Skip to main content
Top
Published in: Clinical & Experimental Metastasis 8/2009

01-12-2009 | Research Paper

MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection

Authors: Xueping Zhang, Amy Ladd, Ema Dragoescu, William T. Budd, Joy L. Ware, Zendra E. Zehner

Published in: Clinical & Experimental Metastasis | Issue 8/2009

Login to get access

Abstract

MicroRNAs (miRs) are a novel class of RNAs with important roles in regulating gene expression. To identify miRs controlling prostate tumor progression, we utilized unique human prostate sublines derived from the parental P69 cell line, which differ in their tumorigenic properties in vivo. Grown embedded in laminin-rich extracellular matrix (lrECM) gels these genetically-related sublines displayed drastically different morphologies correlating with their behaviour in vivo. The non-tumorigenic P69 subline grew as multicellular acini with a defined lumen and basal/polar expression of relevant marker proteins. M12, a highly tumorigenic, metastatic derivative, grew as a disorganized mass of cells with no polarization, whereas the F6 subline, a weakly tumorigenic, non-metastatic M12 variant, reverted to acini formation akin to the P69 cell line. These sublines also differed in expression of vimentin, which was high in M12, but low in F6 and P69 sublines. Analysis of vimentin’s conserved 3′-UTR suggested several miRs that could regulate vimentin expression. The lack of miR-17-3p expression correlated with an increase in vimentin synthesis and tumorigenicity. Stable expression of miR-17-3p in the M12 subline reduced vimentin levels 85% and reverted growth to organized, polarized acini in lrECM gels. In vitro motility and invasion assays suggested a decrease in tumorigenic behaviour, confirmed by reduced tumor growth in male athymic, nude mice dependent on miR-17-3p expression. Analysis of LCM-purified clinical human prostatectomy specimens confirmed that miR-17-3p levels were reduced in tumor cells. These results suggest that miR-17-3p functions as a tumor suppressor, representing a novel target to block prostate tumor progression.
Literature
1.
go back to reference Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400CrossRefPubMed Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400CrossRefPubMed
2.
go back to reference Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197CrossRefPubMed Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197CrossRefPubMed
3.
go back to reference Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefPubMed Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefPubMed
4.
go back to reference Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840PubMed Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840PubMed
5.
go back to reference Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760CrossRefPubMed Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760CrossRefPubMed
6.
go back to reference Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529CrossRefPubMed Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529CrossRefPubMed
7.
go back to reference Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261CrossRefPubMed Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261CrossRefPubMed
8.
go back to reference Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196CrossRefPubMed Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196CrossRefPubMed
9.
go back to reference Shi XB, Tepper CG, White VW (2008) MicroRNAs and prostate cancer. J Cell Mol Med 12(58):1456–1465CrossRefPubMed Shi XB, Tepper CG, White VW (2008) MicroRNAs and prostate cancer. J Cell Mol Med 12(58):1456–1465CrossRefPubMed
10.
go back to reference Bae VL, Jackson-Cook CK, Brothman AR et al (1994) Tumorigenicity of SV40 T antigen immortalized human prostate epithelial cells: association with decreased epidermal growth factor receptor (EGFR) expression. Int J Cancer 58:721–729CrossRefPubMed Bae VL, Jackson-Cook CK, Brothman AR et al (1994) Tumorigenicity of SV40 T antigen immortalized human prostate epithelial cells: association with decreased epidermal growth factor receptor (EGFR) expression. Int J Cancer 58:721–729CrossRefPubMed
11.
go back to reference Bae VL, Jackson-Cook CK, Maygarden SJ et al (1998) Metastatic sublines of an SV40 large T antigen immortalized human prostate epithelial cell line. Prostate 34:275–282CrossRefPubMed Bae VL, Jackson-Cook CK, Maygarden SJ et al (1998) Metastatic sublines of an SV40 large T antigen immortalized human prostate epithelial cell line. Prostate 34:275–282CrossRefPubMed
12.
go back to reference Astbury C, Jackson-Cook CK, Culp SH et al (2001) Suppression of tumorigenicity in the human prostate cancer cell line M12 via microcell-mediated restoration of chromosome 19. Genes Chromosomes Cancer 31:143–155CrossRefPubMed Astbury C, Jackson-Cook CK, Culp SH et al (2001) Suppression of tumorigenicity in the human prostate cancer cell line M12 via microcell-mediated restoration of chromosome 19. Genes Chromosomes Cancer 31:143–155CrossRefPubMed
13.
go back to reference Zhang X, Fournier M, Ware JL et al (2009) Inhibition of vimentin or β1-integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Can Ther 8(3):499–508CrossRef Zhang X, Fournier M, Ware JL et al (2009) Inhibition of vimentin or β1-integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Can Ther 8(3):499–508CrossRef
14.
go back to reference Liu X, Wu Y, Zehner ZE et al (2003) Proteomic analysis of the tumorigenic human prostate cell line M12 after microcell-mediated transfer of chromosome 19 demonstrates reduction of vimentin. Electrophoresis 24:3445–3453CrossRefPubMed Liu X, Wu Y, Zehner ZE et al (2003) Proteomic analysis of the tumorigenic human prostate cell line M12 after microcell-mediated transfer of chromosome 19 demonstrates reduction of vimentin. Electrophoresis 24:3445–3453CrossRefPubMed
