Skip to main content
Top
Published in: Digestive Diseases and Sciences 8/2019

01-08-2019 | Original Article

miR-219a-5p Ameliorates Hepatic Ischemia/Reperfusion Injury via Impairing TP53BP2

Authors: Yu Xiao, Shouhua Zhang, Qiang Li, Zhiwen Liu, Wenli Mai, Wen Chen, Jun Lei, Huakun Hu

Published in: Digestive Diseases and Sciences | Issue 8/2019

Login to get access

Abstract

Background

Hepatic ischemia/reperfusion (I/R) injury is a serious complication that occurs upon hypovolemic shock, liver resection, and transplantation. A significant age-dependent difference in the injury response to hepatic I/R in both human and animal models has been reported. Nevertheless, the molecular mechanism is currently unclear.

Aims

To clarify the reason why aged animals or people were more vulnerable to hepatic I/R injury.

Methods

In the present study, we found decreased miR-219a-5p expression in the old mice more vulnerable to hepatic I/R injury. Administrated with agomir-miR-219a-5p diminished the severity of hepatic I/R injury in old mice, as indicated by lower serum ALT and AST, oxidative parameters including MDA, TOA, and OSI, and decreased apoptotic cell number. The effect of miR-219a-5p was also confirmed in the H2O2-induced apoptosis model in AML-12 and NCTC1469 cells. After miR-219a-5p overexpression, two key apoptosis-related proteins Bax and P21, target genes of TP53, were decreased. Furthermore, TP53BP2 interacts with p53 family members and promotes their transcriptional activities toward pro-apoptosis genes.

Results

RNA sequencing, western blot, and luciferase reporter assay proved that TP53BP2, a crucial TP53 transcriptional activity enhancer in vivo, was directly regulated by miR-219a-5p.

Conclusions

In summary, our study demonstrated that age-related miR-219a-5p can attenuate hepatic I/R injury through inhibiting TP53BP2 and downstream TP53-dependent apoptosis of hepatic cells in mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol. 1997;37:327–338.CrossRefPubMed Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol. 1997;37:327–338.CrossRefPubMed
2.
go back to reference Zhang W, Wang M, Xie HY, et al. Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplant Proc. 2007;39:1332–1337.CrossRefPubMed Zhang W, Wang M, Xie HY, et al. Role of reactive oxygen species in mediating hepatic ischemia-reperfusion injury and its therapeutic applications in liver transplantation. Transplant Proc. 2007;39:1332–1337.CrossRefPubMed
3.
go back to reference Wanner GA, Ertel W, Müller P, et al. Liver ischemia and reperfusion induces a systemic inflammatory response through Kupffer cell activation. Shock. 1996;5:34–40.CrossRefPubMed Wanner GA, Ertel W, Müller P, et al. Liver ischemia and reperfusion induces a systemic inflammatory response through Kupffer cell activation. Shock. 1996;5:34–40.CrossRefPubMed
4.
go back to reference Feng S, Goodrich NP, Bragg-Gresham JL, et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant. 2006;6:783–790.CrossRefPubMed Feng S, Goodrich NP, Bragg-Gresham JL, et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant. 2006;6:783–790.CrossRefPubMed
5.
go back to reference Clavien PA, Selzner M, Rüdiger HA, et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg. 2003;238(6):843–850.CrossRefPubMedPubMedCentral Clavien PA, Selzner M, Rüdiger HA, et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg. 2003;238(6):843–850.CrossRefPubMedPubMedCentral
6.
go back to reference Okaya T, Blanchard J, Schuster R, et al. Age-dependent responses to hepatic ischemia/reperfusion injury. Shock. 2005;24:421–427.CrossRefPubMed Okaya T, Blanchard J, Schuster R, et al. Age-dependent responses to hepatic ischemia/reperfusion injury. Shock. 2005;24:421–427.CrossRefPubMed
7.
go back to reference Huber N, Sakai N, Eismann T, et al. Age-related decrease in proteasome expression contributes to defective nuclear factor-kappaB activation during hepatic ischemia/reperfusion. Hepatology. 2009;49:1718–1728.CrossRefPubMed Huber N, Sakai N, Eismann T, et al. Age-related decrease in proteasome expression contributes to defective nuclear factor-kappaB activation during hepatic ischemia/reperfusion. Hepatology. 2009;49:1718–1728.CrossRefPubMed
8.
go back to reference Kireev RA, Cuesta S, Ibarrola C, et al. Age-related differences in hepatic ischemia/reperfusion: gene activation, liver injury, and protective effect of melatonin. J Surg Res. 2012;178:922–934.CrossRefPubMed Kireev RA, Cuesta S, Ibarrola C, et al. Age-related differences in hepatic ischemia/reperfusion: gene activation, liver injury, and protective effect of melatonin. J Surg Res. 2012;178:922–934.CrossRefPubMed
9.
go back to reference Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–263.CrossRefPubMed Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 2010;11:252–263.CrossRefPubMed
10.
go back to reference Li L, Li G, Yu C, et al. A role of microRNA-370 in hepatic ischaemia-reperfusion injury by targeting transforming growth factor-beta receptor II. Liver Int. 2015;35(4):1124–1132.CrossRefPubMed Li L, Li G, Yu C, et al. A role of microRNA-370 in hepatic ischaemia-reperfusion injury by targeting transforming growth factor-beta receptor II. Liver Int. 2015;35(4):1124–1132.CrossRefPubMed
11.
go back to reference Chen Q, Kong L, Xu X, Geng Q, Tang W, Jiang W. Down-regulation of microRNA-146a in the early stage of liver ischemia-reperfusion injury. Transplant Proc. 2013;45:492–496.CrossRefPubMed Chen Q, Kong L, Xu X, Geng Q, Tang W, Jiang W. Down-regulation of microRNA-146a in the early stage of liver ischemia-reperfusion injury. Transplant Proc. 2013;45:492–496.CrossRefPubMed
12.
go back to reference Li SP, He JD, Wang Z, et al. miR-30b inhibits autophagy to alleviate hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5 conjugate. World J Gastroenterol. 2016;22:4501–4514.CrossRefPubMedPubMedCentral Li SP, He JD, Wang Z, et al. miR-30b inhibits autophagy to alleviate hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5 conjugate. World J Gastroenterol. 2016;22:4501–4514.CrossRefPubMedPubMedCentral
13.
go back to reference Li S, Zhang J, Wang Z, et al. MicroRNA-17 regulates autophagy to promote hepatic ischemia/reperfusion injury via suppression of signal transductions and activation of transcription-3 expression. Liver Transpl. 2016;22:1697–1709.CrossRefPubMed Li S, Zhang J, Wang Z, et al. MicroRNA-17 regulates autophagy to promote hepatic ischemia/reperfusion injury via suppression of signal transductions and activation of transcription-3 expression. Liver Transpl. 2016;22:1697–1709.CrossRefPubMed
14.
go back to reference Jiang W, Liu G, Tang W. MicroRNA-182-5p ameliorates liver ischemia-reperfusion injury by suppressing toll-like receptor 4. Transplant Proc. 2016;48:2809–2814.CrossRefPubMed Jiang W, Liu G, Tang W. MicroRNA-182-5p ameliorates liver ischemia-reperfusion injury by suppressing toll-like receptor 4. Transplant Proc. 2016;48:2809–2814.CrossRefPubMed
15.
go back to reference Murai K, Sun G, Ye P, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7:10965.CrossRefPubMedPubMedCentral Murai K, Sun G, Ye P, et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat Commun. 2016;7:10965.CrossRefPubMedPubMedCentral
16.
go back to reference Zhuang C, Yuan Y, Song T, et al. miR-219a-5p inhibits breast cancer cell migration and epithelial-mesenchymal transition by targeting myocardin-related transcription factor A. Acta Biochim Biophys Sin (Shanghai). 2017;49:1112–1121.CrossRef Zhuang C, Yuan Y, Song T, et al. miR-219a-5p inhibits breast cancer cell migration and epithelial-mesenchymal transition by targeting myocardin-related transcription factor A. Acta Biochim Biophys Sin (Shanghai). 2017;49:1112–1121.CrossRef
17.
go back to reference Huang N, Lin J, Ruan J, et al. MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett. 2012;586:884–891.CrossRefPubMed Huang N, Lin J, Ruan J, et al. MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett. 2012;586:884–891.CrossRefPubMed
18.
go back to reference Burgess KS, Philips S, Benson EA, et al. Age-related changes in MicroRNA expression and pharmacogenes in human liver. Clin Pharmacol Ther. 2015;98:205–215.CrossRefPubMed Burgess KS, Philips S, Benson EA, et al. Age-related changes in MicroRNA expression and pharmacogenes in human liver. Clin Pharmacol Ther. 2015;98:205–215.CrossRefPubMed
19.
go back to reference Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X. ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol. 2004;24:1341–1350.CrossRefPubMedPubMedCentral Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X. ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol. 2004;24:1341–1350.CrossRefPubMedPubMedCentral
20.
go back to reference Zhang M, Heldin A, Palomar-Siles M, Öhlin S, Bykov VJ, Wiman KG. Synergistic rescue of nonsense Mutant Tumor suppressor p53 by combination Treatment with aminoglycosides and Mdm2 inhibitors. Front Oncol. 2018;4(7):323.CrossRef Zhang M, Heldin A, Palomar-Siles M, Öhlin S, Bykov VJ, Wiman KG. Synergistic rescue of nonsense Mutant Tumor suppressor p53 by combination Treatment with aminoglycosides and Mdm2 inhibitors. Front Oncol. 2018;4(7):323.CrossRef
21.
go back to reference Samuels-Lev Y, O’Connor DJ, Bergamaschi D, et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8:781–794.CrossRefPubMed Samuels-Lev Y, O’Connor DJ, Bergamaschi D, et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8:781–794.CrossRefPubMed
22.
go back to reference Bergamaschi D, Samuels Y, Sullivan A, et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet. 2006;38:1133–1141.CrossRefPubMed Bergamaschi D, Samuels Y, Sullivan A, et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet. 2006;38:1133–1141.CrossRefPubMed
23.
go back to reference Yang M, Antoine DJ, Weemhoff JL, et al. Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice. Liver Transplant. 2014;20(11):1372–1382.CrossRef Yang M, Antoine DJ, Weemhoff JL, et al. Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice. Liver Transplant. 2014;20(11):1372–1382.CrossRef
24.
go back to reference Tong Y, Ding XB, Chen ZX, et al. WISP1 mediates hepatic warm ischemia reperfusion injury via TLR4 signaling in mice. Sci Rep. 2016;29:20141.CrossRef Tong Y, Ding XB, Chen ZX, et al. WISP1 mediates hepatic warm ischemia reperfusion injury via TLR4 signaling in mice. Sci Rep. 2016;29:20141.CrossRef
25.
go back to reference Mimura S, Iwama H, Kato K, et al. Profile of microRNAs associated with aging in rat liver. Int J Mol Med. 2014;34:1065–1072.CrossRefPubMed Mimura S, Iwama H, Kato K, et al. Profile of microRNAs associated with aging in rat liver. Int J Mol Med. 2014;34:1065–1072.CrossRefPubMed
26.
go back to reference Jiang Y, Yin L, Jing H, Zhang H. MicroRNA-219-5p exerts tumor suppressor function by targeting ROBO1 in glioblastoma. Tumour Biol. 2015;36:8943–8951.CrossRefPubMed Jiang Y, Yin L, Jing H, Zhang H. MicroRNA-219-5p exerts tumor suppressor function by targeting ROBO1 in glioblastoma. Tumour Biol. 2015;36:8943–8951.CrossRefPubMed
27.
go back to reference Li C, Dong J, Han Z, Zhang K. MicroRNA-219-5p represses the proliferation, migration, and invasion of gastric cancer cells by targeting the LRH-1/Wnt/beta-catenin signaling pathway. Oncol Res. 2017;25:617–627.CrossRefPubMedPubMedCentral Li C, Dong J, Han Z, Zhang K. MicroRNA-219-5p represses the proliferation, migration, and invasion of gastric cancer cells by targeting the LRH-1/Wnt/beta-catenin signaling pathway. Oncol Res. 2017;25:617–627.CrossRefPubMedPubMedCentral
29.
go back to reference Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–1014.CrossRefPubMed Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–1014.CrossRefPubMed
30.
go back to reference Brady HJ, Gil-Gómez G. Molecules in focus Bax. The pro-apoptotic Bcl-2 family member, Bax. Int J Biochem Cell Biol. 1998;30(6):647–650.CrossRefPubMed Brady HJ, Gil-Gómez G. Molecules in focus Bax. The pro-apoptotic Bcl-2 family member, Bax. Int J Biochem Cell Biol. 1998;30(6):647–650.CrossRefPubMed
31.
go back to reference Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.PubMedPubMedCentral Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.PubMedPubMedCentral
33.
go back to reference Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71.CrossRef Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71.CrossRef
34.
35.
go back to reference Lane D, Levine A. p53 research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol. 2010;2:a000893.PubMedPubMedCentral Lane D, Levine A. p53 research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol. 2010;2:a000893.PubMedPubMedCentral
36.
go back to reference Pasquinelli, Amy E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship, Nat Rev Genet. 2012 Mar 13;13(4):271-82. Pasquinelli, Amy E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship, Nat Rev Genet. 2012 Mar 13;13(4):271-82.
37.
go back to reference Arababadi MK, Asadikaram G. Opium induces apoptosis in Jurkat cells via promotion of pro-apoptotic and inhibition of anti-apoptotic molecules, Iran. J Basic Med Sci. 2016;19:215–220. Arababadi MK, Asadikaram G. Opium induces apoptosis in Jurkat cells via promotion of pro-apoptotic and inhibition of anti-apoptotic molecules, Iran. J Basic Med Sci. 2016;19:215–220.
38.
go back to reference Kobayashi S, Kajino S, Takahashi N, et al. 53BP2 induces apoptosis through the mitochondrial death pathway. Genes Cells. 2005;10:253–260.CrossRefPubMed Kobayashi S, Kajino S, Takahashi N, et al. 53BP2 induces apoptosis through the mitochondrial death pathway. Genes Cells. 2005;10:253–260.CrossRefPubMed
Metadata
Title
miR-219a-5p Ameliorates Hepatic Ischemia/Reperfusion Injury via Impairing TP53BP2
Authors
Yu Xiao
Shouhua Zhang
Qiang Li
Zhiwen Liu
Wenli Mai
Wen Chen
Jun Lei
Huakun Hu
Publication date
01-08-2019
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 8/2019
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-019-05535-4

Other articles of this Issue 8/2019

Digestive Diseases and Sciences 8/2019 Go to the issue