Skip to main content
Top

Open Access 27-01-2023 | Fatty Liver | Original Article

The Influence of the FFAR4 Agonist TUG-891 on Liver Steatosis in ApoE-Knockout Mice

Authors: Anna Kiepura, Maciej Suski, Kamila Stachyra, Katarzyna Kuś, Klaudia Czepiel, Anna Wiśniewska, Magdalena Ulatowska-Białas, Rafał Olszanecki

Published in: Cardiovascular Drugs and Therapy

Login to get access

Abstract

Background

Nonalcoholic fatty liver disease (NAFLD) constitutes an independent risk factor for the development of coronary heart disease. Low-grade inflammation has been shown to play an important role in the development of atherosclerosis and NAFLD. Free fatty acid receptor 4 (FFAR4/GPR120), which is involved in damping inflammatory reactions, may represent a promising target for the treatment of inflammatory diseases. Our objective was to evaluate the effect of TUG-891, the synthetic agonist of FFAR4/GPR120, on fatty liver in vivo.

Methods

The effect of TUG-891 on fatty liver was investigated in apoE−/− mice fed a high-fat diet (HFD), using microscopic, biochemical, molecular, and proteomic methods.

Results

Treatment with TUG-891 inhibited the progression of liver steatosis in apoE−/− mice, as evidenced by histological analysis, and reduced the accumulation of TG in the liver. This action was associated with a decrease in plasma AST levels. TUG-891 decreased the expression of liver genes and proteins involved in de novo lipogenesis (Srebp-1c, Fasn and Scd1) and decreased the expression of genes related to oxidation and uptake (Acox1, Ehhadh, Cd36, Fabp1). Furthermore, TUG-891 modified the levels of selected factors related to glucose metabolism (decreased Glut2, Pdk4 and Pklr, and increased G6pdx).

Conclusion

Pharmacological stimulation of FFAR4 may represent a promising lead in the search for drugs that inhibit NAFLD.

Graphical abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Kiepura A, Stachyra K, Olszanecki R. Anti-Atherosclerotic Potential of Free Fatty Acid Receptor 4 (FFAR4). Biomedicines. 2021;9:467.CrossRef Kiepura A, Stachyra K, Olszanecki R. Anti-Atherosclerotic Potential of Free Fatty Acid Receptor 4 (FFAR4). Biomedicines. 2021;9:467.CrossRef
2.
go back to reference Kasper P, Martin A, Lang S, et al. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol. 2021;110(7):921–37.CrossRef Kasper P, Martin A, Lang S, et al. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol. 2021;110(7):921–37.CrossRef
3.
go back to reference Wiśniewska A, Stachowicz A, Kuś K, et al. Inhibition of Atherosclerosis and Liver Steatosis by Agmatine in Western Diet-Fed apoE-Knockout Mice Is Associated with Decrease in Hepatic De Novo Lipogenesis and Reduction in Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio. Int J Mol Sci. 2021;22:10688.CrossRef Wiśniewska A, Stachowicz A, Kuś K, et al. Inhibition of Atherosclerosis and Liver Steatosis by Agmatine in Western Diet-Fed apoE-Knockout Mice Is Associated with Decrease in Hepatic De Novo Lipogenesis and Reduction in Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio. Int J Mol Sci. 2021;22:10688.CrossRef
4.
go back to reference Godoy-Matos AF, Silva Júnior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020;12:60.CrossRef Godoy-Matos AF, Silva Júnior WS, Valerio CM. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr. 2020;12:60.CrossRef
5.
go back to reference Kiepura A, Stachyra K, Wiśniewska A, et al. The Anti-Atherosclerotic Action of FFAR4 Agonist TUG-891 in ApoE-Knockout Mice Is Associated with Increased Macrophage Polarization towards M2 Phenotype. Int J Mol Sci. 2021;22:9772.CrossRef Kiepura A, Stachyra K, Wiśniewska A, et al. The Anti-Atherosclerotic Action of FFAR4 Agonist TUG-891 in ApoE-Knockout Mice Is Associated with Increased Macrophage Polarization towards M2 Phenotype. Int J Mol Sci. 2021;22:9772.CrossRef
6.
go back to reference Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313–27.CrossRef Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313–27.CrossRef
7.
go back to reference Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol Sci. 2017;38:649–65.CrossRef Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol Sci. 2017;38:649–65.CrossRef
8.
go back to reference Kimura I, Ichimura A, Ohue-Kitano R, et al. Free Fatty Acid Receptors in Health and Disease. Physiol Rev Am Physiol Soc. 2019;100:171–210. Kimura I, Ichimura A, Ohue-Kitano R, et al. Free Fatty Acid Receptors in Health and Disease. Physiol Rev Am Physiol Soc. 2019;100:171–210.
9.
go back to reference Bartoszek A, Moo EV, Binienda A, et al. Free Fatty Acid Receptors as new potential therapeutic target in inflammatory bowel diseases. Pharmacol Res. 2020;152:104604.CrossRef Bartoszek A, Moo EV, Binienda A, et al. Free Fatty Acid Receptors as new potential therapeutic target in inflammatory bowel diseases. Pharmacol Res. 2020;152:104604.CrossRef
10.
go back to reference Boden G. Obesity and Free Fatty Acids (FFA). Endocrinol Metab Clin N Am. 2008;37:635–ix.CrossRef Boden G. Obesity and Free Fatty Acids (FFA). Endocrinol Metab Clin N Am. 2008;37:635–ix.CrossRef
11.
go back to reference Ichimura A, Hasegawa S, Kasubuchi M, et al. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol. 2014;6(5):236. Ichimura A, Hasegawa S, Kasubuchi M, et al. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol. 2014;6(5):236.
12.
go back to reference Ichimura A, Hirasawa A, Poulain-Godefroy O, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483:350–4.CrossRef Ichimura A, Hirasawa A, Poulain-Godefroy O, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483:350–4.CrossRef
13.
go back to reference Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin Sensitizing Effects. Cell. 2010;142:687–98.CrossRef Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin Sensitizing Effects. Cell. 2010;142:687–98.CrossRef
14.
go back to reference Schierwagen R, Maybüchen L, Zimmer S, et al. Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Sci Rep. 2015;5:12931.CrossRef Schierwagen R, Maybüchen L, Zimmer S, et al. Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Sci Rep. 2015;5:12931.CrossRef
15.
go back to reference Hansen HH, Feigh M, Veidal SS, et al. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today. 2017;22:1707–18.CrossRef Hansen HH, Feigh M, Veidal SS, et al. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today. 2017;22:1707–18.CrossRef
16.
go back to reference Demirag MD, Onen HI, Karaoguz MY, et al. Apolipoprotein E gene polymorphism in nonalcoholic fatty liver disease. Dig Dis Sci. 2007;52:3399–403.CrossRef Demirag MD, Onen HI, Karaoguz MY, et al. Apolipoprotein E gene polymorphism in nonalcoholic fatty liver disease. Dig Dis Sci. 2007;52:3399–403.CrossRef
17.
go back to reference Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.CrossRef Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.CrossRef
18.
go back to reference Wang Y, Lu H, Huang Z, et al. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta. Biochem Biophys Res Commun. 2014;450:788–93.CrossRef Wang Y, Lu H, Huang Z, et al. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta. Biochem Biophys Res Commun. 2014;450:788–93.CrossRef
19.
go back to reference Schilperoort M, van Dam AD, Hoeke G, et al. The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol Med. 2018;10(3):e8047.CrossRef Schilperoort M, van Dam AD, Hoeke G, et al. The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol Med. 2018;10(3):e8047.CrossRef
20.
go back to reference Gozal D, Qiao Z, Almendros I, et al. Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice. Int J Obes. 2005;2016(40):1143–9. Gozal D, Qiao Z, Almendros I, et al. Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice. Int J Obes. 2005;2016(40):1143–9.
21.
go back to reference Suski M, Kiepura A, Wiśniewska A, et al. Anti-atherosclerotic action of GW9508 - Free fatty acid receptors activator - In apoE-knockout mice. Pharmacol Rep PR. 2019;71:551–5.CrossRef Suski M, Kiepura A, Wiśniewska A, et al. Anti-atherosclerotic action of GW9508 - Free fatty acid receptors activator - In apoE-knockout mice. Pharmacol Rep PR. 2019;71:551–5.CrossRef
22.
go back to reference Liang W, Menke AL, Driessen A, et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One. 2014;9:e115922.CrossRef Liang W, Menke AL, Driessen A, et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One. 2014;9:e115922.CrossRef
23.
go back to reference Suski M, Wiśniewska A, Kuś K, et al. Decrease of the pro-inflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages - quantitative proteomics of the proteome and secretome. Mol Immunol. 2020;127:193–202.CrossRef Suski M, Wiśniewska A, Kuś K, et al. Decrease of the pro-inflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages - quantitative proteomics of the proteome and secretome. Mol Immunol. 2020;127:193–202.CrossRef
24.
go back to reference Stachowicz A, Olszanecki R, Suski M, et al. Mitochondrial Aldehyde Dehydrogenase Activation by Alda-1 Inhibits Atherosclerosis and Attenuates Hepatic Steatosis in Apolipoprotein E-Knockout Mice. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2014;3:e001329.CrossRef Stachowicz A, Olszanecki R, Suski M, et al. Mitochondrial Aldehyde Dehydrogenase Activation by Alda-1 Inhibits Atherosclerosis and Attenuates Hepatic Steatosis in Apolipoprotein E-Knockout Mice. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2014;3:e001329.CrossRef
25.
go back to reference Wiśniewski JR, Gaugaz FZ. Fast and sensitive total protein and Peptide assays for proteomic analysis. Anal Chem. 2015;87:4110–6.CrossRef Wiśniewski JR, Gaugaz FZ. Fast and sensitive total protein and Peptide assays for proteomic analysis. Anal Chem. 2015;87:4110–6.CrossRef
26.
go back to reference Wiśniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.CrossRef Wiśniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.CrossRef
27.
go back to reference Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics MCP. 2015;14:1400–10.CrossRef Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics MCP. 2015;14:1400–10.CrossRef
28.
go back to reference Zhang B, Chambers MC, Tabb DL. Proteomic Parsimony through Bipartite Graph Analysis Improves Accuracy and Transparency. J Proteome Res. 2007;6:3549–57.CrossRef Zhang B, Chambers MC, Tabb DL. Proteomic Parsimony through Bipartite Graph Analysis Improves Accuracy and Transparency. J Proteome Res. 2007;6:3549–57.CrossRef
29.
go back to reference Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B. Stat Methodol. 2002;64:479–98.CrossRef Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B. Stat Methodol. 2002;64:479–98.CrossRef
30.
go back to reference Vizcaíno JA, Deutsch EW, Wang R, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014;32:223–6.CrossRef Vizcaíno JA, Deutsch EW, Wang R, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014;32:223–6.CrossRef
31.
go back to reference Sundararaman N, Go J, Robinson AE, et al. PINE: An Automation Tool to Extract and Visualize Protein-Centric Functional Networks. J Am Soc Mass Spectrom. 2020;31:1410–21.CrossRef Sundararaman N, Go J, Robinson AE, et al. PINE: An Automation Tool to Extract and Visualize Protein-Centric Functional Networks. J Am Soc Mass Spectrom. 2020;31:1410–21.CrossRef
32.
go back to reference Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinforma Oxf Engl. 2009;25:1091–3.CrossRef Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinforma Oxf Engl. 2009;25:1091–3.CrossRef
33.
go back to reference Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef
34.
go back to reference Crewe C, Zhu Y, Paschoal VA, et al. SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1. JCI Insight. 4:e129397. Crewe C, Zhu Y, Paschoal VA, et al. SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1. JCI Insight. 4:e129397.
35.
go back to reference Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem. 1999;274:30028–32.CrossRef Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem. 1999;274:30028–32.CrossRef
36.
go back to reference Mao J, DeMayo FJ, Li H, et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci USA. 2006;103:8552–7.CrossRef Mao J, DeMayo FJ, Li H, et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci USA. 2006;103:8552–7.CrossRef
37.
go back to reference Weber M, Mera P, Casas J, et al. Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. FASEB J Off Publ Fed Am Soc Exp Biol. 2020;34:11816–37. Weber M, Mera P, Casas J, et al. Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. FASEB J Off Publ Fed Am Soc Exp Biol. 2020;34:11816–37.
38.
go back to reference Wolf Greenstein A, Majumdar N, Yang P, et al. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J Endocrinol. 2017;232:107–21.CrossRef Wolf Greenstein A, Majumdar N, Yang P, et al. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J Endocrinol. 2017;232:107–21.CrossRef
39.
go back to reference Bechmann LP, Hannivoort RA, Gerken G, et al. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56:952–64.CrossRef Bechmann LP, Hannivoort RA, Gerken G, et al. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56:952–64.CrossRef
40.
go back to reference Paschos P, Paletas K. Non-alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009;13:9–19. Paschos P, Paletas K. Non-alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009;13:9–19.
41.
go back to reference Soliman AM. Potential impact of Paracentrotus lividus extract on diabetic rat models induced by high fat diet/streptozotocin. J Basic Appl Zool. 2016;77:8–20.CrossRef Soliman AM. Potential impact of Paracentrotus lividus extract on diabetic rat models induced by high fat diet/streptozotocin. J Basic Appl Zool. 2016;77:8–20.CrossRef
42.
go back to reference Zhang M, Zhao Y, Li Z, et al. Pyruvate dehydrogenase kinase 4 mediates lipogenesis and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun. 2018;495:582–6.CrossRef Zhang M, Zhao Y, Li Z, et al. Pyruvate dehydrogenase kinase 4 mediates lipogenesis and contributes to the pathogenesis of nonalcoholic steatohepatitis. Biochem Biophys Res Commun. 2018;495:582–6.CrossRef
43.
go back to reference Mu W, Cheng X, Liu Y, et al. Potential Nexus of Non-alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Insulin Resistance Between Hepatic and Peripheral Tissues. Front Pharmacol. 2019;9:1566.CrossRef Mu W, Cheng X, Liu Y, et al. Potential Nexus of Non-alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Insulin Resistance Between Hepatic and Peripheral Tissues. Front Pharmacol. 2019;9:1566.CrossRef
44.
go back to reference Delli Bovi AP, Marciano F, Mandato C, et al. Oxidative Stress in Non-alcoholic Fatty Liver Disease. An Updated Mini Review Front Med. 2021;8:595371. Delli Bovi AP, Marciano F, Mandato C, et al. Oxidative Stress in Non-alcoholic Fatty Liver Disease. An Updated Mini Review Front Med. 2021;8:595371.
45.
go back to reference Pani A, Giossi R, Menichelli D, et al. Inositol and Non-Alcoholic Fatty Liver Disease: A Systematic Review on Deficiencies and Supplementation. Nutrients. 2020;12:E3379.CrossRef Pani A, Giossi R, Menichelli D, et al. Inositol and Non-Alcoholic Fatty Liver Disease: A Systematic Review on Deficiencies and Supplementation. Nutrients. 2020;12:E3379.CrossRef
46.
go back to reference Leclercq IA, Farrell GC, Field J, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000;105:1067–75.CrossRef Leclercq IA, Farrell GC, Field J, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000;105:1067–75.CrossRef
47.
go back to reference Dong XC. A closer look at the mysterious HSD17B13. J Lipid Res. 2020;61:1361–2.CrossRef Dong XC. A closer look at the mysterious HSD17B13. J Lipid Res. 2020;61:1361–2.CrossRef
48.
go back to reference Zhu L, Li B, Chen D, et al. sSTEAP4 regulates cellular homeostasis and improves high-fat-diet-caused oxidative stress in hepatocytes. Life Sci. 2022;296:120438.CrossRef Zhu L, Li B, Chen D, et al. sSTEAP4 regulates cellular homeostasis and improves high-fat-diet-caused oxidative stress in hepatocytes. Life Sci. 2022;296:120438.CrossRef
49.
go back to reference Stachowicz A, Olszanecki R, Suski M, et al. Quantitative proteomics reveals decreased expression of major urinary proteins in the liver of apoE/eNOS-DKO mice. Clin Exp Pharmacol Physiol. 2018;45:711–9.CrossRef Stachowicz A, Olszanecki R, Suski M, et al. Quantitative proteomics reveals decreased expression of major urinary proteins in the liver of apoE/eNOS-DKO mice. Clin Exp Pharmacol Physiol. 2018;45:711–9.CrossRef
50.
go back to reference Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021;18:666–82.CrossRef Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 2021;18:666–82.CrossRef
Metadata
Title
The Influence of the FFAR4 Agonist TUG-891 on Liver Steatosis in ApoE-Knockout Mice
Authors
Anna Kiepura
Maciej Suski
Kamila Stachyra
Katarzyna Kuś
Klaudia Czepiel
Anna Wiśniewska
Magdalena Ulatowska-Białas
Rafał Olszanecki
Publication date
27-01-2023
Publisher
Springer US
Keyword
Fatty Liver
Published in
Cardiovascular Drugs and Therapy
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-023-07430-7