Skip to main content
Top
Published in: Clinical & Experimental Metastasis 1/2024

20-12-2023 | NSCLC | Research Paper

Computational markers for personalized prediction of outcomes in non-small cell lung cancer patients with brain metastases

Authors: Sébastien Benzekry, Pirmin Schlicke, Alice Mogenet, Laurent Greillier, Pascale Tomasini, Eléonore Simon

Published in: Clinical & Experimental Metastasis | Issue 1/2024

Login to get access

Abstract

Intracranial progression after curative treatment of early-stage non-small cell lung cancer (NSCLC) occurs from 10 to 50% and is difficult to manage, given the heterogeneity of clinical presentations and the variability of treatments available. The objective of this study was to develop a mechanistic model of intracranial progression to predict survival following a first brain metastasis (BM) event occurring at a time \({T}_{BM}\). Data included early-stage NSCLC patients treated with a curative intent who had a BM as the first and single relapse site (N = 31). We propose a mechanistic mathematical model able to derive computational markers from primary tumor and BM data at \({T}_{BM}\) and estimate the amount and sizes of (visible and invisible) BMs, as well as their future behavior. These two key computational markers are \(\alpha \), the proliferation rate of a single tumor cell; and \(\mu \), the per day, per cell, probability to metastasize. The predictive value of these individual computational biomarkers was evaluated. The model was able to correctly describe the number and size of metastases at \({T}_{BM}\) for 20 patients. Parameters \(\alpha \) and \(\mu \) were significantly associated with overall survival (OS) (HR 1.65 (1.07–2.53) p = 0.0029 and HR 1.95 (1.31–2.91) p = 0.0109, respectively). Adding the computational markers to the clinical ones significantly improved the predictive value of OS (c-index increased from 0.585 (95% CI 0.569–0.602) to 0.713 (95% CI 0.700–0.726), p < 0.0001). We demonstrated that our model was applicable to brain oligoprogressive patients in NSCLC and that the resulting computational markers had predictive potential. This may help lung cancer physicians to guide and personalize the management of NSCLC patients with intracranial oligoprogression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRefPubMed Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRefPubMed
2.
go back to reference Cancer of the Lung and Bronchus-Cancer Stat Facts. SEER. Cancer of the Lung and Bronchus-Cancer Stat Facts. SEER.
3.
go back to reference Chargari C, Dhermain F (2013) Métastases cérébrales d’un cancer bronchique non à petites cellules : du traitement standardisé au traitement personnalisé. Rev Mal Respir Actual 5:547–556 Chargari C, Dhermain F (2013) Métastases cérébrales d’un cancer bronchique non à petites cellules : du traitement standardisé au traitement personnalisé. Rev Mal Respir Actual 5:547–556
4.
go back to reference Tabouret E et al (2012) Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32:4655–4662PubMed Tabouret E et al (2012) Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32:4655–4662PubMed
5.
go back to reference Hall W, Djalilian H, Nussbaum E, Cho K (2000) Long-term survival with metastatic cancer to the brain. Med Oncol 17:279–286PubMedCrossRef Hall W, Djalilian H, Nussbaum E, Cho K (2000) Long-term survival with metastatic cancer to the brain. Med Oncol 17:279–286PubMedCrossRef
6.
go back to reference Gauger J, Patz EF, Coleman RE, Herndon JE (2007) Clinical stage I non-small cell lung cancer including FDG-PET Imaging: sites and time to recurrence. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 2:499–505 Gauger J, Patz EF, Coleman RE, Herndon JE (2007) Clinical stage I non-small cell lung cancer including FDG-PET Imaging: sites and time to recurrence. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 2:499–505
7.
go back to reference Yano T et al (1994) The first site of recurrence after complete resection in non-small-cell carcinoma of the lung. J Thorac Cardiovasc Surg 108:680–683PubMedCrossRef Yano T et al (1994) The first site of recurrence after complete resection in non-small-cell carcinoma of the lung. J Thorac Cardiovasc Surg 108:680–683PubMedCrossRef
8.
go back to reference Sadoyama S et al (2018) Isolated brain metastases as the first relapse after the curative surgical resection in non–small-cell lung cancer patients with an EGFR mutation. Clin Lung Cancer 19:e29–e36PubMedCrossRef Sadoyama S et al (2018) Isolated brain metastases as the first relapse after the curative surgical resection in non–small-cell lung cancer patients with an EGFR mutation. Clin Lung Cancer 19:e29–e36PubMedCrossRef
9.
go back to reference Figlin RA, Piantadosi S, Feld R, The Lung Cancer Study Group (1988) Intracranial recurrence of carcinoma after complete surgical resection of stage I, II, and III non-small-cell lung cancer. N Engl J Med 318:1300–1305PubMedCrossRef Figlin RA, Piantadosi S, Feld R, The Lung Cancer Study Group (1988) Intracranial recurrence of carcinoma after complete surgical resection of stage I, II, and III non-small-cell lung cancer. N Engl J Med 318:1300–1305PubMedCrossRef
10.
go back to reference Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG, Kerr K, Popat S, Reck M, Senan S, Simo GV (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v1-27PubMedCrossRef Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG, Kerr K, Popat S, Reck M, Senan S, Simo GV (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v1-27PubMedCrossRef
11.
go back to reference Hellman S, Weichselbaum RR (1995) Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. J Clin Oncol Off J Am Soc Clin Oncol 13:8–10CrossRef Hellman S, Weichselbaum RR (1995) Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. J Clin Oncol Off J Am Soc Clin Oncol 13:8–10CrossRef
12.
go back to reference Laurie SA et al (2019) Canadian consensus: oligoprogressive, pseudoprogressive, and oligometastatic non-small-cell lung cancer. Curr Oncol Tor Ont 26:e81–e93CrossRef Laurie SA et al (2019) Canadian consensus: oligoprogressive, pseudoprogressive, and oligometastatic non-small-cell lung cancer. Curr Oncol Tor Ont 26:e81–e93CrossRef
13.
go back to reference Schoenmaekers JJAO, Paats MS, Dingemans A-MC, Hendriks LEL (2020) Central nervous system metastases and oligoprogression during treatment with tyrosine kinase inhibitors in oncogene-addicted non-small cell lung cancer: how to treat and when? Transl Lung Cancer Res 9:2599–2617PubMedPubMedCentralCrossRef Schoenmaekers JJAO, Paats MS, Dingemans A-MC, Hendriks LEL (2020) Central nervous system metastases and oligoprogression during treatment with tyrosine kinase inhibitors in oncogene-addicted non-small cell lung cancer: how to treat and when? Transl Lung Cancer Res 9:2599–2617PubMedPubMedCentralCrossRef
14.
go back to reference Ceresoli GL et al (2002) Brain metastases in locally advanced nonsmall cell lung carcinoma after multimodality treatment: Risk factors analysis. Cancer 95:605–612PubMedCrossRef Ceresoli GL et al (2002) Brain metastases in locally advanced nonsmall cell lung carcinoma after multimodality treatment: Risk factors analysis. Cancer 95:605–612PubMedCrossRef
15.
go back to reference Zimm S, Wampler GL, Stablein D, Hazra T, Young HF (1981) Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer 48:384–394PubMedCrossRef Zimm S, Wampler GL, Stablein D, Hazra T, Young HF (1981) Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer 48:384–394PubMedCrossRef
16.
go back to reference Yamamoto M et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 15:387–395PubMedCrossRef Yamamoto M et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 15:387–395PubMedCrossRef
17.
go back to reference Zindler JD et al (2017) Whole brain radiotherapy versus stereotactic radiosurgery for 4–10 brain metastases: a phase III randomised multicentre trial. BMC Cancer 17:500PubMedPubMedCentralCrossRef Zindler JD et al (2017) Whole brain radiotherapy versus stereotactic radiosurgery for 4–10 brain metastases: a phase III randomised multicentre trial. BMC Cancer 17:500PubMedPubMedCentralCrossRef
18.
go back to reference Gerosa M, Nicolato A, Foroni R, Tomazzoli L, Bricolo A (2005) Analysis of long-term outcomes and prognostic factors in patients with non-small cell lung cancer brain metastases treated by gamma knife radiosurgery. J Neurosurg 102:75–80PubMedCrossRef Gerosa M, Nicolato A, Foroni R, Tomazzoli L, Bricolo A (2005) Analysis of long-term outcomes and prognostic factors in patients with non-small cell lung cancer brain metastases treated by gamma knife radiosurgery. J Neurosurg 102:75–80PubMedCrossRef
19.
go back to reference Motta M et al (2011) Gamma knife radiosurgery for treatment of cerebral metastases from non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 81:e463-468PubMedCrossRef Motta M et al (2011) Gamma knife radiosurgery for treatment of cerebral metastases from non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 81:e463-468PubMedCrossRef
20.
go back to reference Fuentes R et al (2018) Surgery versus stereotactic radiotherapy for people with single or solitary brain metastasis. Cochrane Database Syst Rev 8:CD012086PubMed Fuentes R et al (2018) Surgery versus stereotactic radiotherapy for people with single or solitary brain metastasis. Cochrane Database Syst Rev 8:CD012086PubMed
21.
go back to reference Aupérin A et al (1999) Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med 341:476–484PubMedCrossRef Aupérin A et al (1999) Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med 341:476–484PubMedCrossRef
22.
go back to reference Liu L et al (2020) The role of prophylactic cranial irradiation in patients with non-small cell lung cancer: an updated systematic review and meta-analysis. Front Oncol 10:11PubMedPubMedCentralCrossRef Liu L et al (2020) The role of prophylactic cranial irradiation in patients with non-small cell lung cancer: an updated systematic review and meta-analysis. Front Oncol 10:11PubMedPubMedCentralCrossRef
23.
go back to reference Chang EL et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044PubMedCrossRef Chang EL et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044PubMedCrossRef
24.
go back to reference Soffietti R et al (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol Off J Am Soc Clin Oncol 31:65–72CrossRef Soffietti R et al (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol Off J Am Soc Clin Oncol 31:65–72CrossRef
25.
go back to reference Besse B et al (2015) Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res Off J Am Assoc Cancer Res 21:1896–1903CrossRef Besse B et al (2015) Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res Off J Am Assoc Cancer Res 21:1896–1903CrossRef
26.
go back to reference Socinski MA et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301PubMedCrossRef Socinski MA et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301PubMedCrossRef
27.
go back to reference Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med 375:1823–1833PubMedCrossRef Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med 375:1823–1833PubMedCrossRef
28.
go back to reference Gandhi L et al (2018) Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med 378:2078–2092PubMedCrossRef Gandhi L et al (2018) Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med 378:2078–2092PubMedCrossRef
29.
go back to reference Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78PubMedCrossRef Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78PubMedCrossRef
30.
go back to reference Cortinovis D et al (2019) Italian cohort of the nivolumab EAP in squamous NSCLC: efficacy and safety in patients With CNS metastases. Anticancer Res 39:4265–4271PubMedCrossRef Cortinovis D et al (2019) Italian cohort of the nivolumab EAP in squamous NSCLC: efficacy and safety in patients With CNS metastases. Anticancer Res 39:4265–4271PubMedCrossRef
31.
go back to reference Dudnik E et al (2016) Intracranial response to nivolumab in NSCLC patients with untreated or progressing CNS metastases. Lung Cancer Amst Neth 98:114–117CrossRef Dudnik E et al (2016) Intracranial response to nivolumab in NSCLC patients with untreated or progressing CNS metastases. Lung Cancer Amst Neth 98:114–117CrossRef
32.
go back to reference Goldberg SB et al (2016) Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 17:976–983PubMedPubMedCentralCrossRef Goldberg SB et al (2016) Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 17:976–983PubMedPubMedCentralCrossRef
33.
go back to reference Gauvain C et al (2018) Intracerebral efficacy and tolerance of nivolumab in non–small-cell lung cancer patients with brain metastases. Lung Cancer 116:62–66PubMedCrossRef Gauvain C et al (2018) Intracerebral efficacy and tolerance of nivolumab in non–small-cell lung cancer patients with brain metastases. Lung Cancer 116:62–66PubMedCrossRef
34.
go back to reference Leighl NB et al (2020) CCTG BR.34: a randomized trial of durvalumab and tremelimumab +/- platinum-based chemotherapy in patients with metastatic (Stage IV) squamous or nonsquamous non-small cell lung cancer (NSCLC). J Clin Oncol 38:9502–9502CrossRef Leighl NB et al (2020) CCTG BR.34: a randomized trial of durvalumab and tremelimumab +/- platinum-based chemotherapy in patients with metastatic (Stage IV) squamous or nonsquamous non-small cell lung cancer (NSCLC). J Clin Oncol 38:9502–9502CrossRef
35.
go back to reference Powell SF et al (2019) Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) in NSCLC with brain metastases: Pooled analysis of KEYNOTE-021, 189, and 407. Ann Oncol 30:v606–v607CrossRef Powell SF et al (2019) Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) in NSCLC with brain metastases: Pooled analysis of KEYNOTE-021, 189, and 407. Ann Oncol 30:v606–v607CrossRef
36.
go back to reference Wang X, Xu Y, Tang W, Liu L (2018) Efficacy and safety of radiotherapy plus EGFR-TKIs in NSCLC patients with brain metastases: a meta-analysis of published data. Transl Oncol 11:1119–1127PubMedPubMedCentralCrossRef Wang X, Xu Y, Tang W, Liu L (2018) Efficacy and safety of radiotherapy plus EGFR-TKIs in NSCLC patients with brain metastases: a meta-analysis of published data. Transl Oncol 11:1119–1127PubMedPubMedCentralCrossRef
37.
go back to reference Levy A et al (2018) Diversity of brain metastases screening and management in non-small cell lung cancer in Europe: results of the European Organisation for Research and Treatment of Cancer Lung Cancer Group survey. Eur J Cancer 93:37–46PubMedCrossRef Levy A et al (2018) Diversity of brain metastases screening and management in non-small cell lung cancer in Europe: results of the European Organisation for Research and Treatment of Cancer Lung Cancer Group survey. Eur J Cancer 93:37–46PubMedCrossRef
38.
go back to reference Gaspar L et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiat Oncol 37:745–751CrossRef Gaspar L et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiat Oncol 37:745–751CrossRef
39.
go back to reference Sperduto PW et al (2014) Secondary analysis of RTOG 9508, a phase 3 randomized trial of whole-brain radiation therapy versus WBRT plus stereotactic radiosurgery in patients with 1–3 brain metastases; poststratified by the graded prognostic assessment (GPA). Int J Radiat Oncol Biol Phys 90:526–531PubMedPubMedCentralCrossRef Sperduto PW et al (2014) Secondary analysis of RTOG 9508, a phase 3 randomized trial of whole-brain radiation therapy versus WBRT plus stereotactic radiosurgery in patients with 1–3 brain metastases; poststratified by the graded prognostic assessment (GPA). Int J Radiat Oncol Biol Phys 90:526–531PubMedPubMedCentralCrossRef
40.
go back to reference Sperduto PW et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 3:827–831PubMedCrossRef Sperduto PW et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 3:827–831PubMedCrossRef
41.
go back to reference Bajard A et al (2004) Multivariate analysis of factors predictive of brain metastases in localised non-small cell lung carcinoma. Lung Cancer 45:317–323PubMedCrossRef Bajard A et al (2004) Multivariate analysis of factors predictive of brain metastases in localised non-small cell lung carcinoma. Lung Cancer 45:317–323PubMedCrossRef
42.
43.
go back to reference Liotta LA, Saidel GM, Kleinerman J (1976) Stochastic model of metastases formation. Biometrics 32:535–550PubMedCrossRef Liotta LA, Saidel GM, Kleinerman J (1976) Stochastic model of metastases formation. Biometrics 32:535–550PubMedCrossRef
44.
go back to reference Hartung N et al (2014) Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice. Cancer Res 74:6397–6407PubMedCrossRef Hartung N et al (2014) Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice. Cancer Res 74:6397–6407PubMedCrossRef
46.
go back to reference Benzekry S et al (2016) Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer Res 76:535–547PubMedCrossRef Benzekry S et al (2016) Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer Res 76:535–547PubMedCrossRef
47.
48.
go back to reference Norton L (1988) A Gompertzian model of human breast cancer growth. Cancer Res 48:7067–7071PubMed Norton L (1988) A Gompertzian model of human breast cancer growth. Cancer Res 48:7067–7071PubMed
49.
50.
go back to reference Iwata K, Kawasaki K, Shigesada N (2000) A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol 203:177–186PubMedCrossRef Iwata K, Kawasaki K, Shigesada N (2000) A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol 203:177–186PubMedCrossRef
51.
go back to reference Schlicke P, Kuttler C, Schumann C (2021) How mathematical modeling could contribute to the quantification of metastatic tumor burden under therapy: insights in immunotherapeutic treatment of non-small cell lung cancer. Theor Biol Med Model 18:11PubMedPubMedCentralCrossRef Schlicke P, Kuttler C, Schumann C (2021) How mathematical modeling could contribute to the quantification of metastatic tumor burden under therapy: insights in immunotherapeutic treatment of non-small cell lung cancer. Theor Biol Med Model 18:11PubMedPubMedCentralCrossRef
53.
go back to reference Cooley LS et al (2021) Experimental and computational modeling for signature and biomarker discovery of renal cell carcinoma progression. Mol Cancer 20:136PubMedPubMedCentralCrossRef Cooley LS et al (2021) Experimental and computational modeling for signature and biomarker discovery of renal cell carcinoma progression. Mol Cancer 20:136PubMedPubMedCentralCrossRef
55.
56.
go back to reference Spratt JS, Meyer JS, Spratt JA (1995) Rates of growth of human solid neoplasms: Part I. J Surg Oncol 60:137–146PubMedCrossRef Spratt JS, Meyer JS, Spratt JA (1995) Rates of growth of human solid neoplasms: Part I. J Surg Oncol 60:137–146PubMedCrossRef
57.
go back to reference Vaghi C et al (2020) Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLOS Comput Biol 16:e1007178PubMedPubMedCentralCrossRef Vaghi C et al (2020) Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLOS Comput Biol 16:e1007178PubMedPubMedCentralCrossRef
58.
go back to reference Bethge A, Schumacher U, Wree A, Wedemann G (2012) Are metastases from metastases clinical relevant? Computer modelling of cancer spread in a case of hepatocellular carcinoma. PLoS ONE 7:e35689PubMedPubMedCentralCrossRef Bethge A, Schumacher U, Wree A, Wedemann G (2012) Are metastases from metastases clinical relevant? Computer modelling of cancer spread in a case of hepatocellular carcinoma. PLoS ONE 7:e35689PubMedPubMedCentralCrossRef
59.
60.
go back to reference MathWorks: MATLAB Documentary GlobalSearch. MathWorks: MATLAB Documentary GlobalSearch.
61.
go back to reference Ugray Z et al (2007) Scatter search and local NLP solvers: a multistart framework for global optimization. Inf J Comput 19:328–340CrossRef Ugray Z et al (2007) Scatter search and local NLP solvers: a multistart framework for global optimization. Inf J Comput 19:328–340CrossRef
63.
go back to reference Davidson-Pilon C (2019) lifelines: survival analysis in Python. J Open Source Softw 4:1317CrossRef Davidson-Pilon C (2019) lifelines: survival analysis in Python. J Open Source Softw 4:1317CrossRef
64.
go back to reference Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387PubMedCrossRef Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387PubMedCrossRef
65.
go back to reference Pope WB (2018) Brain metastases: neuroimaging. In: Handbook of clinical neurology. Elsevier, vol 149, pp. 89–112 Pope WB (2018) Brain metastases: neuroimaging. In: Handbook of clinical neurology. Elsevier, vol 149, pp. 89–112
66.
go back to reference Brindle KM, Izquierdo-García JL, Lewis DY, Mair RJ, Wright AJ (2017) Brain tumor imaging. J Clin Oncol 35:2432–2438PubMedCrossRef Brindle KM, Izquierdo-García JL, Lewis DY, Mair RJ, Wright AJ (2017) Brain tumor imaging. J Clin Oncol 35:2432–2438PubMedCrossRef
67.
go back to reference Azin M, Demehri S (2022) STK11 loss: a novel mechanism for melanoma metastasis with therapeutic implications. J Invest Dermatol 142:1007–1009PubMedCrossRef Azin M, Demehri S (2022) STK11 loss: a novel mechanism for melanoma metastasis with therapeutic implications. J Invest Dermatol 142:1007–1009PubMedCrossRef
68.
go back to reference Huang D et al (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 37:173–187PubMedCrossRef Huang D et al (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 37:173–187PubMedCrossRef
71.
go back to reference Zhao S et al (2021) MRI radiomic signature predicts intracranial progression-free survival in patients with brain metastases of ALK-positive non-small cell lung cancer. Transl Lung Cancer Res 10:368–380PubMedPubMedCentralCrossRef Zhao S et al (2021) MRI radiomic signature predicts intracranial progression-free survival in patients with brain metastases of ALK-positive non-small cell lung cancer. Transl Lung Cancer Res 10:368–380PubMedPubMedCentralCrossRef
72.
go back to reference Huang C-Y et al (2020) Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery. J Neurooncol 146:439–449PubMedCrossRef Huang C-Y et al (2020) Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery. J Neurooncol 146:439–449PubMedCrossRef
73.
go back to reference Zhang J et al (2021) Computer tomography radiomics-based nomogram in the survival prediction for brain metastases from non-small cell lung cancer underwent whole brain radiotherapy. Front Oncol 10:610691PubMedPubMedCentralCrossRef Zhang J et al (2021) Computer tomography radiomics-based nomogram in the survival prediction for brain metastases from non-small cell lung cancer underwent whole brain radiotherapy. Front Oncol 10:610691PubMedPubMedCentralCrossRef
74.
go back to reference Perlikos F, Harrington KJ, Syrigos KN (2013) Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol 87:1–11PubMedCrossRef Perlikos F, Harrington KJ, Syrigos KN (2013) Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol 87:1–11PubMedCrossRef
75.
go back to reference Retsky MW et al (1997) Computer simulation of a breast cancer metastasis model. Breast Cancer Res Treat 45:193–202PubMedCrossRef Retsky MW et al (1997) Computer simulation of a breast cancer metastasis model. Breast Cancer Res Treat 45:193–202PubMedCrossRef
77.
go back to reference Ocaña-Tienda B et al (2023) Growth exponents reflect evolutionary processes and treatment response in brain metastases. Npj Syst Biol Appl 9:1–11CrossRef Ocaña-Tienda B et al (2023) Growth exponents reflect evolutionary processes and treatment response in brain metastases. Npj Syst Biol Appl 9:1–11CrossRef
78.
go back to reference Nakamura R et al (2014) Epidermal growth factor receptor mutations: effect on volume doubling time of non–small-cell lung cancer patients. J Thorac Oncol 9:1340–1344PubMedCrossRef Nakamura R et al (2014) Epidermal growth factor receptor mutations: effect on volume doubling time of non–small-cell lung cancer patients. J Thorac Oncol 9:1340–1344PubMedCrossRef
79.
go back to reference Zhang R et al (2017) Volume doubling time of lung adenocarcinomas considering epidermal growth factor receptor mutation status of exon 19 and 21: three-dimensional volumetric evaluation. J Thorac Dis 9:4387–4397PubMedPubMedCentralCrossRef Zhang R et al (2017) Volume doubling time of lung adenocarcinomas considering epidermal growth factor receptor mutation status of exon 19 and 21: three-dimensional volumetric evaluation. J Thorac Dis 9:4387–4397PubMedPubMedCentralCrossRef
80.
go back to reference Robin TP et al (2018) Excellent outcomes with radiosurgery for multiple brain metastases in ALK and EGFR driven non-small cell lung cancer. J Thorac Oncol 13:715–720PubMedCrossRef Robin TP et al (2018) Excellent outcomes with radiosurgery for multiple brain metastases in ALK and EGFR driven non-small cell lung cancer. J Thorac Oncol 13:715–720PubMedCrossRef
81.
go back to reference Wu Y-L et al (2020) Osimertinib in resected EGFR -mutated non–small-cell lung cancer. N Engl J Med 383:1711–1723PubMedCrossRef Wu Y-L et al (2020) Osimertinib in resected EGFR -mutated non–small-cell lung cancer. N Engl J Med 383:1711–1723PubMedCrossRef
83.
go back to reference Felip E et al (2021) Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. The Lancet 398:1344–1357CrossRef Felip E et al (2021) Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. The Lancet 398:1344–1357CrossRef
86.
go back to reference Gompertz B (1833) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies: In a letter to Francis Baily, Esq. FRS & c. Philos Trans R Soc Lond 2:252–253 Gompertz B (1833) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies: In a letter to Francis Baily, Esq. FRS & c. Philos Trans R Soc Lond 2:252–253
87.
go back to reference Casey AE (1934) The experimental alteration of malignancy with an homologous mammalian tumor material. I: results with intratesticular inoculation. Am J Cancer 21:760 Casey AE (1934) The experimental alteration of malignancy with an homologous mammalian tumor material. I: results with intratesticular inoculation. Am J Cancer 21:760
Metadata
Title
Computational markers for personalized prediction of outcomes in non-small cell lung cancer patients with brain metastases
Authors
Sébastien Benzekry
Pirmin Schlicke
Alice Mogenet
Laurent Greillier
Pascale Tomasini
Eléonore Simon
Publication date
20-12-2023
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 1/2024
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-023-10245-3

Other articles of this Issue 1/2024

Clinical & Experimental Metastasis 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine