Skip to main content
Top
Published in: Clinical & Experimental Metastasis 5-6/2018

01-08-2018 | Research Paper

Genetics of metastasis: melanoma and other cancers

Authors: Noel Turner, Olivia Ware, Marcus Bosenberg

Published in: Clinical & Experimental Metastasis | Issue 5-6/2018

Login to get access

Abstract

Melanoma is a malignant neoplasm of melanocytes that accounts for the majority of skin cancer deaths despite comprising less than 5% of all cutaneous malignancies. Its incidence has increased faster than that of any other cancer over the past half-century and the annual costs of treatment in the United States alone have risen rapidly. Although the majority of primary melanomas are cured with local excision, metastatic melanoma historically carries a grim prognosis, with a median survival of 9 months and a long-term survival rate of 10%. Given the urgent need to develop treatment strategies for metastatic melanoma and the explosion of genetic technologies over the past 20 years, there has been extensive research into the genetic alterations that cause melanocytes to become malignant. More recently, efforts have focused on the genetic changes that drive melanoma metastasis. This review aims to summarize the current knowledge of the genetics of primary cutaneous and ocular melanoma, the genetic changes associated with metastasis in melanoma and other cancer types, and non-genetic factors that may contribute to metastasis.
Literature
1.
go back to reference Clark WH Jr, Elder DE, Van Horn M (1986) The biologic forms of malignant melanoma. Hum Pathol 17(5):443–450PubMedCrossRef Clark WH Jr, Elder DE, Van Horn M (1986) The biologic forms of malignant melanoma. Hum Pathol 17(5):443–450PubMedCrossRef
2.
go back to reference Arrington JH 3rd et al (1977) Plantar lentiginous melanoma: a distinctive variant of human cutaneous malignant melanoma. Am J Surg Pathol 1(2):131–143PubMedCrossRef Arrington JH 3rd et al (1977) Plantar lentiginous melanoma: a distinctive variant of human cutaneous malignant melanoma. Am J Surg Pathol 1(2):131–143PubMedCrossRef
4.
go back to reference Vazquez Vde L et al (2016) Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res 26(2):93–99PubMedCrossRef Vazquez Vde L et al (2016) Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res 26(2):93–99PubMedCrossRef
5.
go back to reference Merkel EA, Gerami P (2017) Malignant melanoma of sun-protected sites: a review of clinical, histological, molecular features. Lab Invest 97(6):630–635PubMedCrossRef Merkel EA, Gerami P (2017) Malignant melanoma of sun-protected sites: a review of clinical, histological, molecular features. Lab Invest 97(6):630–635PubMedCrossRef
6.
go back to reference Kim JY et al (2014) Acral lentiginous melanoma: indolent subtype with long radial growth phase. Am J Dermatopathol 36(2):142–147PubMedCrossRef Kim JY et al (2014) Acral lentiginous melanoma: indolent subtype with long radial growth phase. Am J Dermatopathol 36(2):142–147PubMedCrossRef
7.
go back to reference Barnhill RL et al (1996) Predicting five-year outcome for patients with cutaneous melanoma in a population-based study. Cancer 78(3):427–432PubMedCrossRef Barnhill RL et al (1996) Predicting five-year outcome for patients with cutaneous melanoma in a population-based study. Cancer 78(3):427–432PubMedCrossRef
8.
go back to reference Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. New Engl J Med 353(20):2135–2147PubMedCrossRef Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. New Engl J Med 353(20):2135–2147PubMedCrossRef
12.
go back to reference Cheng KC et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 267(1):166–172CrossRefPubMed Cheng KC et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 267(1):166–172CrossRefPubMed
13.
go back to reference Network TCGA (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696CrossRef Network TCGA (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696CrossRef
14.
15.
go back to reference Avruch J et al (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155PubMedCrossRef Avruch J et al (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155PubMedCrossRef
17.
go back to reference Nikolaev SI et al (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44(2):133–139PubMedCrossRef Nikolaev SI et al (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44(2):133–139PubMedCrossRef
18.
go back to reference Bauer J et al (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127(1):179–182PubMedCrossRef Bauer J et al (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127(1):179–182PubMedCrossRef
19.
20.
go back to reference Dhomen N et al (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294–303PubMedCrossRef Dhomen N et al (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294–303PubMedCrossRef
21.
go back to reference Vredeveld LC et al (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26(10):1055–1069PubMedPubMedCentralCrossRef Vredeveld LC et al (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26(10):1055–1069PubMedPubMedCentralCrossRef
22.
23.
go back to reference Mirmohammadsadegh A et al (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66(13):6546–6552PubMedCrossRef Mirmohammadsadegh A et al (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66(13):6546–6552PubMedCrossRef
