Skip to main content
Top
Published in: Digestive Diseases and Sciences 5/2019

Open Access 01-05-2019 | Original Article

Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature

Authors: Diego Almanza, Mehrnaz Gharaee-Kermani, Alisa Zhilin-Roth, Jose A. Rodriguez-Nieves, Cory Colaneri, Todd Riley, Jill A. Macoska

Published in: Digestive Diseases and Sciences | Issue 5/2019

Login to get access

Abstract

Background

Metabolic syndrome contributing to nonalcoholic fatty liver disease (NAFLD) can lead to hepatic dysfunction, steatohepatitis, cirrhosis, and hepatocellular carcinoma.

Aims

In this study, we tested whether diet-induced fatty liver in a mouse model physiologically mimicked human NAFLD, and whether transcriptional alterations in mouse fatty liver signified risk for the development of hepatitis, cirrhosis, and/or hepatocellular carcinoma.

Methods

SAMP6 strain mice were fed a low-fat diet or high-fat diet (HFD) for 6 months. Mouse livers were isolated and subjected to histology, immunohistochemistry, and whole transcriptome RNA sequencing. Sequences were aligned to the mouse reference genome, and gene expression signatures were analyzed using bioinformatics tools including Cufflinks, Pathview, Cytoscape, ClueGO, and GOstats.

Results

Consistent with NAFLD, livers from HFD-fed mice demonstrated steatosis, high levels of inflammation, an up-regulation of genes encoding proteins associated with the complement pathway and immune responses, and down-regulation of those associated with metabolic processes. These livers also showed an up-regulation of genes associated with fibrosis and malignant transformation but no histological evidence of either pathobiology or DNA damage.

Conclusions

HFD-fed mice exhibited NAFLD that had incompletely transitioned from fatty liver to NASH. Importantly, bioinformatics approaches identified pre-fibrotic and premalignant signatures, suggesting that the pathogenesis of both fibrosis and cancer may initiate in fatty livers well before associated histological changes are evident.
Appendix
Available only for authorised users
Literature
4.
go back to reference Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844–1850.CrossRefPubMed Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844–1850.CrossRefPubMed
5.
go back to reference Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 2005;42:44–52.CrossRefPubMed Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 2005;42:44–52.CrossRefPubMed
6.
go back to reference Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 2016;65:1109–1123.CrossRefPubMed Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 2016;65:1109–1123.CrossRefPubMed
7.
go back to reference Hubscher SG. Histological assessment of non-alcoholic fatty liver disease. Histopathology. 2006;49:450–465.CrossRefPubMed Hubscher SG. Histological assessment of non-alcoholic fatty liver disease. Histopathology. 2006;49:450–465.CrossRefPubMed
8.
go back to reference Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a novel murine model of senescence. Exp Gerontol. 1997;32:105–109.CrossRefPubMed Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a novel murine model of senescence. Exp Gerontol. 1997;32:105–109.CrossRefPubMed
9.
go back to reference Gharaee-Kermani M, Rodriguez-Nieves JA, Mehra R, Vezina CA, Sarma AV, Macoska JA. Obesity-induced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse model. Prostate. 2013;73:1123–1133.CrossRefPubMedPubMedCentral Gharaee-Kermani M, Rodriguez-Nieves JA, Mehra R, Vezina CA, Sarma AV, Macoska JA. Obesity-induced diabetes and lower urinary tract fibrosis promote urinary voiding dysfunction in a mouse model. Prostate. 2013;73:1123–1133.CrossRefPubMedPubMedCentral
10.
go back to reference Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M. Pathobiology of the senescence-accelerated mouse (SAM). Exp Gerontol. 1997;32:117–127.CrossRefPubMed Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M. Pathobiology of the senescence-accelerated mouse (SAM). Exp Gerontol. 1997;32:117–127.CrossRefPubMed
11.
go back to reference Azuma K, Zhou Q, Kubo KY. Morphological and molecular characterization of the senile osteoporosis in senescence-accelerated mouse prone 6 (SAMP6). Med Mol Morphol. 2018;51:139–146.CrossRefPubMed Azuma K, Zhou Q, Kubo KY. Morphological and molecular characterization of the senile osteoporosis in senescence-accelerated mouse prone 6 (SAMP6). Med Mol Morphol. 2018;51:139–146.CrossRefPubMed
12.
go back to reference Sugimura Y, Sakurai M, Hayashi N, Yamashita A, Kawamura J. Age-related changes of the prostate gland in the senescence-accelerated mouse. Prostate. 1994;24:24–32.CrossRefPubMed Sugimura Y, Sakurai M, Hayashi N, Yamashita A, Kawamura J. Age-related changes of the prostate gland in the senescence-accelerated mouse. Prostate. 1994;24:24–32.CrossRefPubMed
13.
go back to reference Tanisawa K, Mikami E, Fuku N, et al. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes. BMC Genom. 2013;14:248.CrossRef Tanisawa K, Mikami E, Fuku N, et al. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes. BMC Genom. 2013;14:248.CrossRef
14.
go back to reference Zhang G, Zhang B, Fu X, et al. Senescence-Accelerated Mouse (SAM) strains have a spontaneous mutation in the Abcb1a gene. Exp Anim. 2008;57:413–417.CrossRefPubMed Zhang G, Zhang B, Fu X, et al. Senescence-Accelerated Mouse (SAM) strains have a spontaneous mutation in the Abcb1a gene. Exp Anim. 2008;57:413–417.CrossRefPubMed
15.
go back to reference Van Heek M, Compton DS, France CF, et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest. 1997;99:385–390.CrossRefPubMedPubMedCentral Van Heek M, Compton DS, France CF, et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest. 1997;99:385–390.CrossRefPubMedPubMedCentral
16.
go back to reference Gharaee-Kermani M, Mehra R, Robinson DR, Wei JT, Macoska JA. Complex cellular composition of solitary fibrous tumor of the prostate. Am J Pathol. 2014;184:732–739.CrossRefPubMedPubMedCentral Gharaee-Kermani M, Mehra R, Robinson DR, Wei JT, Macoska JA. Complex cellular composition of solitary fibrous tumor of the prostate. Am J Pathol. 2014;184:732–739.CrossRefPubMedPubMedCentral
17.
go back to reference Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010;12:R56.CrossRefPubMedPubMedCentral Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010;12:R56.CrossRefPubMedPubMedCentral
18.
go back to reference Stahelin BJ, Marti U, Solioz M, Zimmermann H, Reichen J. False positive staining in the TUNEL assay to detect apoptosis in liver and intestine is caused by endogenous nucleases and inhibited by diethyl pyrocarbonate. Mol Pathol. 1998;51:204–208.CrossRefPubMedPubMedCentral Stahelin BJ, Marti U, Solioz M, Zimmermann H, Reichen J. False positive staining in the TUNEL assay to detect apoptosis in liver and intestine is caused by endogenous nucleases and inhibited by diethyl pyrocarbonate. Mol Pathol. 1998;51:204–208.CrossRefPubMedPubMedCentral
20.
go back to reference Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.CrossRefPubMedPubMedCentral Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.CrossRefPubMedPubMedCentral
21.
go back to reference Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–562.CrossRef Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–562.CrossRef
22.
go back to reference Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–515.CrossRefPubMedPubMedCentral Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–515.CrossRefPubMedPubMedCentral
23.
go back to reference Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31:46–53.CrossRefPubMed Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31:46–53.CrossRefPubMed
24.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140.CrossRefPubMed Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140.CrossRefPubMed
25.
26.
go back to reference Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504.CrossRefPubMedPubMedCentral Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504.CrossRefPubMedPubMedCentral
27.
go back to reference Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093.CrossRefPubMedPubMedCentral Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093.CrossRefPubMedPubMedCentral
28.
go back to reference Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–258.CrossRefPubMed Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–258.CrossRefPubMed
30.
go back to reference Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59:1393–1405.CrossRefPubMed Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59:1393–1405.CrossRefPubMed
31.
go back to reference Kleiner DE, Brunt EM. Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis. 2012;32:3–13.CrossRefPubMed Kleiner DE, Brunt EM. Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis. 2012;32:3–13.CrossRefPubMed
32.
go back to reference Qin X, Gao B. The complement system in liver diseases. Cell Mol Immunol. 2006;3:333–340.PubMed Qin X, Gao B. The complement system in liver diseases. Cell Mol Immunol. 2006;3:333–340.PubMed
33.
go back to reference Hillebrandt S, Wasmuth HE, Weiskirchen R, et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet. 2005;37:835–843.CrossRefPubMed Hillebrandt S, Wasmuth HE, Weiskirchen R, et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet. 2005;37:835–843.CrossRefPubMed
34.
go back to reference Rensen SS, Slaats Y, Driessen A, et al. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology. 2009;50:1809–1817.CrossRefPubMed Rensen SS, Slaats Y, Driessen A, et al. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology. 2009;50:1809–1817.CrossRefPubMed
35.
go back to reference Wlazlo N, van Greevenbroek MM, Ferreira I, et al. Activated complement factor 3 is associated with liver fat and liver enzymes: the CODAM study. Eur J Clin Invest. 2013;43:679–688.CrossRefPubMed Wlazlo N, van Greevenbroek MM, Ferreira I, et al. Activated complement factor 3 is associated with liver fat and liver enzymes: the CODAM study. Eur J Clin Invest. 2013;43:679–688.CrossRefPubMed
36.
go back to reference Jia Q, Li C, Xia Y, et al. Association between complement C3 and prevalence of fatty liver disease in an adult population: a cross-sectional study from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIHealth) cohort study. PLoS ONE. 2015;10:e0122026.CrossRefPubMedPubMedCentral Jia Q, Li C, Xia Y, et al. Association between complement C3 and prevalence of fatty liver disease in an adult population: a cross-sectional study from the Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIHealth) cohort study. PLoS ONE. 2015;10:e0122026.CrossRefPubMedPubMedCentral
37.
go back to reference Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42–52.CrossRefPubMed Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45:42–52.CrossRefPubMed
38.
go back to reference Kudo M. Signaling pathway/molecular targets and new targeted agents under development in hepatocellular carcinoma. World J Gastroenterol. 2012;18:6005–6017.CrossRefPubMedPubMedCentral Kudo M. Signaling pathway/molecular targets and new targeted agents under development in hepatocellular carcinoma. World J Gastroenterol. 2012;18:6005–6017.CrossRefPubMedPubMedCentral
40.
go back to reference Brenner DA, Waterboer T, Choi SK, et al. New aspects of hepatic fibrosis. J Hepatol. 2000;32:32–38.CrossRefPubMed Brenner DA, Waterboer T, Choi SK, et al. New aspects of hepatic fibrosis. J Hepatol. 2000;32:32–38.CrossRefPubMed
42.
go back to reference Karsdal MA, Manon-Jensen T, Genovese F, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G807–G830.CrossRefPubMedPubMedCentral Karsdal MA, Manon-Jensen T, Genovese F, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G807–G830.CrossRefPubMedPubMedCentral
43.
go back to reference Parks E, Yki-Jarvinen H, Hawkins M. Out of the frying pan: dietary saturated fat influences nonalcoholic fatty liver disease. J Clin Invest. 2017;127:454–456.CrossRefPubMedPubMedCentral Parks E, Yki-Jarvinen H, Hawkins M. Out of the frying pan: dietary saturated fat influences nonalcoholic fatty liver disease. J Clin Invest. 2017;127:454–456.CrossRefPubMedPubMedCentral
44.
go back to reference Kristiansen MN, Veidal SS, Rigbolt KT, et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J Hepatol. 2016;8:673–684.CrossRefPubMedPubMedCentral Kristiansen MN, Veidal SS, Rigbolt KT, et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J Hepatol. 2016;8:673–684.CrossRefPubMedPubMedCentral
46.
go back to reference Shen J, Tsoi H, Liang Q, et al. Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma. Oncogene. 2016;35:6271–6280.CrossRefPubMedPubMedCentral Shen J, Tsoi H, Liang Q, et al. Oncogenic mutations and dysregulated pathways in obesity-associated hepatocellular carcinoma. Oncogene. 2016;35:6271–6280.CrossRefPubMedPubMedCentral
47.
go back to reference Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013;10:656–665.CrossRefPubMed Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013;10:656–665.CrossRefPubMed
48.
go back to reference Gao JJ, Shi ZY, Xia JF, Inagaki Y, Tang W. Sorafenib-based combined molecule targeting in treatment of hepatocellular carcinoma. World J Gastroenterol. 2015;21:12059–12070.CrossRefPubMedPubMedCentral Gao JJ, Shi ZY, Xia JF, Inagaki Y, Tang W. Sorafenib-based combined molecule targeting in treatment of hepatocellular carcinoma. World J Gastroenterol. 2015;21:12059–12070.CrossRefPubMedPubMedCentral
49.
go back to reference Khalaf AM, Fuentes D, Morshid AI, et al. Role of Wnt/beta-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma. 2018;5:61–73.CrossRefPubMedPubMedCentral Khalaf AM, Fuentes D, Morshid AI, et al. Role of Wnt/beta-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma. 2018;5:61–73.CrossRefPubMedPubMedCentral
52.
go back to reference Lim JW, Dillon J, Miller M. Proteomic and genomic studies of non-alcoholic fatty liver disease—clues in the pathogenesis. World J Gastroenterol. 2014;20:8325–8340.CrossRefPubMedPubMedCentral Lim JW, Dillon J, Miller M. Proteomic and genomic studies of non-alcoholic fatty liver disease—clues in the pathogenesis. World J Gastroenterol. 2014;20:8325–8340.CrossRefPubMedPubMedCentral
53.
go back to reference Cusi K. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions. Diabetologia. 2016;59:1112–1120.CrossRefPubMedPubMedCentral Cusi K. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions. Diabetologia. 2016;59:1112–1120.CrossRefPubMedPubMedCentral
54.
go back to reference Katsagoni CN, Georgoulis M, Papatheodoridis GV, Panagiotakos DB, Kontogianni MD. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: a meta-analysis. Metabolism. 2017;68:119–132.CrossRefPubMed Katsagoni CN, Georgoulis M, Papatheodoridis GV, Panagiotakos DB, Kontogianni MD. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: a meta-analysis. Metabolism. 2017;68:119–132.CrossRefPubMed
55.
go back to reference Mencin AA, Lavine JE. Nonalcoholic fatty liver disease in children. Curr Opin Clin Nutr Metab Care. 2011;14:151–157.PubMed Mencin AA, Lavine JE. Nonalcoholic fatty liver disease in children. Curr Opin Clin Nutr Metab Care. 2011;14:151–157.PubMed
Metadata
Title
Nonalcoholic Fatty Liver Disease Demonstrates a Pre-fibrotic and Premalignant Molecular Signature
Authors
Diego Almanza
Mehrnaz Gharaee-Kermani
Alisa Zhilin-Roth
Jose A. Rodriguez-Nieves
Cory Colaneri
Todd Riley
Jill A. Macoska
Publication date
01-05-2019
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 5/2019
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-018-5398-4

Other articles of this Issue 5/2019

Digestive Diseases and Sciences 5/2019 Go to the issue