Skip to main content
Top
Published in: Digestive Diseases and Sciences 7/2017

01-07-2017 | Review

Novel and Experimental Therapies in Chronic Pancreatitis

Authors: Soumya Jagannath, Pramod Kumar Garg

Published in: Digestive Diseases and Sciences | Issue 7/2017

Login to get access

Abstract

Chronic pancreatitis (CP) is a progressive inflammatory disease of the pancreas. The currently available treatment of CP is aimed at controlling symptoms and managing complications. Unfortunately, no specific treatment is available to halt the progression of the disease process because the pathophysiological perturbations in CP are not well understood. In this review, we discuss various therapeutic targets and investigational agents acting on these targets. Among these, therapies modulating immune cells and those acting on pancreatic stellate cells appear promising and may translate into clinical benefit in near future. However, these experimental therapies are mostly in animal models and they do not recapitulate all aspects of human disease. Still they may be beneficial in developing effective therapeutic modalities to curb inflammation in chronic pancreatitis.
Literature
1.
go back to reference Whitcomb DC, Frulloni L, Garg P, Greer JB, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–224.CrossRefPubMed Whitcomb DC, Frulloni L, Garg P, Greer JB, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–224.CrossRefPubMed
2.
go back to reference The Copenhagen Pancreatic Study Group. An interim report from a prospective epidemiological multicentre study. Scand J Gastroenterol. 1981;16:305–312.CrossRef The Copenhagen Pancreatic Study Group. An interim report from a prospective epidemiological multicentre study. Scand J Gastroenterol. 1981;16:305–312.CrossRef
3.
go back to reference Robles-Diaz G, Vargas F, Uscanga L, Fernandez-del Castillo C. Chronic pancreatitis in Mexico City. Pancreas. 1990;5:479–483.CrossRefPubMed Robles-Diaz G, Vargas F, Uscanga L, Fernandez-del Castillo C. Chronic pancreatitis in Mexico City. Pancreas. 1990;5:479–483.CrossRefPubMed
4.
go back to reference Garg PK, Tandon RK. Survey on chronic pancreatitis in the Asia-Pacific region. J Gastroenterol Hepatol. 2004;19:998–1004.CrossRefPubMed Garg PK, Tandon RK. Survey on chronic pancreatitis in the Asia-Pacific region. J Gastroenterol Hepatol. 2004;19:998–1004.CrossRefPubMed
5.
go back to reference Lin Y, Tamakoshi A, Matsuno S, Takeda K, et al. Nationwide epidemiological survey of chronic pancreatitis in Japan. J Gastroenterol. 2000;35:136–141.CrossRefPubMed Lin Y, Tamakoshi A, Matsuno S, Takeda K, et al. Nationwide epidemiological survey of chronic pancreatitis in Japan. J Gastroenterol. 2000;35:136–141.CrossRefPubMed
6.
go back to reference Balaji LN, Tandon RK, Tandon BN, Banks A. Prevalence and clinical features of chronic pancreatitis in southern India. Int J Pancreatol. 1994;15:29–34.PubMed Balaji LN, Tandon RK, Tandon BN, Banks A. Prevalence and clinical features of chronic pancreatitis in southern India. Int J Pancreatol. 1994;15:29–34.PubMed
7.
go back to reference Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2001;120:682–707.CrossRefPubMed Etemad B, Whitcomb DC. Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology. 2001;120:682–707.CrossRefPubMed
8.
go back to reference Tandon RK, Sato N, Garg PK. Chronic pancreatitis: Asia-Pacific consensus report. J Gastroenterol Hepatol. 2002;17:508–518.CrossRefPubMed Tandon RK, Sato N, Garg PK. Chronic pancreatitis: Asia-Pacific consensus report. J Gastroenterol Hepatol. 2002;17:508–518.CrossRefPubMed
9.
go back to reference Rösch T, Daniel S, Scholz M, Huibregtse K, European Society of Gastrointestinal Endoscopy Research Group. Endoscopic treatment of chronic pancreatitis: a multicenter study of 1000 patients with long-term follow-up. Endoscopy. 2002;34:765–771.CrossRefPubMed Rösch T, Daniel S, Scholz M, Huibregtse K, European Society of Gastrointestinal Endoscopy Research Group. Endoscopic treatment of chronic pancreatitis: a multicenter study of 1000 patients with long-term follow-up. Endoscopy. 2002;34:765–771.CrossRefPubMed
10.
go back to reference Cahen DL, Gouma DJ, Nio Y, Rauws EJ, et al. Endoscopic versus surgical drainage of the pancreatic duct in chronic pancreatitis. N Engl J Med. 2007;356:676–684.CrossRefPubMed Cahen DL, Gouma DJ, Nio Y, Rauws EJ, et al. Endoscopic versus surgical drainage of the pancreatic duct in chronic pancreatitis. N Engl J Med. 2007;356:676–684.CrossRefPubMed
11.
go back to reference Xue J, Sharma V, Habtezion A. Immune cells and immune-based therapy in pancreatitis. Immunol Res. 2014;58:378–386.CrossRefPubMed Xue J, Sharma V, Habtezion A. Immune cells and immune-based therapy in pancreatitis. Immunol Res. 2014;58:378–386.CrossRefPubMed
12.
go back to reference Zimnoch L, Szynaka B, Puchalski Z. Mast cells and pancreatic stellate cells in chronic pancreatitis with differently intensified fibrosis. Hepatogastroenterology. 2002;49:1135–1138.PubMed Zimnoch L, Szynaka B, Puchalski Z. Mast cells and pancreatic stellate cells in chronic pancreatitis with differently intensified fibrosis. Hepatogastroenterology. 2002;49:1135–1138.PubMed
13.
go back to reference Schmitz-Winnenthal H, Pietsch DH, Schimmack S, Bonertz A, et al. Chronic pancreatitis is associated with disease-specific regulatory T-cell responses. Gastroenterology. 2010;138:1178–1188.CrossRefPubMed Schmitz-Winnenthal H, Pietsch DH, Schimmack S, Bonertz A, et al. Chronic pancreatitis is associated with disease-specific regulatory T-cell responses. Gastroenterology. 2010;138:1178–1188.CrossRefPubMed
14.
go back to reference Grundsten M, Liu GZ, Permert J, Hjeilmstrom P, Tsai JA. Increased central memory T cells in patients with chronic pancreatitis. Pancreatology. 2005;5:177–182.CrossRefPubMed Grundsten M, Liu GZ, Permert J, Hjeilmstrom P, Tsai JA. Increased central memory T cells in patients with chronic pancreatitis. Pancreatology. 2005;5:177–182.CrossRefPubMed
15.
go back to reference Marrache F, Pendyala S, Bhagal G, Betz KS, Song Z, Wang TC. Role of bone marrow derived cells in experimental chronic pancreatitis. Gut. 2008;57:1113–1120.CrossRefPubMed Marrache F, Pendyala S, Bhagal G, Betz KS, Song Z, Wang TC. Role of bone marrow derived cells in experimental chronic pancreatitis. Gut. 2008;57:1113–1120.CrossRefPubMed
16.
go back to reference Lardon J, Rooman I, Bouwens L. Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol. 2002;117:535–540.CrossRefPubMed Lardon J, Rooman I, Bouwens L. Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol. 2002;117:535–540.CrossRefPubMed
17.
18.
go back to reference Xue J, Sharma V, Hsieh MH, Chawla M, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature communications. 2015;6:7158.CrossRefPubMedPubMedCentral Xue J, Sharma V, Hsieh MH, Chawla M, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature communications. 2015;6:7158.CrossRefPubMedPubMedCentral
19.
go back to reference Baumert J-T, Sparmann G, Emmrich J, Stefan L, Jaster R. Inhibitory effect of interferons on pancreatic stellate cell activation. World J Gastroenterol. 2006;12:896–901.CrossRefPubMedPubMedCentral Baumert J-T, Sparmann G, Emmrich J, Stefan L, Jaster R. Inhibitory effect of interferons on pancreatic stellate cell activation. World J Gastroenterol. 2006;12:896–901.CrossRefPubMedPubMedCentral
20.
go back to reference Zhao HF, Ito T, Gibo J, Kawabe K, et al. Anti-monocyte chemoattractant protein 1 gene therapy attenuates experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Gut. 2005;54:1759–1767.CrossRefPubMedPubMedCentral Zhao HF, Ito T, Gibo J, Kawabe K, et al. Anti-monocyte chemoattractant protein 1 gene therapy attenuates experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Gut. 2005;54:1759–1767.CrossRefPubMedPubMedCentral
21.
go back to reference Su SB, Xie MJ, Sawabu N, Motoo Y. Supressive effect of herbal medicine Saiko-Keishi-to on acinar cell apoptosis in rat spontaneous chronic pancreatitis. Pancreotology. 2007;7:28–36.CrossRef Su SB, Xie MJ, Sawabu N, Motoo Y. Supressive effect of herbal medicine Saiko-Keishi-to on acinar cell apoptosis in rat spontaneous chronic pancreatitis. Pancreotology. 2007;7:28–36.CrossRef
22.
go back to reference Su SB, Motoo Y, Xie MJ, Taga H, Sawabu N. Antifibrotic effect of herbal medicine Saiko-Keishi-to (TJ-10) on chronic pancreatitis in the WBN/KOB rat. Pancreas. 2001;22:8–17.CrossRefPubMed Su SB, Motoo Y, Xie MJ, Taga H, Sawabu N. Antifibrotic effect of herbal medicine Saiko-Keishi-to (TJ-10) on chronic pancreatitis in the WBN/KOB rat. Pancreas. 2001;22:8–17.CrossRefPubMed
23.
go back to reference Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K, Shimosewaga T. Curcumin blocks activation of pancreatic stellate cells. J Cell Biochem. 2006;95:1080–1093.CrossRef Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K, Shimosewaga T. Curcumin blocks activation of pancreatic stellate cells. J Cell Biochem. 2006;95:1080–1093.CrossRef
24.
go back to reference Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Invest. 2011;91:872–884.CrossRefPubMed Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Invest. 2011;91:872–884.CrossRefPubMed
25.
go back to reference Jaster R, Brock P, Sparmann G, Emmrich J, Liebe S. Inhibition of pancreatic stellate cell activation by the hydroxymethylglutaryl coenzyme A reductase inhibitor Lovastatin. Biochem Pharmacol. 2003;65:1295–1303.CrossRefPubMed Jaster R, Brock P, Sparmann G, Emmrich J, Liebe S. Inhibition of pancreatic stellate cell activation by the hydroxymethylglutaryl coenzyme A reductase inhibitor Lovastatin. Biochem Pharmacol. 2003;65:1295–1303.CrossRefPubMed
27.
go back to reference Kuno A, Yamada T, Masuda K, Ogawa K, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 2003;124:1010–1019.CrossRefPubMed Kuno A, Yamada T, Masuda K, Ogawa K, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology. 2003;124:1010–1019.CrossRefPubMed
28.
go back to reference Skipworth JR, Nijmeijer RM, van Santvoort HC, Besselink MG, et al. The effect of renin angiotensin system genetic variants in acute pancreatitis. Ann Surg. 2015;261:180–188.CrossRefPubMed Skipworth JR, Nijmeijer RM, van Santvoort HC, Besselink MG, et al. The effect of renin angiotensin system genetic variants in acute pancreatitis. Ann Surg. 2015;261:180–188.CrossRefPubMed
29.
go back to reference Madro A, Kurzepa J, Celinski K, Slomka M, et al. Effects of renin-angiotensin system inhibitors on fibrosis in patients with alcoholic chronic pancreatitis. J Physiol Pharmacol. 2016;67:103–110.PubMed Madro A, Kurzepa J, Celinski K, Slomka M, et al. Effects of renin-angiotensin system inhibitors on fibrosis in patients with alcoholic chronic pancreatitis. J Physiol Pharmacol. 2016;67:103–110.PubMed
30.
go back to reference Tamura Y, Hirado M, Okamura K, Minato Y, Fujii S. Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r, and C1 esterase. Biochim Biophys Acta Enzymol. 1977;484:417–422.CrossRef Tamura Y, Hirado M, Okamura K, Minato Y, Fujii S. Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r, and C1 esterase. Biochim Biophys Acta Enzymol. 1977;484:417–422.CrossRef
31.
go back to reference Gibo J, Ito T, Kawabe K, Hisano T, et al. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab Inv. 2005;85:75–89. CrossRef Gibo J, Ito T, Kawabe K, Hisano T, et al. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity. Lab Inv. 2005;85:75–89. CrossRef
32.
go back to reference Otsuki M, Okhi A, Okabayashi Y, Suehiro I, Baba S. Effect of synthetic protease inhibitor camostat on pancreatic exocrine function in rats. Pancreas. 1987;2:164–169.CrossRefPubMed Otsuki M, Okhi A, Okabayashi Y, Suehiro I, Baba S. Effect of synthetic protease inhibitor camostat on pancreatic exocrine function in rats. Pancreas. 1987;2:164–169.CrossRefPubMed
33.
go back to reference Kisfalvi K, Papp M, Friess H, Buchler M, Goracz UG. Beneficial effects of oral administration of camostat on cerulein-induced pancreatitis in rats. Dig Dis Sci. 1995;40:546–547.CrossRefPubMed Kisfalvi K, Papp M, Friess H, Buchler M, Goracz UG. Beneficial effects of oral administration of camostat on cerulein-induced pancreatitis in rats. Dig Dis Sci. 1995;40:546–547.CrossRefPubMed
34.
go back to reference Ito T, Otsuki M, Itoi T, Shimosegawa T, et al. Pancreatic diabetes in a follow-up survey of chronic pancreatitis in Japan. J Gastroenterol. 2007;42:291–297.CrossRefPubMed Ito T, Otsuki M, Itoi T, Shimosegawa T, et al. Pancreatic diabetes in a follow-up survey of chronic pancreatitis in Japan. J Gastroenterol. 2007;42:291–297.CrossRefPubMed
35.
go back to reference Jaster R, Hilgendorf I, Fitzner B, Brock P, et al. Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-trans retinoic acid. Biochem Pharmacol. 2003;66:633–641.CrossRefPubMed Jaster R, Hilgendorf I, Fitzner B, Brock P, et al. Regulation of pancreatic stellate cell function in vitro: biological and molecular effects of all-trans retinoic acid. Biochem Pharmacol. 2003;66:633–641.CrossRefPubMed
36.
go back to reference Li XC, Lu XL, Chen HH. α-Tocopherol treatment ameliorates chronic pancreatitis in an experimental rat model induced by trinitrobenzene sulfonic acid. Pancreatology. 2011;11:5–11.CrossRefPubMed Li XC, Lu XL, Chen HH. α-Tocopherol treatment ameliorates chronic pancreatitis in an experimental rat model induced by trinitrobenzene sulfonic acid. Pancreatology. 2011;11:5–11.CrossRefPubMed
37.
go back to reference Yoo BM, Oh TY, Kim YB, Yeo Y, et al. Novel antioxidant ameliorates the fibrosis and inflammation of cerulein-induced chronic pancreatitis in a mouse model. Pancreatology. 2005;5:165–176.CrossRefPubMed Yoo BM, Oh TY, Kim YB, Yeo Y, et al. Novel antioxidant ameliorates the fibrosis and inflammation of cerulein-induced chronic pancreatitis in a mouse model. Pancreatology. 2005;5:165–176.CrossRefPubMed
38.
39.
go back to reference Suzuki N, Masamune A, Kikuta K, Watanabe T, Satoh K, Shimosegawa K. Ellagic acid inhibits pancreatic fibrosis in male Wistar Bonn/Kobori rats. Dig Dis Sci. 2009;54:802–810.CrossRefPubMed Suzuki N, Masamune A, Kikuta K, Watanabe T, Satoh K, Shimosegawa K. Ellagic acid inhibits pancreatic fibrosis in male Wistar Bonn/Kobori rats. Dig Dis Sci. 2009;54:802–810.CrossRefPubMed
40.
go back to reference Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosewaga T. Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J Gastroenterol. 2005;11:3368–3374.CrossRefPubMedPubMedCentral Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosewaga T. Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J Gastroenterol. 2005;11:3368–3374.CrossRefPubMedPubMedCentral
41.
go back to reference Asaumi H, Wantabe S, Taguchi M, et al. Green tea polyphenol (-) -epigallocatechin-3-gallate inhibits ethanol induced activation of pancreatic stellate cells. Eur J Clin Invest. 2006;36:113–122.CrossRefPubMed Asaumi H, Wantabe S, Taguchi M, et al. Green tea polyphenol (-) -epigallocatechin-3-gallate inhibits ethanol induced activation of pancreatic stellate cells. Eur J Clin Invest. 2006;36:113–122.CrossRefPubMed
42.
go back to reference Jaster R, Sparmann G, Emmrich J, Liebe S. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut. 2002;51:579–584.CrossRefPubMedPubMedCentral Jaster R, Sparmann G, Emmrich J, Liebe S. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut. 2002;51:579–584.CrossRefPubMedPubMedCentral
43.
go back to reference Lin Z, Zheng LC, Zhang HZ, Tsang SW, Bian ZX. Antifibrotic effects of phenolic compounds on pancreatic stellate cells. BMC Complement Altern Med. 2015;15:259.CrossRefPubMedPubMedCentral Lin Z, Zheng LC, Zhang HZ, Tsang SW, Bian ZX. Antifibrotic effects of phenolic compounds on pancreatic stellate cells. BMC Complement Altern Med. 2015;15:259.CrossRefPubMedPubMedCentral
44.
go back to reference Zion O, Genin O, Kawada N, Yoshizato K, et al. Inhibition of transforming growth factor beta signaling by halofuginone as a modality for pancreas fibrosis prevention. Pancreas. 2009;38:427–435.CrossRefPubMed Zion O, Genin O, Kawada N, Yoshizato K, et al. Inhibition of transforming growth factor beta signaling by halofuginone as a modality for pancreas fibrosis prevention. Pancreas. 2009;38:427–435.CrossRefPubMed
45.
go back to reference Niina Y, Ito T, Oono T, Nakamura T, Fujimori N, et al. A sustained prostacyclin analog, ONO-1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology. 2014;14:201–210.CrossRefPubMed Niina Y, Ito T, Oono T, Nakamura T, Fujimori N, et al. A sustained prostacyclin analog, ONO-1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology. 2014;14:201–210.CrossRefPubMed
46.
go back to reference Reding T, Bimler D, Perren A, Sun LK, et al. A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (WBN/Kob rats): significant reduction of macrophage infiltration and fibrosis. Gut. 2006;55:1165–1173.CrossRefPubMedPubMedCentral Reding T, Bimler D, Perren A, Sun LK, et al. A selective COX-2 inhibitor suppresses chronic pancreatitis in an animal model (WBN/Kob rats): significant reduction of macrophage infiltration and fibrosis. Gut. 2006;55:1165–1173.CrossRefPubMedPubMedCentral
47.
go back to reference Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Inv. 2011;91:872–884.CrossRef Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. Lab Inv. 2011;91:872–884.CrossRef
48.
go back to reference Zhou CH, Lin-Li, Zhu XY, Wen-Tang, et al. Protective effects of edaravone on experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology. 2013;13:125–132.CrossRefPubMed Zhou CH, Lin-Li, Zhu XY, Wen-Tang, et al. Protective effects of edaravone on experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology. 2013;13:125–132.CrossRefPubMed
49.
go back to reference Yang T, Liang Y, Lin Q, Liu J, et al. miR-29 mediates TGF β1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem. 2013;114:1336–1342.CrossRefPubMed Yang T, Liang Y, Lin Q, Liu J, et al. miR-29 mediates TGF β1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem. 2013;114:1336–1342.CrossRefPubMed
50.
go back to reference Xiong M, Jiang L, Zhou Y, Qiu W, et al. The miR- 200 family regulates TGF-b1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302:F369–F379.CrossRefPubMed Xiong M, Jiang L, Zhou Y, Qiu W, et al. The miR- 200 family regulates TGF-b1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302:F369–F379.CrossRefPubMed
51.
go back to reference Zhu H, Luo H, Li Y, Zhou Y, et al. MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol. 2013;33:1100–1109.CrossRefPubMed Zhu H, Luo H, Li Y, Zhou Y, et al. MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol. 2013;33:1100–1109.CrossRefPubMed
52.
go back to reference Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a micro RNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301:F793–F801.CrossRefPubMedPubMedCentral Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a micro RNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301:F793–F801.CrossRefPubMedPubMedCentral
53.
54.
go back to reference Midha S, Hasan A, Dhingra R, Garg PK. Long-term pain relief with optimized medical including antioxidants and step-up interventional therapy in patients with chronic pancreatitis. J Gastroenterol Hepatol. 2016;32:270–277. doi:10.1111/jgh.13410. Midha S, Hasan A, Dhingra R, Garg PK. Long-term pain relief with optimized medical including antioxidants and step-up interventional therapy in patients with chronic pancreatitis. J Gastroenterol Hepatol. 2016;32:270–277. doi:10.​1111/​jgh.​13410.
55.
go back to reference Garg PK. Antioxidants for chronic pancreatitis: reasons for disappointing results despite sound principles. Gastroenterology. 2013;144:e19–e20.CrossRefPubMed Garg PK. Antioxidants for chronic pancreatitis: reasons for disappointing results despite sound principles. Gastroenterology. 2013;144:e19–e20.CrossRefPubMed
56.
go back to reference Tang Y, Laio Y, Kawaguchi-Sakita N, Raut V, et al. Sinisan, a traditional Chinese medicine, attenuates experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid in rats. J Hepatobiliary Pancreat Sci. 2011;18:551–558.CrossRefPubMed Tang Y, Laio Y, Kawaguchi-Sakita N, Raut V, et al. Sinisan, a traditional Chinese medicine, attenuates experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid in rats. J Hepatobiliary Pancreat Sci. 2011;18:551–558.CrossRefPubMed
57.
go back to reference Shiratori K, Takeuchi T, Satake K, Matsuno S. Clinical evaluation of oral administration of a cholecystokinin A receptor antagonist (loxiglumide) to patients with acute, painful attacks of chronic pancreatitis: a multicenter dose response study in Japan. Pancreas. 2002;25:e15.CrossRef Shiratori K, Takeuchi T, Satake K, Matsuno S. Clinical evaluation of oral administration of a cholecystokinin A receptor antagonist (loxiglumide) to patients with acute, painful attacks of chronic pancreatitis: a multicenter dose response study in Japan. Pancreas. 2002;25:e15.CrossRef
58.
go back to reference Levenick JM, Andrews CL, Purich ED, Gordon SR, Gardner TB. A phase II trial of human secretin infusion for refractory type B pain in chronic pancreatitis. Pancreas. 2013;42:596–600.CrossRefPubMed Levenick JM, Andrews CL, Purich ED, Gordon SR, Gardner TB. A phase II trial of human secretin infusion for refractory type B pain in chronic pancreatitis. Pancreas. 2013;42:596–600.CrossRefPubMed
59.
go back to reference Zhang L, Kline RH, McNearney TA, Johnson MP, Westlund KN. Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis. Mol Pain. 2014;10:66.CrossRefPubMedPubMedCentral Zhang L, Kline RH, McNearney TA, Johnson MP, Westlund KN. Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis. Mol Pain. 2014;10:66.CrossRefPubMedPubMedCentral
60.
go back to reference Wang Y, Li Y, Wang L, Kang Y, et al. Tanshinone IIA attenuates chronic pancreatitis- induced pain in rats via downregulation of HMGB1 and TRL4 expression in the spinal cord. Pain Phys. 2015;18:E615–E628. Wang Y, Li Y, Wang L, Kang Y, et al. Tanshinone IIA attenuates chronic pancreatitis- induced pain in rats via downregulation of HMGB1 and TRL4 expression in the spinal cord. Pain Phys. 2015;18:E615–E628.
61.
go back to reference Ceppa E, Cattaruzza F, Lyo V, Amadesi S, et al. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol. 2010;299:G556–G571.CrossRefPubMedPubMedCentral Ceppa E, Cattaruzza F, Lyo V, Amadesi S, et al. Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol. 2010;299:G556–G571.CrossRefPubMedPubMedCentral
62.
go back to reference Zhang LP, Ma F, Abshire SM, Westlund KN. Prolonged high fat/alcohol exposure increases TRPV4 and its functional responses in pancreatic stellate cells. Am J Physiol Regul Integr Comp Physiol. 2013;304:R702–R711.CrossRefPubMedPubMedCentral Zhang LP, Ma F, Abshire SM, Westlund KN. Prolonged high fat/alcohol exposure increases TRPV4 and its functional responses in pancreatic stellate cells. Am J Physiol Regul Integr Comp Physiol. 2013;304:R702–R711.CrossRefPubMedPubMedCentral
63.
go back to reference Zhang LP, Kline RH, Deevska IG, Ma F, et al. Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist reduces hypersensitivity. Neuroscience. 2015;311:166–179.CrossRefPubMedPubMedCentral Zhang LP, Kline RH, Deevska IG, Ma F, et al. Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist reduces hypersensitivity. Neuroscience. 2015;311:166–179.CrossRefPubMedPubMedCentral
64.
go back to reference Kapural L, Cywinski JB, Sparks DA. Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation. 2011;14:423–427.CrossRefPubMed Kapural L, Cywinski JB, Sparks DA. Spinal cord stimulation for visceral pain from chronic pancreatitis. Neuromodulation. 2011;14:423–427.CrossRefPubMed
65.
go back to reference Midha S, Khajuria R, Shastri S, Kabra M, Garg PK. Idiopathic chronic pancreatitis in India: phenotypic characterization and strong genetic susceptibility due to SPINK1 and CFTR gene mutations. Gut. 2010;59:800–807.CrossRefPubMed Midha S, Khajuria R, Shastri S, Kabra M, Garg PK. Idiopathic chronic pancreatitis in India: phenotypic characterization and strong genetic susceptibility due to SPINK1 and CFTR gene mutations. Gut. 2010;59:800–807.CrossRefPubMed
66.
go back to reference Van Goor F, Hadida S, Grootenhuis PD, Burton B, et al. Correction of the F508delCFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA. 2011;108:18843–18848.CrossRefPubMedPubMedCentral Van Goor F, Hadida S, Grootenhuis PD, Burton B, et al. Correction of the F508delCFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA. 2011;108:18843–18848.CrossRefPubMedPubMedCentral
67.
go back to reference Jih KY, Hwang TC. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci USA. 2013;110:4404–4409.CrossRefPubMedPubMedCentral Jih KY, Hwang TC. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci USA. 2013;110:4404–4409.CrossRefPubMedPubMedCentral
68.
go back to reference Hayes D Jr, McCoy KS, Sheikh SI. Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am J Respir Crit Care Med. 2014;190:590–591.CrossRefPubMed Hayes D Jr, McCoy KS, Sheikh SI. Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am J Respir Crit Care Med. 2014;190:590–591.CrossRefPubMed
69.
go back to reference Bellin MD, Laguna T, Leschyshyn J, Regelmann W, et al. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: a small pilot study. Pediatr Diabetes. 2013;14:417–421.CrossRefPubMedPubMedCentral Bellin MD, Laguna T, Leschyshyn J, Regelmann W, et al. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: a small pilot study. Pediatr Diabetes. 2013;14:417–421.CrossRefPubMedPubMedCentral
70.
go back to reference Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.CrossRefPubMed Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447:87–91.CrossRefPubMed
71.
go back to reference Alton EW, Armstrong DK, Ashby D, Bayfield KJ, et al. UK Cystic Fibrosis Gene Therapy Consortium. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebocontrolled, phase 2b trial. Lancet Respir Med. 2015;3:684–691.CrossRefPubMedPubMedCentral Alton EW, Armstrong DK, Ashby D, Bayfield KJ, et al. UK Cystic Fibrosis Gene Therapy Consortium. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebocontrolled, phase 2b trial. Lancet Respir Med. 2015;3:684–691.CrossRefPubMedPubMedCentral
72.
go back to reference Zhou CH, Li ML, Qin AL, Lv SX, et al. Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas. 2013;42:1291–1302.CrossRefPubMed Zhou CH, Li ML, Qin AL, Lv SX, et al. Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas. 2013;42:1291–1302.CrossRefPubMed
Metadata
Title
Novel and Experimental Therapies in Chronic Pancreatitis
Authors
Soumya Jagannath
Pramod Kumar Garg
Publication date
01-07-2017
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 7/2017
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-017-4604-0

Other articles of this Issue 7/2017

Digestive Diseases and Sciences 7/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.