29.
go back to reference Bennett DC (2008) How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 21(1):27–38PubMedCrossRef Bennett DC (2008) How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 21(1):27–38PubMedCrossRef
31.
go back to reference Reddy BY, Miller DM, Tsao H (2017) Somatic driver mutations in melanoma. Cancer 123(S11):2104–2117PubMedCrossRef Reddy BY, Miller DM, Tsao H (2017) Somatic driver mutations in melanoma. Cancer 123(S11):2104–2117PubMedCrossRef
33.
go back to reference Horn S et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961CrossRefPubMed Horn S et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961CrossRefPubMed
34.
go back to reference Bell RJ et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348(6238):1036–1039PubMedPubMedCentralCrossRef Bell RJ et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348(6238):1036–1039PubMedPubMedCentralCrossRef
35.
go back to reference Garraway LA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122CrossRefPubMed Garraway LA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122CrossRefPubMed
36.
go back to reference Hartman ML, Czyz M (2015) MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 72(7):1249–1260PubMedCrossRef Hartman ML, Czyz M (2015) MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 72(7):1249–1260PubMedCrossRef
37.
go back to reference Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182CrossRefPubMed Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182CrossRefPubMed
38.
go back to reference Prickett TD et al (2014) Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation. J Invest Dermatol 134(9):2390–2398PubMedPubMedCentralCrossRef Prickett TD et al (2014) Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation. J Invest Dermatol 134(9):2390–2398PubMedPubMedCentralCrossRef
39.
go back to reference Prickett TD et al (2011) Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet 43(11):1119–1126PubMedPubMedCentralCrossRef Prickett TD et al (2011) Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet 43(11):1119–1126PubMedPubMedCentralCrossRef
40.
go back to reference Neto A, Ceol CJ (2018) Melanoma-associated GRM3 variants dysregulate melanosome trafficking and cAMP signaling. Pigment Cell Melanoma Res 31(1):115–119PubMedCrossRef Neto A, Ceol CJ (2018) Melanoma-associated GRM3 variants dysregulate melanosome trafficking and cAMP signaling. Pigment Cell Melanoma Res 31(1):115–119PubMedCrossRef
41.
go back to reference Gembarska A et al (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18(8):1239–1247PubMedCrossRef Gembarska A et al (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18(8):1239–1247PubMedCrossRef
42.
go back to reference Stefansson B, Brautigan DL (2007) Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Cell Cycle 6(11):1386–1392PubMedCrossRef Stefansson B, Brautigan DL (2007) Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Cell Cycle 6(11):1386–1392PubMedCrossRef
43.
45.
go back to reference Bastian BC et al (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58(10):2170–2175PubMed Bastian BC et al (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58(10):2170–2175PubMed
46.
go back to reference van den Bosch T et al. (2010) Genetics of uveal melanoma and cutaneous melanoma: two of a kind? Dermatol Res Pract 2010:360136PubMedPubMedCentral van den Bosch T et al. (2010) Genetics of uveal melanoma and cutaneous melanoma: two of a kind? Dermatol Res Pract 2010:360136PubMedPubMedCentral
47.
go back to reference James AWM et al (2014) Cytogenetics of melanoma: a review. J Assoc Genet Technol 40(4):209–218 James AWM et al (2014) Cytogenetics of melanoma: a review. J Assoc Genet Technol 40(4):209–218
48.
go back to reference Hayward NK et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545(7653):175–180PubMedCrossRef Hayward NK et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545(7653):175–180PubMedCrossRef
49.
go back to reference Bastian BC et al (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60(7):1968–1973PubMed Bastian BC et al (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60(7):1968–1973PubMed
50.
go back to reference Furney SJ et al (2014) The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res 27(5):835–838PubMedCrossRef Furney SJ et al (2014) The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res 27(5):835–838PubMedCrossRef
51.
go back to reference Kong Y et al (2017) Frequent genetic aberrations in the CDK4 pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin Cancer Res 23(22):6946–6957PubMedCrossRef Kong Y et al (2017) Frequent genetic aberrations in the CDK4 pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin Cancer Res 23(22):6946–6957PubMedCrossRef
52.
go back to reference Curtin JA et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340–4346PubMedCrossRef Curtin JA et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340–4346PubMedCrossRef
53.
54.
go back to reference Dumaz N et al (2015) Driver KIT mutations in melanoma cluster in four hotspots. Melanoma Res 25(1):88–90PubMedCrossRef Dumaz N et al (2015) Driver KIT mutations in melanoma cluster in four hotspots. Melanoma Res 25(1):88–90PubMedCrossRef
55.
go back to reference Fukuda R et al (2001) Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med 40(4):301–303PubMedCrossRef Fukuda R et al (2001) Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med 40(4):301–303PubMedCrossRef
56.
go back to reference Dai J et al (2013) Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin Cancer Res 19(24):6935–6942PubMedCrossRef Dai J et al (2013) Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin Cancer Res 19(24):6935–6942PubMedCrossRef
57.
go back to reference Board R, Jayson GC (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Update 8(1–2):75–83CrossRef Board R, Jayson GC (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Update 8(1–2):75–83CrossRef
58.
go back to reference Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163PubMedCrossRef Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163PubMedCrossRef
59.
go back to reference Yan J et al (2018) Analysis of NRAS gain in 657 patients with melanoma and evaluation of its sensitivity to a MEK inhibitor. Eur J Cancer 89:90–101PubMedCrossRef Yan J et al (2018) Analysis of NRAS gain in 657 patients with melanoma and evaluation of its sensitivity to a MEK inhibitor. Eur J Cancer 89:90–101PubMedCrossRef
61.
go back to reference Diaz A et al (2014) TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization. J Mol Diagn 16(2):198–206PubMedCrossRef Diaz A et al (2014) TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization. J Mol Diagn 16(2):198–206PubMedCrossRef
62.
go back to reference Liau JY et al (2014) TERT promoter mutation is uncommon in acral lentiginous melanoma. J Cutan Pathol 41(6):504–508PubMedCrossRef Liau JY et al (2014) TERT promoter mutation is uncommon in acral lentiginous melanoma. J Cutan Pathol 41(6):504–508PubMedCrossRef
63.
65.
go back to reference Griewank KG et al (2013) Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 19(12):3143–3152PubMedCrossRef Griewank KG et al (2013) Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 19(12):3143–3152PubMedCrossRef
66.
go back to reference Testa U, Castelli G, Pelosi E (2017) Melanoma: genetic abnormalities, tumor progression, clonal evolution and tumor initiating cells. Med Sci 5(4):28 Testa U, Castelli G, Pelosi E (2017) Melanoma: genetic abnormalities, tumor progression, clonal evolution and tumor initiating cells. Med Sci 5(4):28
67.
go back to reference Van Raamsdonk CD et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602PubMedCrossRef Van Raamsdonk CD et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602PubMedCrossRef
68.
go back to reference Van Raamsdonk CD et al (2010) Mutations in GNA11 in uveal melanoma. New Engl J Med 363(23):2191–2199PubMedCrossRef Van Raamsdonk CD et al (2010) Mutations in GNA11 in uveal melanoma. New Engl J Med 363(23):2191–2199PubMedCrossRef
69.
go back to reference Feng X et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25(6):831–845PubMedPubMedCentralCrossRef Feng X et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25(6):831–845PubMedPubMedCentralCrossRef
71.
go back to reference Mong S et al (1988) Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J Pharmacol Exp Ther 244(2):508–515PubMed Mong S et al (1988) Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J Pharmacol Exp Ther 244(2):508–515PubMed
72.
go back to reference Johansson P et al (2016) Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7(4):4624–4631CrossRefPubMed Johansson P et al (2016) Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7(4):4624–4631CrossRefPubMed
75.
go back to reference Ismail IH et al (2014) Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74(16):4282–4294CrossRefPubMed Ismail IH et al (2014) Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74(16):4282–4294CrossRefPubMed
77.
78.
go back to reference Martin M et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45(8):933–936PubMedPubMedCentralCrossRef Martin M et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45(8):933–936PubMedPubMedCentralCrossRef
79.
go back to reference van den Bosch T et al (2012) Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Invest Ophthalmol Vis Sci 53(6):2668–2674PubMedCrossRef van den Bosch T et al (2012) Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Invest Ophthalmol Vis Sci 53(6):2668–2674PubMedCrossRef
80.
go back to reference de Snoo FA, Hayward NK (2005) Cutaneous melanoma susceptibility and progression genes. Cancer Lett 230(2):153–186PubMedCrossRef de Snoo FA, Hayward NK (2005) Cutaneous melanoma susceptibility and progression genes. Cancer Lett 230(2):153–186PubMedCrossRef
81.
82.
go back to reference Zuo L et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99CrossRefPubMed Zuo L et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99CrossRefPubMed
83.
go back to reference Fletcher O et al (2004) Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 96(5):357–363PubMedCrossRef Fletcher O et al (2004) Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 96(5):357–363PubMedCrossRef
85.
go back to reference Lin M et al (2017) Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget 8(43):74936–74946PubMedPubMedCentralCrossRef Lin M et al (2017) Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget 8(43):74936–74946PubMedPubMedCentralCrossRef
86.
go back to reference Aoude LG et al (2015) Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 28(2):148–160PubMedCrossRef Aoude LG et al (2015) Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 28(2):148–160PubMedCrossRef
88.
go back to reference Bertolotto C et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98PubMedCrossRef Bertolotto C et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98PubMedCrossRef
90.
go back to reference Bertolotto C et al (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835PubMedPubMedCentralCrossRef Bertolotto C et al (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835PubMedPubMedCentralCrossRef
92.
go back to reference Vajdic C et al (2003) Ocular melanoma is not associated with CDKN2A or MC1R variants–a population-based study. Melanoma Res 13(4):409–413PubMedCrossRef Vajdic C et al (2003) Ocular melanoma is not associated with CDKN2A or MC1R variants–a population-based study. Melanoma Res 13(4):409–413PubMedCrossRef
93.
go back to reference Fidler IJ (2011) The pathogenesis of cancer metastasis: the ‘seed and soil’. hypothesis revisited. Int J Cancer 3:453 Fidler IJ (2011) The pathogenesis of cancer metastasis: the ‘seed and soil’. hypothesis revisited. Int J Cancer 3:453
94.
98.
go back to reference Natali PG et al (1993) Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68(4):746–750PubMedPubMedCentralCrossRef Natali PG et al (1993) Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68(4):746–750PubMedPubMedCentralCrossRef
99.
go back to reference Schmidt H et al (1999) Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25(3):205–211PubMedCrossRef Schmidt H et al (1999) Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25(3):205–211PubMedCrossRef
100.
go back to reference Ubagai T et al (2001) Comparative genomic hybridization analysis suggests a gain of chromosome 7p associated with lymph node metastasis in non-small cell lung cancer. Oncol Rep 8(1):83–88PubMed Ubagai T et al (2001) Comparative genomic hybridization analysis suggests a gain of chromosome 7p associated with lymph node metastasis in non-small cell lung cancer. Oncol Rep 8(1):83–88PubMed
102.
go back to reference Kim M et al (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125(7):1269–1281PubMedCrossRef Kim M et al (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125(7):1269–1281PubMedCrossRef
103.
go back to reference Timar J, Gyorffy B, Raso E (2010) Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 27(6):371–387PubMedCrossRef Timar J, Gyorffy B, Raso E (2010) Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 27(6):371–387PubMedCrossRef
104.
go back to reference Rakosy Z et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121(8):1729–1737PubMedCrossRef Rakosy Z et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121(8):1729–1737PubMedCrossRef
105.
go back to reference Udart M et al (2001) Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia 3(3):245–254PubMedPubMedCentralCrossRef Udart M et al (2001) Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia 3(3):245–254PubMedPubMedCentralCrossRef
107.
go back to reference Gartner JJ et al (2012) Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genom 13:505CrossRef Gartner JJ et al (2012) Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genom 13:505CrossRef
108.
go back to reference Colombino M et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30(20):2522–2529PubMedCrossRef Colombino M et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30(20):2522–2529PubMedCrossRef
109.
go back to reference Jakob JA et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118(16):4014–4023PubMedCrossRef Jakob JA et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118(16):4014–4023PubMedCrossRef
110.
go back to reference Kotani M et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636PubMedCrossRef Kotani M et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636PubMedCrossRef
111.
go back to reference Onken MD et al (2012) Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 119(8):1596–1603PubMedCrossRef Onken MD et al (2012) Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 119(8):1596–1603PubMedCrossRef
113.
go back to reference Bakalian S et al (2008) Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 14(4):951–956PubMedCrossRef Bakalian S et al (2008) Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 14(4):951–956PubMedCrossRef
115.
117.
go back to reference Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584PubMedCrossRef Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584PubMedCrossRef
118.
119.
120.
go back to reference Sethi N (2011) Tumor-derived jagged1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192PubMedPubMedCentralCrossRef Sethi N (2011) Tumor-derived jagged1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192PubMedPubMedCentralCrossRef
122.
125.
go back to reference Luo JL (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297PubMedCrossRef Luo JL (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297PubMedCrossRef
126.
go back to reference Siegel PM (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430PubMedCrossRefPubMedCentral Siegel PM (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430PubMedCrossRefPubMedCentral
127.
go back to reference Davidson B (2004) Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumour progression. Clin Cancer Res 10(21):7335PubMedCrossRef Davidson B (2004) Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumour progression. Clin Cancer Res 10(21):7335PubMedCrossRef
129.
go back to reference Tabariès S (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 32:1318CrossRef Tabariès S (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 32:1318CrossRef
130.
go back to reference Winquist E (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care’s Genitourinary Cancer Disease Site Group. BMC Cancer 6:112PubMedPubMedCentralCrossRef Winquist E (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care’s Genitourinary Cancer Disease Site Group. BMC Cancer 6:112PubMedPubMedCentralCrossRef
131.
go back to reference Bubendorf L (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31(5):578CrossRefPubMed Bubendorf L (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31(5):578CrossRefPubMed
132.
go back to reference Mimeault M (2011) Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 17:9CrossRef Mimeault M (2011) Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 17:9CrossRef
133.
go back to reference Mimeault M (2006) Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Carcinogenesis 27(1):1PubMedCrossRef Mimeault M (2006) Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Carcinogenesis 27(1):1PubMedCrossRef
135.
136.
go back to reference Faltermeier C (2016) Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci USA 113(2):E172PubMedCrossRef Faltermeier C (2016) Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci USA 113(2):E172PubMedCrossRef
137.
go back to reference Siegel RL (2015) Cancer statistics. CA: Cancer J Clin 65(1):5 Siegel RL (2015) Cancer statistics. CA: Cancer J Clin 65(1):5
138.
go back to reference Nguyen DX (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274PubMedCrossRef Nguyen DX (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274PubMedCrossRef
139.
go back to reference Popper HH (2016) Progression and metastasis of lung cancer. Caner Metastasis Rev 35:75CrossRef Popper HH (2016) Progression and metastasis of lung cancer. Caner Metastasis Rev 35:75CrossRef
140.
go back to reference Yang J (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927CrossRefPubMed Yang J (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927CrossRefPubMed
141.
go back to reference Xie L (2013) Genome-wide identification of bone metastasis-related microRNAs in lung adenocarcinoma by high-throughput sequencing. PLoS ONE 8(4):e61212PubMedPubMedCentralCrossRef Xie L (2013) Genome-wide identification of bone metastasis-related microRNAs in lung adenocarcinoma by high-throughput sequencing. PLoS ONE 8(4):e61212PubMedPubMedCentralCrossRef
142.
go back to reference Rao S (2017) RANK requires energy homoeostasis in lung cancer cells and drives primary lung cancer. Genes 31(20):2099CrossRef Rao S (2017) RANK requires energy homoeostasis in lung cancer cells and drives primary lung cancer. Genes 31(20):2099CrossRef
143.
go back to reference Vicent S (2008) A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Can Res 68(7):2275CrossRef Vicent S (2008) A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Can Res 68(7):2275CrossRef
144.
go back to reference Preusser M (2014) High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer 83(1):83PubMedCrossRef Preusser M (2014) High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer 83(1):83PubMedCrossRef
145.
go back to reference Pukrop T (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58(12):1477PubMedCrossRef Pukrop T (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58(12):1477PubMedCrossRef
148.
go back to reference Cook AD (2005) Surgical resection of primary tumors in patients who present with stage IV colorectal cancer: an analysis of surveillance, epidemiology, and end results data, 1988 to 2000. Ann Sure Oncol 12(8):637CrossRef Cook AD (2005) Surgical resection of primary tumors in patients who present with stage IV colorectal cancer: an analysis of surveillance, epidemiology, and end results data, 1988 to 2000. Ann Sure Oncol 12(8):637CrossRef
150.
go back to reference Hansen IO (2012) Possible better long-term survival in left versus right-sided colon cancer: a systematic review. Dan Med J 59(6):A4444PubMed Hansen IO (2012) Possible better long-term survival in left versus right-sided colon cancer: a systematic review. Dan Med J 59(6):A4444PubMed
151.
go back to reference Benedix F (2010) Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53(1):57CrossRefPubMed Benedix F (2010) Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53(1):57CrossRefPubMed
152.
go back to reference Iino H (1994) Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q, and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer 73(5):1324PubMedCrossRef Iino H (1994) Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q, and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer 73(5):1324PubMedCrossRef
153.
go back to reference Ookawa K (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Cancer 53(3):382 Ookawa K (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Cancer 53(3):382
154.
go back to reference Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317PubMedCrossRef Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317PubMedCrossRef
155.
go back to reference Dolled-Filhart M (2006) Quantitative in situ analysis of β-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Can Res 66(10):5487CrossRef Dolled-Filhart M (2006) Quantitative in situ analysis of β-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Can Res 66(10):5487CrossRef
156.
go back to reference Chao Y (2014) Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 29(1):39CrossRef Chao Y (2014) Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 29(1):39CrossRef
157.
go back to reference Adams GN (2015) Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Can Res 75(19):4235CrossRef Adams GN (2015) Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Can Res 75(19):4235CrossRef
158.
159.
go back to reference Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability: an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228PubMedCrossRef Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability: an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228PubMedCrossRef
160.
go back to reference Brannon AR et al (2014) Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 15(8):454PubMedPubMedCentralCrossRef Brannon AR et al (2014) Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 15(8):454PubMedPubMedCentralCrossRef
161.
go back to reference Martincorena I et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886PubMedPubMedCentralCrossRef Martincorena I et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886PubMedPubMedCentralCrossRef
162.
go back to reference Sanborn JZ et al (2015) Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci USA 112(35):10995–11000PubMedCrossRefPubMedCentral Sanborn JZ et al (2015) Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci USA 112(35):10995–11000PubMedCrossRefPubMedCentral
163.
go back to reference Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329PubMedPubMedCentralCrossRef Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329PubMedPubMedCentralCrossRef
164.
go back to reference Park YJ (2011) Genome-wide epigenetic modifications in cancer. Progress Drug Res 67:25–49 Park YJ (2011) Genome-wide epigenetic modifications in cancer. Progress Drug Res 67:25–49
165.
go back to reference Metri R et al (2017) Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci Rep 7(1):17314PubMedPubMedCentralCrossRef Metri R et al (2017) Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci Rep 7(1):17314PubMedPubMedCentralCrossRef
166.
go back to reference Shen SS et al (2003) Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol 30(9):539–547PubMedCrossRef Shen SS et al (2003) Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol 30(9):539–547PubMedCrossRef
167.
go back to reference Isabel Zhu Y, Fitzpatrick JE (2006) Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol 33(1):33–37PubMedCrossRef Isabel Zhu Y, Fitzpatrick JE (2006) Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol 33(1):33–37PubMedCrossRef
168.
go back to reference Del C Velasco-Herrera M et al (2017) Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol Oncol 12(2):239–255CrossRef Del C Velasco-Herrera M et al (2017) Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol Oncol 12(2):239–255CrossRef
170.
go back to reference Boissan M, Lacombe ML (2012) NM23, an example of a metastasis suppressor gene. Bull Cancer 99(4):431–440PubMedCrossRef Boissan M, Lacombe ML (2012) NM23, an example of a metastasis suppressor gene. Bull Cancer 99(4):431–440PubMedCrossRef
171.
go back to reference Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535PubMedCrossRef Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535PubMedCrossRef
172.
go back to reference Li J et al (2011) Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene 30(8):896–906PubMedCrossRef Li J et al (2011) Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene 30(8):896–906PubMedCrossRef
173.
go back to reference Achyut BR (2013) Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet 9(2):e1003251PubMedPubMedCentralCrossRef Achyut BR (2013) Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet 9(2):e1003251PubMedPubMedCentralCrossRef
174.
175.
go back to reference Gould CM (2014) Regulation of invadopodia by the tumor microenvironment. Cell Adhes Migr 8(3):226CrossRef Gould CM (2014) Regulation of invadopodia by the tumor microenvironment. Cell Adhes Migr 8(3):226CrossRef
178.
go back to reference Spaeth E (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730PubMedCrossRef Spaeth E (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730PubMedCrossRef
Metadata
Title
Genetics of metastasis: melanoma and other cancers
Authors
Noel Turner
Olivia Ware
Marcus Bosenberg
Publication date
01-08-2018
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 5-6/2018
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-018-9893-y

Other articles of this Issue 5-6/2018

Clinical & Experimental Metastasis 5-6/2018 Go to the issue

Editorial

Editorial

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine