Skip to main content
Top
Published in: Digestive Diseases and Sciences 6/2012

01-06-2012 | Original Article

PER1 Modulates SGLT1 Transcription In Vitro Independent of E-box Status

Authors: Anita Balakrishnan, Adam T. Stearns, Stanley W. Ashley, David B. Rhoads, Ali Tavakkolizadeh

Published in: Digestive Diseases and Sciences | Issue 6/2012

Login to get access

Abstract

Background and Aims

The intestine demonstrates profound circadian rhythmicity in glucose absorption in rodents, mediated entirely by rhythmicity in the transcription, translation, and function of the sodium glucose co-transporter SGLT1 (Slc5a1). Clock genes are rhythmic in the intestine and have been implicated in the regulation of rhythmicity of other intestinal genes; however, their role in the regulation of SGLT1 is unknown. We investigated the effects of one clock gene, PER1, on SGLT1 transcription in vitro.

Methods

Caco-2 cells were stably transfected with knockdown vectors for PER1 and mRNA expression of clock genes and SGLT1 determined using quantitative polymerase chain reaction (qPCR). Chinese hamster ovary (CHO) cells were transiently cotransfected with combinations of the PER1 expression vectors and the wild-type SGLT1-luciferase promoter construct or the promoter with mutated E-box sequences.

Results

Knockdown of PER1 increased native SGLT1 expression in Caco-2 enterocytes, while promoter studies confirmed that the inhibitory activity of PER1 on SGLT1 occurs via the proximal 1 kb of the SGLT1 promoter. E-box sites exerted a suppressive effect on the SGLT1 promoter; however, mutation of E-boxes had little effect on the inhibitory activity of PER1 on the SGLT1 promoter suggesting that the actions of PER1 on SGLT1 are independent of E-boxes.

Conclusions

Our findings suggest that PER1 exerts an indirect suppressive effect on SGLT1, possibly acting via other clock-controlled genes binding to non-E-box sites on the SGLT1 promoter. Understanding the regulation of rhythmicity of SGLT1 may lead to new treatments for the modulation of SGLT1 expression in conditions such as malabsorption, diabetes, and obesity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Balakrishnan A, Stearns AT, Rounds J, et al. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (sglt1). Surgery. 2008;143:813–818.PubMedCrossRef Balakrishnan A, Stearns AT, Rounds J, et al. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (sglt1). Surgery. 2008;143:813–818.PubMedCrossRef
2.
go back to reference Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cdna sequencing of the na+/glucose co-transporter. Nature. 1987;330:379–381.PubMedCrossRef Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cdna sequencing of the na+/glucose co-transporter. Nature. 1987;330:379–381.PubMedCrossRef
3.
go back to reference Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease—sugars. Best Practice Res. 2003;17:943–956.CrossRef Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease—sugars. Best Practice Res. 2003;17:943–956.CrossRef
4.
go back to reference Tavakkolizadeh A, Berger UV, Shen KR, et al. Diurnal rhythmicity in intestinal sglt-1 function, v(max), and mrna expression topography. Am J Physiol Gastrointest Liver Physiol. 2001;280:G209–G215.PubMed Tavakkolizadeh A, Berger UV, Shen KR, et al. Diurnal rhythmicity in intestinal sglt-1 function, v(max), and mrna expression topography. Am J Physiol Gastrointest Liver Physiol. 2001;280:G209–G215.PubMed
5.
go back to reference Richards AM, Nicholls MG, Espiner EA, et al. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin Exp Hypertens A. 1986;8:153–166.PubMedCrossRef Richards AM, Nicholls MG, Espiner EA, et al. Diurnal patterns of blood pressure, heart rate and vasoactive hormones in normal man. Clin Exp Hypertens A. 1986;8:153–166.PubMedCrossRef
6.
go back to reference Selmaoui B, Touitou Y. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. Life Sci. 2003;73:3339–3349.PubMedCrossRef Selmaoui B, Touitou Y. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. Life Sci. 2003;73:3339–3349.PubMedCrossRef
7.
go back to reference Rohman SM, Emoto N, Nonaka H, et al. Circadian clock genes directly regulate expression of the na(+)/h(+) exchanger nhe3 in the kidney. Kidney Int. 2005;67:1410–1419.CrossRef Rohman SM, Emoto N, Nonaka H, et al. Circadian clock genes directly regulate expression of the na(+)/h(+) exchanger nhe3 in the kidney. Kidney Int. 2005;67:1410–1419.CrossRef
8.
go back to reference Saito H, Terada T, Shimakura J, Katsura T, Inui K. Regulatory mechanism governing the diurnal rhythm of intestinal h+/peptide cotransporter 1 (pept1). Am J Physiol Gastrointest Liver Physiol. 2008;295:G395–G402.PubMedCrossRef Saito H, Terada T, Shimakura J, Katsura T, Inui K. Regulatory mechanism governing the diurnal rhythm of intestinal h+/peptide cotransporter 1 (pept1). Am J Physiol Gastrointest Liver Physiol. 2008;295:G395–G402.PubMedCrossRef
9.
go back to reference Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology. 2008;135:1636–1644.e3PubMedCrossRef Murakami Y, Higashi Y, Matsunaga N, Koyanagi S, Ohdo S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology. 2008;135:1636–1644.e3PubMedCrossRef
11.
go back to reference Panda S, Hogenesch JB. It’s all in the timing: many clocks, many outputs. J Biol Rhythms. 2004;19:374–387.PubMedCrossRef Panda S, Hogenesch JB. It’s all in the timing: many clocks, many outputs. J Biol Rhythms. 2004;19:374–387.PubMedCrossRef
12.
13.
go back to reference Torra IP, Tsibulsky V, Delaunay F, et al. Circadian and glucocorticoid regulation of rev-erbalpha expression in liver. Endocrinology. 2000;141:3799–3806.PubMedCrossRef Torra IP, Tsibulsky V, Delaunay F, et al. Circadian and glucocorticoid regulation of rev-erbalpha expression in liver. Endocrinology. 2000;141:3799–3806.PubMedCrossRef
14.
go back to reference Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor rev-erbalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–260.PubMedCrossRef Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor rev-erbalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–260.PubMedCrossRef
15.
go back to reference Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Humoral signals mediate the circadian expression of rat period homologue (rper2) mrna in peripheral tissues. Neurosci Lett. 1998;256:117–119.PubMedCrossRef Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Humoral signals mediate the circadian expression of rat period homologue (rper2) mrna in peripheral tissues. Neurosci Lett. 1998;256:117–119.PubMedCrossRef
16.
go back to reference Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Antiphase circadian expression between bmal1 and period homologue mrna in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun. 1998;253:199–203.PubMedCrossRef Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N. Antiphase circadian expression between bmal1 and period homologue mrna in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun. 1998;253:199–203.PubMedCrossRef
17.
go back to reference Takata M, Burioka N, Ohdo S, et al. Daily expression of mrnas for the mammalian clock genes per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. Jpn J Pharmacol. 2002;90:263–269.PubMedCrossRef Takata M, Burioka N, Ohdo S, et al. Daily expression of mrnas for the mammalian clock genes per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. Jpn J Pharmacol. 2002;90:263–269.PubMedCrossRef
18.
go back to reference Sakamoto K, Oishi K, Nagase T, Miyazaki K, Ishida N. Circadian expression of clock genes during ontogeny in the rat heart. NeuroReport. 2002;13:1239–1242.PubMedCrossRef Sakamoto K, Oishi K, Nagase T, Miyazaki K, Ishida N. Circadian expression of clock genes during ontogeny in the rat heart. NeuroReport. 2002;13:1239–1242.PubMedCrossRef
19.
go back to reference Balakrishnan A, Stearns AT, Ashley SW, Tavakkolizadeh A, Rhoads DB. Restricted feeding phase shifts clock gene and sodium glucose cotransporter 1 (sglt1) expression in rats. J Nutr. 2010;140:908–914.PubMedCrossRef Balakrishnan A, Stearns AT, Ashley SW, Tavakkolizadeh A, Rhoads DB. Restricted feeding phase shifts clock gene and sodium glucose cotransporter 1 (sglt1) expression in rats. J Nutr. 2010;140:908–914.PubMedCrossRef
20.
go back to reference Blais A, Bissonnette P, Berteloot A. Common characteristics for na+-dependent sugar transport in caco-2 cells and human fetal colon. J Membr Biol. 1987;99:113–125.PubMedCrossRef Blais A, Bissonnette P, Berteloot A. Common characteristics for na+-dependent sugar transport in caco-2 cells and human fetal colon. J Membr Biol. 1987;99:113–125.PubMedCrossRef
21.
go back to reference Martin MG, Wang J, Solorzano-Vargas RS, et al. Regulation of the human na(+)-glucose cotransporter gene, sglt1, by hnf-1 and sp1. Am J Physiol Gastrointest Liver Physiol. 2000;278:G591–G603.PubMed Martin MG, Wang J, Solorzano-Vargas RS, et al. Regulation of the human na(+)-glucose cotransporter gene, sglt1, by hnf-1 and sp1. Am J Physiol Gastrointest Liver Physiol. 2000;278:G591–G603.PubMed
22.
go back to reference Krasinski SD, Van Wering HM, Tannemaat MR, Grand RJ. Differential activation of intestinal gene promoters: Functional interactions between gata-5 and hnf-1 alpha. Am J Physiol Gastrointest Liver Physiol. 2001;281:G69–G84.PubMed Krasinski SD, Van Wering HM, Tannemaat MR, Grand RJ. Differential activation of intestinal gene promoters: Functional interactions between gata-5 and hnf-1 alpha. Am J Physiol Gastrointest Liver Physiol. 2001;281:G69–G84.PubMed
23.
go back to reference Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122:803–815.PubMedCrossRef Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122:803–815.PubMedCrossRef
24.
go back to reference Zheng B, Albrecht U, Kaasik K, et al. Nonredundant roles of the mper1 and mper2 genes in the mammalian circadian clock. Cell. 2001;105:683–694.PubMedCrossRef Zheng B, Albrecht U, Kaasik K, et al. Nonredundant roles of the mper1 and mper2 genes in the mammalian circadian clock. Cell. 2001;105:683–694.PubMedCrossRef
25.
go back to reference Bae K, Jin X, Maywood ES, et al. Differential functions of mper1, mper2, and mper3 in the scn circadian clock. Neuron. 2001;30:525–536.PubMedCrossRef Bae K, Jin X, Maywood ES, et al. Differential functions of mper1, mper2, and mper3 in the scn circadian clock. Neuron. 2001;30:525–536.PubMedCrossRef
26.
go back to reference Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93:929–937.PubMedCrossRef Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93:929–937.PubMedCrossRef
27.
go back to reference Kowase T, Walsh HE, Darling DS, Shupnik MA. Estrogen enhances gonadotropin-releasing hormone-stimulated transcription of the luteinizing hormone subunit promoters via altered expression of stimulatory and suppressive transcription factors. Endocrinology. 2007;148:6083–6091.PubMedCrossRef Kowase T, Walsh HE, Darling DS, Shupnik MA. Estrogen enhances gonadotropin-releasing hormone-stimulated transcription of the luteinizing hormone subunit promoters via altered expression of stimulatory and suppressive transcription factors. Endocrinology. 2007;148:6083–6091.PubMedCrossRef
28.
go back to reference Moon YS, Latasa MJ, Griffin MJ, Sul HS. Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J Lipid Res. 2002;43:691–698.PubMed Moon YS, Latasa MJ, Griffin MJ, Sul HS. Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J Lipid Res. 2002;43:691–698.PubMed
29.
go back to reference Berberich C, Durr I, Koenen M, Witzemann V. Two adjacent e box elements and a m-cat box are involved in the muscle-specific regulation of the rat acetylcholine receptor beta subunit gene. Eur J Biochem/FEBS. 1993;216:395–404.CrossRef Berberich C, Durr I, Koenen M, Witzemann V. Two adjacent e box elements and a m-cat box are involved in the muscle-specific regulation of the rat acetylcholine receptor beta subunit gene. Eur J Biochem/FEBS. 1993;216:395–404.CrossRef
30.
go back to reference Iwashina I, Mochizuki K, Inamochi Y, Goda T. Clock genes regulate the feeding schedule-dependent diurnal rhythm changes in hexose transporter gene expressions through the binding of bmal1 to the promoter/enhancer and transcribed regions. J Nutr Biochem. 2011;22:334–343.PubMedCrossRef Iwashina I, Mochizuki K, Inamochi Y, Goda T. Clock genes regulate the feeding schedule-dependent diurnal rhythm changes in hexose transporter gene expressions through the binding of bmal1 to the promoter/enhancer and transcribed regions. J Nutr Biochem. 2011;22:334–343.PubMedCrossRef
31.
go back to reference Lenka N, Basu A, Mullick J, Avadhani NG. The role of an e box binding basic helix loop helix protein in the cardiac muscle-specific expression of the rat cytochrome oxidase subunit viii gene. J Biol Chem. 1996;271:30281–30289.PubMedCrossRef Lenka N, Basu A, Mullick J, Avadhani NG. The role of an e box binding basic helix loop helix protein in the cardiac muscle-specific expression of the rat cytochrome oxidase subunit viii gene. J Biol Chem. 1996;271:30281–30289.PubMedCrossRef
32.
go back to reference Oishi K, Shirai H, Ishida N. Clock is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (pparalpha) in mice. Biochem J. 2005;386:575–581.PubMedCrossRef Oishi K, Shirai H, Ishida N. Clock is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (pparalpha) in mice. Biochem J. 2005;386:575–581.PubMedCrossRef
33.
go back to reference Nakashima A, Kawamoto T, Honda KK, et al. Dec1 modulates the circadian phase of clock gene expression. Mol Cell Biol. 2008;28:4080–4092.PubMedCrossRef Nakashima A, Kawamoto T, Honda KK, et al. Dec1 modulates the circadian phase of clock gene expression. Mol Cell Biol. 2008;28:4080–4092.PubMedCrossRef
34.
go back to reference Shen M, Kawamoto T, Yan W, et al. Molecular characterization of the novel basic helix-loop-helix protein dec1 expressed in differentiated human embryo chondrocytes. Biochem Biophys Res Commun. 1997;236:294–298.PubMedCrossRef Shen M, Kawamoto T, Yan W, et al. Molecular characterization of the novel basic helix-loop-helix protein dec1 expressed in differentiated human embryo chondrocytes. Biochem Biophys Res Commun. 1997;236:294–298.PubMedCrossRef
35.
go back to reference Rhoads DB, Rosenbaum DH, Unsal H, Isselbacher KJ, Levitsky LL. Circadian periodicity of intestinal na+/glucose cotransporter 1 mrna levels is transcriptionally regulated. J Biol Chem. 1998;273:9510–9516.PubMedCrossRef Rhoads DB, Rosenbaum DH, Unsal H, Isselbacher KJ, Levitsky LL. Circadian periodicity of intestinal na+/glucose cotransporter 1 mrna levels is transcriptionally regulated. J Biol Chem. 1998;273:9510–9516.PubMedCrossRef
36.
go back to reference Balakrishnan A, Stearns AT, Rhoads DB, Ashley SW, Tavakkolizadeh A. Defining the transcriptional regulation of the intestinal sodium-glucose cotransporter using rna-interference mediated gene silencing. Surgery. 2008;144:168–173.PubMedCrossRef Balakrishnan A, Stearns AT, Rhoads DB, Ashley SW, Tavakkolizadeh A. Defining the transcriptional regulation of the intestinal sodium-glucose cotransporter using rna-interference mediated gene silencing. Surgery. 2008;144:168–173.PubMedCrossRef
37.
go back to reference Cermakian N, Monaco L, Pando MP, Dierich A, Sassone-Corsi P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the period1 gene. EMBO J. 2001;20:3967–3974.PubMedCrossRef Cermakian N, Monaco L, Pando MP, Dierich A, Sassone-Corsi P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the period1 gene. EMBO J. 2001;20:3967–3974.PubMedCrossRef
38.
go back to reference Hoogerwerf WA, Shahinian VB, Cornelissen G, et al. Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol. 2010;298:G143–G150.PubMedCrossRef Hoogerwerf WA, Shahinian VB, Cornelissen G, et al. Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol. 2010;298:G143–G150.PubMedCrossRef
Metadata
Title
PER1 Modulates SGLT1 Transcription In Vitro Independent of E-box Status
Authors
Anita Balakrishnan
Adam T. Stearns
Stanley W. Ashley
David B. Rhoads
Ali Tavakkolizadeh
Publication date
01-06-2012
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 6/2012
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-012-2166-8

Other articles of this Issue 6/2012

Digestive Diseases and Sciences 6/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.