15.
go back to reference Lang SH, Hyde C, Reid IN et al (2002) Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 52:253–263CrossRefPubMed Lang SH, Hyde C, Reid IN et al (2002) Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 52:253–263CrossRefPubMed
16.
go back to reference Zhao Y, Yan Q, Long X et al (2008) Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct 26:571–577CrossRefPubMed Zhao Y, Yan Q, Long X et al (2008) Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct 26:571–577CrossRefPubMed
17.
go back to reference Zehner ZE, Shepherd RK, Gabryszuk J et al (1997) RNA–protein interactions within the 3′ untranslated region of vimentin mRNA. Nucl Acids Res 25:3362–3370CrossRefPubMed Zehner ZE, Shepherd RK, Gabryszuk J et al (1997) RNA–protein interactions within the 3′ untranslated region of vimentin mRNA. Nucl Acids Res 25:3362–3370CrossRefPubMed
18.
go back to reference Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249CrossRefPubMed Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249CrossRefPubMed
20.
go back to reference Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222CrossRefPubMed Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222CrossRefPubMed
21.
go back to reference Gurel B, Iwata T, Koh M et al (2008) Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 21:1156–1167CrossRefPubMed Gurel B, Iwata T, Koh M et al (2008) Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 21:1156–1167CrossRefPubMed
22.
go back to reference O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843CrossRefPubMed O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843CrossRefPubMed
23.
go back to reference Thalmann GN, Anezinis PE, Chang SM et al (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54:2577–2581PubMed Thalmann GN, Anezinis PE, Chang SM et al (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54:2577–2581PubMed
24.
go back to reference Yacoub A, McKinstry R, Hinman D et al (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in Du145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159:439–452CrossRefPubMed Yacoub A, McKinstry R, Hinman D et al (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in Du145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159:439–452CrossRefPubMed
25.
go back to reference Hegan M, Yacoub A, Dent P (2004) Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clin Cancer Res 10:5724–5731CrossRef Hegan M, Yacoub A, Dent P (2004) Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clin Cancer Res 10:5724–5731CrossRef
26.
go back to reference Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365CrossRefPubMed Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365CrossRefPubMed
27.
go back to reference Zhang X, Diab IH, Zehner ZE (2003) ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucl Acids Res 31:2900–2914CrossRefPubMed Zhang X, Diab IH, Zehner ZE (2003) ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucl Acids Res 31:2900–2914CrossRefPubMed
28.
go back to reference Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT–PCR. Nucleic Acids Res 33:e179CrossRefPubMed Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT–PCR. Nucleic Acids Res 33:e179CrossRefPubMed
29.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMed
30.
go back to reference Gleason DF, Mellinger GΤ (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111(1):58–64PubMed Gleason DF, Mellinger GΤ (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111(1):58–64PubMed
31.
go back to reference Epstein JI, Yang XJ (2002) Prostate biopsy interpretation, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 54–176 Epstein JI, Yang XJ (2002) Prostate biopsy interpretation, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 54–176
32.
go back to reference Paccione RJ, Miyazaki H, Patel V et al (2008) Keratin downregulation in vimentin-positive cancer cells is reversible by vimentin RNAi, which inhibits growth and motility. Mol Cancer Ther 7:2898–2903CrossRef Paccione RJ, Miyazaki H, Patel V et al (2008) Keratin downregulation in vimentin-positive cancer cells is reversible by vimentin RNAi, which inhibits growth and motility. Mol Cancer Ther 7:2898–2903CrossRef
33.
go back to reference Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMed Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMed
34.
go back to reference Bermano G, Shepherd RK, Zehner ZE et al (2001) Perinuclear mRNA localisation by vimentin 3′-untranslated region requires a 100 nucleotide sequence and intermediate filaments. FEBS Lett 497:77–81CrossRefPubMed Bermano G, Shepherd RK, Zehner ZE et al (2001) Perinuclear mRNA localisation by vimentin 3′-untranslated region requires a 100 nucleotide sequence and intermediate filaments. FEBS Lett 497:77–81CrossRefPubMed
35.
go back to reference Griffiths-Jones S, Grocock RJ, vanDongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res 34:D140–D144CrossRefPubMed Griffiths-Jones S, Grocock RJ, vanDongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res 34:D140–D144CrossRefPubMed
36.
go back to reference Chiosea S, Jelezcova E, Chandran U et al (2006) Up-regulation of dicer, a component of the MicroRNA machinery in prostate adenocarcinoma. Am J Pathol 169:1812–1820CrossRefPubMed Chiosea S, Jelezcova E, Chandran U et al (2006) Up-regulation of dicer, a component of the MicroRNA machinery in prostate adenocarcinoma. Am J Pathol 169:1812–1820CrossRefPubMed
37.
go back to reference Singh S, Sadacharan S, Su S et al (2003) Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res 63:2306–2311PubMed Singh S, Sadacharan S, Su S et al (2003) Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res 63:2306–2311PubMed
38.
go back to reference Eckes B, Dogic D, Colucci-Guyon E et al (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111:1897–1907PubMed Eckes B, Dogic D, Colucci-Guyon E et al (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111:1897–1907PubMed
39.
go back to reference Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245CrossRefPubMed Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245CrossRefPubMed
40.
go back to reference Li J, Smyth P, Flavin R et al (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 29(7):36CrossRef Li J, Smyth P, Flavin R et al (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 29(7):36CrossRef
41.
go back to reference Doleshal M, Magotra AA, Choudhury B (2008) Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10(3):203–211CrossRefPubMed Doleshal M, Magotra AA, Choudhury B (2008) Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10(3):203–211CrossRefPubMed
42.
go back to reference Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of microRNA binding sties and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMed Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of microRNA binding sties and their corresponding heteroduplexes. Cell 126:1203–1217CrossRefPubMed
43.
go back to reference Nishida M, Kato M, Kato Y et al (2007) Identification of ZNF200 as a novel binding partner of histone H3 methyltransferase G9a. Genes Cells 12:877–888CrossRefPubMed Nishida M, Kato M, Kato Y et al (2007) Identification of ZNF200 as a novel binding partner of histone H3 methyltransferase G9a. Genes Cells 12:877–888CrossRefPubMed
44.
go back to reference Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452CrossRefPubMed Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452CrossRefPubMed
45.
go back to reference Walter M, Chen FW, Tamari F et al (2009) Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol Cell 101:141–152CrossRefPubMed Walter M, Chen FW, Tamari F et al (2009) Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol Cell 101:141–152CrossRefPubMed
46.
go back to reference Chaurand P, Rahman MA, Hunt T et al (2008) Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 7:411–423PubMed Chaurand P, Rahman MA, Hunt T et al (2008) Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 7:411–423PubMed
47.
go back to reference Choi KJ, Piao YJ, Lim MJ et al (2007) Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer Res 67:3654–3662CrossRefPubMed Choi KJ, Piao YJ, Lim MJ et al (2007) Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer Res 67:3654–3662CrossRefPubMed
48.
go back to reference Legros F, Lombes A, Frachon P et al (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354CrossRefPubMed Legros F, Lombes A, Frachon P et al (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354CrossRefPubMed
49.
go back to reference Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusions Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential fro embryonic development. J Cell Biol 160:189–200CrossRefPubMed Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusions Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential fro embryonic development. J Cell Biol 160:189–200CrossRefPubMed
50.
go back to reference Birkenfeld J, Nalbant P, Bohl BP et al (2007) GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Devel Cell 12:699–712CrossRef Birkenfeld J, Nalbant P, Bohl BP et al (2007) GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Devel Cell 12:699–712CrossRef
51.
go back to reference Chang Y-C, Nalbant P, Birkenfeld J (2009) GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell 19:2147–2153CrossRef Chang Y-C, Nalbant P, Birkenfeld J (2009) GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell 19:2147–2153CrossRef
52.
go back to reference Kuhn DE, Martin MM, Feldman DS et al (2008) Experimental validation of miRNA targets. Methods 44:47–54CrossRefPubMed Kuhn DE, Martin MM, Feldman DS et al (2008) Experimental validation of miRNA targets. Methods 44:47–54CrossRefPubMed
53.
go back to reference Eckes B, Colucci-Guyon E, Smola H et al (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113:2455–2462PubMed Eckes B, Colucci-Guyon E, Smola H et al (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113:2455–2462PubMed
54.
go back to reference Gaur A, Jewell DA, Liang Y et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468CrossRefPubMed Gaur A, Jewell DA, Liang Y et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468CrossRefPubMed
55.
go back to reference Ozen M, Creighton CJ, Ozdemir M et al (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793CrossRefPubMed Ozen M, Creighton CJ, Ozdemir M et al (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793CrossRefPubMed
56.
go back to reference Porkka KP, Pfeiffer MJ, Waltering KK et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135CrossRefPubMed Porkka KP, Pfeiffer MJ, Waltering KK et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135CrossRefPubMed
57.
go back to reference Ambs S, Prueitt RL, Yi M et al (2008) Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68:6162–6170CrossRefPubMed Ambs S, Prueitt RL, Yi M et al (2008) Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68:6162–6170CrossRefPubMed
58.
go back to reference McNamara JO, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimerase. Nat Biotechnol 24:1005–1015CrossRefPubMed McNamara JO, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimerase. Nat Biotechnol 24:1005–1015CrossRefPubMed
Metadata
Title
MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection
Authors
Xueping Zhang
Amy Ladd
Ema Dragoescu
William T. Budd
Joy L. Ware
Zendra E. Zehner
Publication date
01-12-2009
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 8/2009
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-009-9287-2

Other articles of this Issue 8/2009

Clinical & Experimental Metastasis 8/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine