Skip to main content
Top
Published in: Digestive Diseases and Sciences 12/2018

01-12-2018 | Original Article

3-Aminobenzamide Prevents Concanavalin A-Induced Acute Hepatitis by an Anti-inflammatory and Anti-oxidative Mechanism

Authors: Joram Wardi, Orna Ernst, Anna Lilja, Hussein Aeed, Sebastián Katz, Idan Ben-Nachum, Iris Ben-Dror, Dolev Katz, Olga Bernadsky, Rajendar Kandhikonda, Yona Avni, Iain D. C. Fraser, Roy Weinstain, Alexander Biro, Tsaffrir Zor

Published in: Digestive Diseases and Sciences | Issue 12/2018

Login to get access

Abstract

Background and Aims

Concanavalin A is known to activate T cells and to cause liver injury and hepatitis, mediated in part by secretion of TNFα from macrophages. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been shown to prevent tissue damage in various animal models of inflammation. The objectives of this study were to evaluate the efficacy and mechanism of the PARP-1 inhibitor 3-aminobenzamide (3-AB) in preventing concanavalin A-induced liver damage.

Methods

We tested the in vivo effects of 3-AB on concanavalin A-treated mice, its effects on lipopolysaccharide (LPS)-stimulated macrophages in culture, and its ability to act as a scavenger in in vitro assays.

Results

3-AB markedly reduced inflammation, oxidative stress, and liver tissue damage in concanavalin A-treated mice. In LPS-stimulated RAW264.7 macrophages, 3-AB inhibited NFκB transcriptional activity and subsequent expression of TNFα and iNOS and blocked NO production. In vitro, 3-AB acted as a hydrogen peroxide scavenger. The ROS scavenger N-acetylcysteine (NAC) and the ROS formation inhibitor diphenyleneiodonium (DPI) also inhibited TNFα expression in stimulated macrophages, but unlike 3-AB, NAC and DPI were unable to abolish NFκB activity. PARP-1 knockout failed to affect NFκB and TNFα suppression by 3-AB in stimulated macrophages.

Conclusions

Our results suggest that 3-AB has a therapeutic effect on concanavalin A-induced liver injury by inhibiting expression of the key pro-inflammatory cytokine TNFα, via PARP-1-independent NFκB suppression and via an NFκB-independent anti-oxidative mechanism.
Literature
1.
go back to reference Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest. 1992;90:196–203.CrossRef Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest. 1992;90:196–203.CrossRef
2.
go back to reference Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA. 2000;97:5498–5503.CrossRef Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA. 2000;97:5498–5503.CrossRef
3.
go back to reference Schumann J, Wolf D, Pahl A, et al. Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol. 2000;157:1671–1683.CrossRef Schumann J, Wolf D, Pahl A, et al. Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol. 2000;157:1671–1683.CrossRef
4.
go back to reference Gantner F, Leist M, Kusters S, Vogt K, Volk HD, Tiegs G. T cell stimulus-induced crosstalk between lymphocytes and liver macrophages results in augmented cytokine release. Exp Cell Res. 1996;229:137–146.CrossRef Gantner F, Leist M, Kusters S, Vogt K, Volk HD, Tiegs G. T cell stimulus-induced crosstalk between lymphocytes and liver macrophages results in augmented cytokine release. Exp Cell Res. 1996;229:137–146.CrossRef
5.
go back to reference Kusters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology. 1996;111:462–471.CrossRef Kusters S, Gantner F, Kunstle G, Tiegs G. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A. Gastroenterology. 1996;111:462–471.CrossRef
6.
go back to reference Essani NA, Fisher MA, Jaeschke H. Inhibition of NF-kappa B activation by dimethyl sulfoxide correlates with suppression of TNF-alpha formation, reduced ICAM-1 gene transcription, and protection against endotoxin-induced liver injury. Shock. 1997;7:90–96.CrossRef Essani NA, Fisher MA, Jaeschke H. Inhibition of NF-kappa B activation by dimethyl sulfoxide correlates with suppression of TNF-alpha formation, reduced ICAM-1 gene transcription, and protection against endotoxin-induced liver injury. Shock. 1997;7:90–96.CrossRef
7.
go back to reference Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010;48:1121–1132.CrossRef Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010;48:1121–1132.CrossRef
8.
go back to reference Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, nonalcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol. 2013;28:38–42.CrossRef Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, nonalcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol. 2013;28:38–42.CrossRef
9.
go back to reference Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–2631.CrossRef Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–2631.CrossRef
10.
go back to reference Gong Q, Zhang H, Li JH, et al. High-mobility group box 1 exacerbates concanavalin A-induced hepatic injury in mice. J Mol Med (Berl). 2010;88:1289–1298.CrossRef Gong Q, Zhang H, Li JH, et al. High-mobility group box 1 exacerbates concanavalin A-induced hepatic injury in mice. J Mol Med (Berl). 2010;88:1289–1298.CrossRef
11.
go back to reference Woodhouse BC, Dianov GL. Poly(ADP-ribose) polymerase-1: an international molecule of mystery. DNA Repair (Amst). 2008;7:1077–1086.CrossRef Woodhouse BC, Dianov GL. Poly(ADP-ribose) polymerase-1: an international molecule of mystery. DNA Repair (Amst). 2008;7:1077–1086.CrossRef
12.
go back to reference Liu L, Ke Y, Jiang X, et al. Lipopolysaccharide activates ERK-PARP-1-RelA pathway and promotes nuclear factor-kappaB transcription in murine macrophages. Hum Immunol. 2012;73:439–447.CrossRef Liu L, Ke Y, Jiang X, et al. Lipopolysaccharide activates ERK-PARP-1-RelA pathway and promotes nuclear factor-kappaB transcription in murine macrophages. Hum Immunol. 2012;73:439–447.CrossRef
13.
go back to reference Huang D, Yang CZ, Yao L, Wang Y, Liao YH, Huang K. Activation and overexpression of PARP-1 in circulating mononuclear cells promote TNF-alpha and IL-6 expression in patients with unstable angina. Arch Med Res. 2008;39:775–784.CrossRef Huang D, Yang CZ, Yao L, Wang Y, Liao YH, Huang K. Activation and overexpression of PARP-1 in circulating mononuclear cells promote TNF-alpha and IL-6 expression in patients with unstable angina. Arch Med Res. 2008;39:775–784.CrossRef
14.
go back to reference Peralta-Leal A, Rodriguez-Vargas JM, Aguilar-Quesada R, et al. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med. 2009;47:13–26.CrossRef Peralta-Leal A, Rodriguez-Vargas JM, Aguilar-Quesada R, et al. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med. 2009;47:13–26.CrossRef
15.
go back to reference Mukhopadhyay P, Rajesh M, Cao Z, et al. Poly(ADP-ribose) polymerase-1 is a key mediator of liver inflammation and fibrosis. Hepatology. 2014;59:1998–2009.CrossRef Mukhopadhyay P, Rajesh M, Cao Z, et al. Poly(ADP-ribose) polymerase-1 is a key mediator of liver inflammation and fibrosis. Hepatology. 2014;59:1998–2009.CrossRef
16.
go back to reference Donmez M, Uysal B, Poyrazoglu Y, et al. PARP inhibition prevents acetaminophen-induced liver injury and increases survival rate in rats. Turk J Med Sci. 2015;45:18–26.CrossRef Donmez M, Uysal B, Poyrazoglu Y, et al. PARP inhibition prevents acetaminophen-induced liver injury and increases survival rate in rats. Turk J Med Sci. 2015;45:18–26.CrossRef
17.
go back to reference Zhang Y, Wang C, Tian Y, et al. Inhibition of poly(ADP-Ribose) polymerase-1 protects chronic alcoholic liver injury. Am J Pathol. 2016;186:3117–3130.CrossRef Zhang Y, Wang C, Tian Y, et al. Inhibition of poly(ADP-Ribose) polymerase-1 protects chronic alcoholic liver injury. Am J Pathol. 2016;186:3117–3130.CrossRef
18.
go back to reference Chen Q, Zhao Y, Cheng Z, Xu Y, Yu C. Establishment of a cell-based assay for examining the expression of tumor necrosis factor alpha (TNF-alpha) gene. Appl Microbiol Biotechnol. 2008;80:357–363.CrossRef Chen Q, Zhao Y, Cheng Z, Xu Y, Yu C. Establishment of a cell-based assay for examining the expression of tumor necrosis factor alpha (TNF-alpha) gene. Appl Microbiol Biotechnol. 2008;80:357–363.CrossRef
19.
go back to reference Conkright MD, Guzman E, Flechner L, Su AI, Hogenesch JB, Montminy M. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell. 2003;11:1101–1108.CrossRef Conkright MD, Guzman E, Flechner L, Su AI, Hogenesch JB, Montminy M. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell. 2003;11:1101–1108.CrossRef
20.
go back to reference Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129–157.PubMed Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129–157.PubMed
21.
go back to reference Shirin H, Aeed H, Alin A, et al. Inhibition of immune-mediated concanavalin a-induced liver damage by free-radical scavengers. Dig Dis Sci. 2010;55:268–275.CrossRef Shirin H, Aeed H, Alin A, et al. Inhibition of immune-mediated concanavalin a-induced liver damage by free-radical scavengers. Dig Dis Sci. 2010;55:268–275.CrossRef
22.
go back to reference Wills ED. Lipid peroxide formation in microsomes. General considerations. Biochem J. 1969;113:315–324.CrossRef Wills ED. Lipid peroxide formation in microsomes. General considerations. Biochem J. 1969;113:315–324.CrossRef
23.
go back to reference Batts KP, Ludwig J. Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol. 1995;19:1409–1417.CrossRef Batts KP, Ludwig J. Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol. 1995;19:1409–1417.CrossRef
24.
go back to reference Fraser I, Liu W, Rebres R, et al. The use of RNA interference to analyze protein phosphatase function in mammalian cells. Methods Mol Biol. 2007;365:261–286.PubMed Fraser I, Liu W, Rebres R, et al. The use of RNA interference to analyze protein phosphatase function in mammalian cells. Methods Mol Biol. 2007;365:261–286.PubMed
25.
go back to reference Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–2308.CrossRef Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–2308.CrossRef
26.
go back to reference Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823.CrossRef Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823.CrossRef
27.
go back to reference Ernst O, Vayttaden SJ, Fraser IDC. Measurement of NF-kappaB activation in TLR-activated macrophages. Methods Mol Biol. 2018;1714:67–78.CrossRef Ernst O, Vayttaden SJ, Fraser IDC. Measurement of NF-kappaB activation in TLR-activated macrophages. Methods Mol Biol. 2018;1714:67–78.CrossRef
28.
go back to reference Pick E. Cell-free NADPH oxidase activation assays: “in vitro veritas”. Methods Mol Biol. 2014;1124:339–403.CrossRef Pick E. Cell-free NADPH oxidase activation assays: “in vitro veritas”. Methods Mol Biol. 2014;1124:339–403.CrossRef
29.
go back to reference Dickinson BC, Huynh C, Chang CJ. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc. 2010;132:5906–5915.CrossRef Dickinson BC, Huynh C, Chang CJ. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc. 2010;132:5906–5915.CrossRef
30.
go back to reference Ernst O, Zor T. Linearization of the Bradford protein assay. J Vis Exp. 2010;38:e1918. Ernst O, Zor T. Linearization of the Bradford protein assay. J Vis Exp. 2010;38:e1918.
31.
go back to reference Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem. 1996;236:302–308.CrossRef Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem. 1996;236:302–308.CrossRef
32.
go back to reference Hatano M, Sasaki S, Ohata S, et al. Effects of Kupffer cell-depletion on concanavalin A-induced hepatitis. Cell Immunol. 2008;251:25–30.CrossRef Hatano M, Sasaki S, Ohata S, et al. Effects of Kupffer cell-depletion on concanavalin A-induced hepatitis. Cell Immunol. 2008;251:25–30.CrossRef
33.
go back to reference Koga K, Takaesu G, Yoshida R, et al. Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. Immunity. 2009;30:372–383.CrossRef Koga K, Takaesu G, Yoshida R, et al. Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. Immunity. 2009;30:372–383.CrossRef
34.
go back to reference Huang B, Yang XD, Lamb A, Chen LF. Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal. 2010;22:1282–1290.CrossRef Huang B, Yang XD, Lamb A, Chen LF. Posttranslational modifications of NF-kappaB: another layer of regulation for NF-kappaB signaling pathway. Cell Signal. 2010;22:1282–1290.CrossRef
35.
go back to reference Mills EL, O’Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46:13–21.CrossRef Mills EL, O’Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46:13–21.CrossRef
36.
go back to reference Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166:S4–S8.CrossRef Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med. 2002;166:S4–S8.CrossRef
37.
go back to reference Czapski GA, Cakala M, Kopczuk D, Strosznajder JB. Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radical level and macromolecules oxidation in cell free system of rat brain cortex. Neurosci Lett. 2004;356:45–48.CrossRef Czapski GA, Cakala M, Kopczuk D, Strosznajder JB. Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radical level and macromolecules oxidation in cell free system of rat brain cortex. Neurosci Lett. 2004;356:45–48.CrossRef
38.
go back to reference Pick E, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages–induction by multiple nonphagocytic stimuli. Cell Immunol. 1981;59:301–318.CrossRef Pick E, Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages–induction by multiple nonphagocytic stimuli. Cell Immunol. 1981;59:301–318.CrossRef
39.
go back to reference Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6:593–597.CrossRef Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6:593–597.CrossRef
40.
go back to reference Scott CL, Swisher EM, Kaufmann SH. Poly(ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol. 2015;33:1397–1406.CrossRef Scott CL, Swisher EM, Kaufmann SH. Poly(ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol. 2015;33:1397–1406.CrossRef
41.
go back to reference Biro A, Vaknine H, Cohen-Armon M, et al. The effect of poly(ADP-ribose) polymerase inhibition on aminoglycoside-induced acute tubular necrosis in rats. Clin Nephrol. 2016;85:226–234.CrossRef Biro A, Vaknine H, Cohen-Armon M, et al. The effect of poly(ADP-ribose) polymerase inhibition on aminoglycoside-induced acute tubular necrosis in rats. Clin Nephrol. 2016;85:226–234.CrossRef
42.
go back to reference Cover C, Fickert P, Knight TR, et al. Pathophysiological role of poly(ADP-ribose) polymerase (PARP) activation during acetaminophen-induced liver cell necrosis in mice. Toxicol Sci. 2005;84:201–208.CrossRef Cover C, Fickert P, Knight TR, et al. Pathophysiological role of poly(ADP-ribose) polymerase (PARP) activation during acetaminophen-induced liver cell necrosis in mice. Toxicol Sci. 2005;84:201–208.CrossRef
43.
go back to reference Lakatos P, Szabo E, Hegedus C, et al. 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism. Biochim Biophys Acta. 2013;1833:743–751.CrossRef Lakatos P, Szabo E, Hegedus C, et al. 3-Aminobenzamide protects primary human keratinocytes from UV-induced cell death by a poly(ADP-ribosyl)ation independent mechanism. Biochim Biophys Acta. 2013;1833:743–751.CrossRef
44.
go back to reference Jamil I, Symonds A, Lynch S, Alalami O, Smyth M, Martin J. Divergent effects of paracetamol on reactive oxygen intermediate and reactive nitrogen intermediate production by U937 cells. Int J Mol Med. 1999;4:309–312.PubMed Jamil I, Symonds A, Lynch S, Alalami O, Smyth M, Martin J. Divergent effects of paracetamol on reactive oxygen intermediate and reactive nitrogen intermediate production by U937 cells. Int J Mol Med. 1999;4:309–312.PubMed
45.
go back to reference Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–1167.CrossRef Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–1167.CrossRef
46.
go back to reference Abd Elmageed ZY, Naura AS, Errami Y, Zerfaoui M. The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cell Signal. 2012;24:1–8.CrossRef Abd Elmageed ZY, Naura AS, Errami Y, Zerfaoui M. The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cell Signal. 2012;24:1–8.CrossRef
47.
go back to reference Matsuzawa A, Saegusa K, Noguchi T, et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol. 2005;6:587–592.CrossRef Matsuzawa A, Saegusa K, Noguchi T, et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol. 2005;6:587–592.CrossRef
48.
go back to reference Le Page C, Sanceau J, Drapier JC, Wietzerbin J. Inhibitors of ADP-ribosylation impair inducible nitric oxide synthase gene transcription through inhibition of NF kappa B activation. Biochem Biophys Res Commun. 1998;243:451–457.CrossRef Le Page C, Sanceau J, Drapier JC, Wietzerbin J. Inhibitors of ADP-ribosylation impair inducible nitric oxide synthase gene transcription through inhibition of NF kappa B activation. Biochem Biophys Res Commun. 1998;243:451–457.CrossRef
49.
go back to reference Zerfaoui M, Errami Y, Naura AS, et al. Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol. 2010;185:1894–1902.CrossRef Zerfaoui M, Errami Y, Naura AS, et al. Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol. 2010;185:1894–1902.CrossRef
50.
go back to reference Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci. 2002;59:1534–1553.CrossRef Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci. 2002;59:1534–1553.CrossRef
51.
go back to reference Masmoudi A, Mandel P. ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry. 1987;26:1965–1969.CrossRef Masmoudi A, Mandel P. ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry. 1987;26:1965–1969.CrossRef
52.
go back to reference Ha HC, Hester LD, Snyder SH. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci USA. 2002;99:3270–3275.CrossRef Ha HC, Hester LD,  Snyder SH. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci USA. 2002;99:3270–3275.CrossRef
53.
go back to reference Hassa PO, Haenni SS, Buerki C, et al. Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem. 2005;280:40450–40464.CrossRef Hassa PO, Haenni SS, Buerki C, et al. Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem. 2005;280:40450–40464.CrossRef
54.
go back to reference Oliver FJ, Menissier-de Murcia J, Nacci C, et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly(ADP-ribose) polymerase-1 deficient mice. EMBO J. 1999;18:4446–4454.CrossRef Oliver FJ, Menissier-de Murcia J, Nacci C, et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly(ADP-ribose) polymerase-1 deficient mice. EMBO J. 1999;18:4446–4454.CrossRef
55.
go back to reference Wei J, Dong S, Bowser RK, et al. Regulation of the ubiquitylation and deubiquitylation of CREB-binding protein modulates histone acetylation and lung inflammation. Sci Signal. 2017;10:eaak9660.CrossRef Wei J, Dong S, Bowser RK, et al. Regulation of the ubiquitylation and deubiquitylation of CREB-binding protein modulates histone acetylation and lung inflammation. Sci Signal. 2017;10:eaak9660.CrossRef
56.
go back to reference Menon D, Coll R, O’Neill LA, Board PG. Glutathione transferase omega 1 is required for the lipopolysaccharide-stimulated induction of NADPH oxidase 1 and the production of reactive oxygen species in macrophages. Free Radic Biol Med. 2014;73:318–327.CrossRef Menon D, Coll R, O’Neill LA, Board PG. Glutathione transferase omega 1 is required for the lipopolysaccharide-stimulated induction of NADPH oxidase 1 and the production of reactive oxygen species in macrophages. Free Radic Biol Med. 2014;73:318–327.CrossRef
57.
go back to reference Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis. 2014;5:e996.CrossRef Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis. 2014;5:e996.CrossRef
58.
go back to reference Kanno S, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K. Characterization of hydrogen peroxide-induced apoptosis in mouse primary cultured hepatocytes. Biol Pharm Bull. 2000;23:37–42.CrossRef Kanno S, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K. Characterization of hydrogen peroxide-induced apoptosis in mouse primary cultured hepatocytes. Biol Pharm Bull. 2000;23:37–42.CrossRef
59.
go back to reference Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884–895.CrossRef Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-3beta inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884–895.CrossRef
60.
go back to reference Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 2012;19:2003–2014.CrossRef Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 2012;19:2003–2014.CrossRef
61.
go back to reference Liu Z, Li X, Ding X, Yang Y. In silico and experimental studies of concanavalin A: insights into its antiproliferative activity and apoptotic mechanism. Appl Biochem Biotechnol. 2010;162:134–145.CrossRef Liu Z, Li X, Ding X, Yang Y. In silico and experimental studies of concanavalin A: insights into its antiproliferative activity and apoptotic mechanism. Appl Biochem Biotechnol. 2010;162:134–145.CrossRef
62.
go back to reference Imose M, Nagaki M, Naiki T, et al. Inhibition of nuclear factor kappaB and phosphatidylinositol 3-kinase/Akt is essential for massive hepatocyte apoptosis induced by tumor necrosis factor alpha in mice. Liver Int. 2003;23:386–396.CrossRef Imose M, Nagaki M, Naiki T, et al. Inhibition of nuclear factor kappaB and phosphatidylinositol 3-kinase/Akt is essential for massive hepatocyte apoptosis induced by tumor necrosis factor alpha in mice. Liver Int. 2003;23:386–396.CrossRef
63.
go back to reference Wang K. Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell Signal. 2015;27:729–738.CrossRef Wang K. Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell Signal. 2015;27:729–738.CrossRef
64.
go back to reference Kanno S, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K. Combination acetaminophen and doxapram potentiated hepatotoxicity in mouse primary cultured hepatocytes. Methods Find Exp Clin Pharmacol. 1999;21:647–652.CrossRef Kanno S, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki K. Combination acetaminophen and doxapram potentiated hepatotoxicity in mouse primary cultured hepatocytes. Methods Find Exp Clin Pharmacol. 1999;21:647–652.CrossRef
65.
go back to reference Shen W, Kamendulis LM, Ray SD, Corcoran GB. Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: effects of Ca(2+)-endonuclease, DNA repair, and glutathione depletion inhibitors on DNA fragmentation and cell death. Toxicol Appl Pharmacol. 1992;112:32–40.CrossRef Shen W, Kamendulis LM, Ray SD, Corcoran GB. Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: effects of Ca(2+)-endonuclease, DNA repair, and glutathione depletion inhibitors on DNA fragmentation and cell death. Toxicol Appl Pharmacol. 1992;112:32–40.CrossRef
Metadata
Title
3-Aminobenzamide Prevents Concanavalin A-Induced Acute Hepatitis by an Anti-inflammatory and Anti-oxidative Mechanism
Authors
Joram Wardi
Orna Ernst
Anna Lilja
Hussein Aeed
Sebastián Katz
Idan Ben-Nachum
Iris Ben-Dror
Dolev Katz
Olga Bernadsky
Rajendar Kandhikonda
Yona Avni
Iain D. C. Fraser
Roy Weinstain
Alexander Biro
Tsaffrir Zor
Publication date
01-12-2018
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 12/2018
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-018-5267-1

Other articles of this Issue 12/2018

Digestive Diseases and Sciences 12/2018 Go to the issue