPubMedCentralCrossRef
102.
go back to reference Chapman WW. Closing the gap between NLP research and clinical practice. Methods Inf Med. 2010;49:317–319.PubMedCrossRef Chapman WW. Closing the gap between NLP research and clinical practice. Methods Inf Med. 2010;49:317–319.PubMedCrossRef
103.
go back to reference Liberati EG, Ruggiero F, Galuppo L, et al. What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation. Implement Sci. 2017;12:113.PubMedPubMedCentralCrossRef Liberati EG, Ruggiero F, Galuppo L, et al. What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation. Implement Sci. 2017;12:113.PubMedPubMedCentralCrossRef
104.
go back to reference Horsky J, Schiff GD, Johnston D, Mercincavage L, Bell D, Middleton B. Interface design principles for usable decision support: a targeted review of best practices for clinical prescribing interventions. J Biomed Inform. 2012;45:1202–1216.PubMedCrossRef Horsky J, Schiff GD, Johnston D, Mercincavage L, Bell D, Middleton B. Interface design principles for usable decision support: a targeted review of best practices for clinical prescribing interventions. J Biomed Inform. 2012;45:1202–1216.PubMedCrossRef
Metadata
Title
Evolving Role and Future Directions of Natural Language Processing in Gastroenterology
Authors
Fredy Nehme
Keith Feldman
Publication date
01-01-2021
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 1/2021
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-020-06156-y

Other articles of this Issue 1/2021

Digestive Diseases and Sciences 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.