Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 6/2022

Open Access 19-08-2021 | Arterial Occlusive Disease | Original Article

K-80003 Inhibition of Macrophage Apoptosis and Necrotic Core Development in Atherosclerotic Vulnerable Plaques

Authors: Xiaolei Wang, Zhe Sun, Ruosen Yuan, Weifeng Zhang, Yejiao Shen, Anwen Yin, Yanjie Li, Qingqi Ji, Xia Wang, Yi Li, Min Zhang, Xin Pan, Linghong Shen, Ben He

Published in: Cardiovascular Drugs and Therapy | Issue 6/2022

Login to get access

Abstract

Purpose

Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously reported to dramatically attenuate atherosclerotic plaque progression and destabilization. However, the underlying mechanisms are not fully understood. This study aimed to determine the role of K-80003 on macrophage apoptosis and elucidate the underlying mechanism.

Methods

The mouse model of vulnerable carotid plaque in ApoE−/− mice was developed in vivo. Consequently, mice were randomly grouped into two study groups: the control group and the K-80003 group (30 mg/kg/day). Samples of carotid arteries were collected to determine atherosclerotic necrotic core area, cellular apoptosis, and oxidative stress. The effects of K-80003 on RAW264.7 macrophage apoptosis, oxidative stress, and autophagic flux were also examined in vitro.

Results

K-80003 significantly suppressed necrotic core formation and inhibited cellular apoptosis of vulnerable plaques. K-80003 can also inhibit 7-ketocholesterol-induced macrophage apoptosis in vitro. Furthermore, K-80003 inhibited intraplaque cellular apoptosis mainly through the suppression of oxidative stress, which is a key cause of advanced lesional macrophage apoptosis. Mechanistically, K-80003 prevented 7-ketocholesterol-induced impairment of autophagic flux in macrophages, evidenced by the decreased LC3II and SQSTM1/p62 expression, GFP-RFP-LC3 cancellation upon K-80003 treatment.

Conclusion

Inhibition of macrophage apoptosis and necrotic core formation by autophagy-mediated reduction of oxidative stress is one mechanism of the suppression of plaque progression and destabilization by K-80003.
Literature
1.
go back to reference Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276–89.CrossRefPubMed Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276–89.CrossRefPubMed
2.
go back to reference Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.CrossRefPubMed Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47(8 Suppl):C13–8.CrossRefPubMed
3.
go back to reference Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10(1):36–46.CrossRefPubMed Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10(1):36–46.CrossRefPubMed
4.
go back to reference Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol. 2002;15(6):439–46.CrossRefPubMed Virmani R, Burke AP, Kolodgie FD, Farb A. Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol. 2002;15(6):439–46.CrossRefPubMed
6.
go back to reference Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103(8):1051–6.CrossRefPubMed Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103(8):1051–6.CrossRefPubMed
7.
go back to reference Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, et al. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell. 2010;17(6):560–73. CrossRefPubMedPubMedCentral Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, et al. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell. 2010;17(6):560–73. CrossRefPubMedPubMedCentral
8.
go back to reference Shen L, Sun Z, Nie P, Yuan R, Cai Z, Wu C, et al. Sulindac-derived retinoid X receptor-α modulator attenuates atherosclerotic plaque progression and destabilization in ApoE(-/-) mice. Br J Pharmacol. 2019;176(14):2559–72.CrossRefPubMedPubMedCentral Shen L, Sun Z, Nie P, Yuan R, Cai Z, Wu C, et al. Sulindac-derived retinoid X receptor-α modulator attenuates atherosclerotic plaque progression and destabilization in ApoE(-/-) mice. Br J Pharmacol. 2019;176(14):2559–72.CrossRefPubMedPubMedCentral
9.
go back to reference Jin S, Shen L, Nie P, Yuan W, Hu L, Li D, et al. Endogenous renovascular hypertension combined with low shear stress induces plaque rupture in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2012;32(10):2372–9.CrossRefPubMed Jin S, Shen L, Nie P, Yuan W, Hu L, Li D, et al. Endogenous renovascular hypertension combined with low shear stress induces plaque rupture in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2012;32(10):2372–9.CrossRefPubMed
11.
go back to reference Ball RY, Stowers EC, Burton JH, Cary NR, Skepper JN, Mitchinson MJ. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis. 1995;114(1):45–54.CrossRefPubMed Ball RY, Stowers EC, Burton JH, Cary NR, Skepper JN, Mitchinson MJ. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis. 1995;114(1):45–54.CrossRefPubMed
12.
go back to reference Li G, Scull C, Ozcan L, Tabas I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol. 2010;191(6):1113–25.CrossRefPubMedPubMedCentral Li G, Scull C, Ozcan L, Tabas I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol. 2010;191(6):1113–25.CrossRefPubMedPubMedCentral
13.
go back to reference Ward LJ, Ljunggren SA, Karlsson H, Li W, Yuan X. Exposure to atheroma-relevant 7-oxysterols causes proteomic alterations in cell death, cellular longevity, and lipid metabolism in THP-1 macrophages. PloS one. 2017;12(3):e0174475.CrossRefPubMedPubMedCentral Ward LJ, Ljunggren SA, Karlsson H, Li W, Yuan X. Exposure to atheroma-relevant 7-oxysterols causes proteomic alterations in cell death, cellular longevity, and lipid metabolism in THP-1 macrophages. PloS one. 2017;12(3):e0174475.CrossRefPubMedPubMedCentral
14.
go back to reference Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012;15(4):534–44.CrossRefPubMedPubMedCentral Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012;15(4):534–44.CrossRefPubMedPubMedCentral
15.
go back to reference Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. 2012. p. 445–544. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. 2012. p. 445–544.
16.
go back to reference Schoenhagen P, Tuzcu EM, Ellis SG. Plaque vulnerability, plaque rupture, and acute coronary syndromes: (multi)-focal manifestation of a systemic disease process. 2002. p. 760–2. Schoenhagen P, Tuzcu EM, Ellis SG. Plaque vulnerability, plaque rupture, and acute coronary syndromes: (multi)-focal manifestation of a systemic disease process. 2002. p. 760–2.
17.
go back to reference Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 2005;25(11):2255–64.CrossRefPubMed Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 2005;25(11):2255–64.CrossRefPubMed
18.
go back to reference Arai S, Shelton JM, Chen M, Bradley MN, Castrillo A, Bookout AL, et al. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab. 2005;1(3):201–13.CrossRefPubMed Arai S, Shelton JM, Chen M, Bradley MN, Castrillo A, Bookout AL, et al. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab. 2005;1(3):201–13.CrossRefPubMed
19.
go back to reference Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, et al. PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging. 2007;34(2):247–58.CrossRefPubMed Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, et al. PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging. 2007;34(2):247–58.CrossRefPubMed
20.
go back to reference Elvas F, Boddaert J, Vangestel C, Pak K, Gray B, Kumar-Singh S, et al. (99m)Tc-Duramycin SPECT Imaging of Early Tumor Response to Targeted Therapy: A Comparison with (18)F-FDG PET. 2017. p. 665–670. Elvas F, Boddaert J, Vangestel C, Pak K, Gray B, Kumar-Singh S, et al. (99m)Tc-Duramycin SPECT Imaging of Early Tumor Response to Targeted Therapy: A Comparison with (18)F-FDG PET. 2017. p. 665–670.
21.
22.
go back to reference Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. 2004. p. 1071–80. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. 2004. p. 1071–80.
23.
go back to reference Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. 2006. p. 1556–65. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. 2006. p. 1556–65.
24.
25.
go back to reference Wu C, Tang Z, Jiang L, Li X, Jiang Z, Liu L. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012;359(1–2):347–58.CrossRefPubMed Wu C, Tang Z, Jiang L, Li X, Jiang Z, Liu L. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 2012;359(1–2):347–58.CrossRefPubMed
26.
27.
go back to reference Misra A, Haudek SB, Knuefermann P, Vallejo JG, Chen ZJ, Michael LH, et al. Nuclear factor-kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction. Circulation. 2003;108(25):3075–8.CrossRefPubMed Misra A, Haudek SB, Knuefermann P, Vallejo JG, Chen ZJ, Michael LH, et al. Nuclear factor-kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction. Circulation. 2003;108(25):3075–8.CrossRefPubMed
28.
go back to reference Zou G, Zhong W, Wu F, Wang X, Liu L. Inhibition of lncRNA Neat1 by catalpol via suppressing transcriptional activity of NF-kappaB attenuates cardiomyocyte apoptosis. Cell Cycle. 2019;18(24):3432–41.CrossRefPubMedPubMedCentral Zou G, Zhong W, Wu F, Wang X, Liu L. Inhibition of lncRNA Neat1 by catalpol via suppressing transcriptional activity of NF-kappaB attenuates cardiomyocyte apoptosis. Cell Cycle. 2019;18(24):3432–41.CrossRefPubMedPubMedCentral
29.
go back to reference Zhang W, Zhang Y, Ding K, Zhang H, Zhao Q, Liu Z, et al. Involvement of JNK1/2-NF-kappaBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed Pharmacother. 2018;106:1063–71.CrossRefPubMed Zhang W, Zhang Y, Ding K, Zhang H, Zhao Q, Liu Z, et al. Involvement of JNK1/2-NF-kappaBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed Pharmacother. 2018;106:1063–71.CrossRefPubMed
31.
go back to reference Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36(1):30–8.CrossRefPubMed Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36(1):30–8.CrossRefPubMed
32.
go back to reference Muller C, Salvayre R, Nègre-Salvayre A, Vindis C. Oxidized LDLs trigger endoplasmic reticulum stress and autophagy: prevention by HDLs. Autophagy. 2011;7(5):541–3.CrossRefPubMed Muller C, Salvayre R, Nègre-Salvayre A, Vindis C. Oxidized LDLs trigger endoplasmic reticulum stress and autophagy: prevention by HDLs. Autophagy. 2011;7(5):541–3.CrossRefPubMed
33.
go back to reference Schrijvers DM, De Meyer GRY, Martinet W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol. 2011;31(12):2787–91.CrossRefPubMed Schrijvers DM, De Meyer GRY, Martinet W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol. 2011;31(12):2787–91.CrossRefPubMed
35.
go back to reference Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15(4):545–53.CrossRefPubMedPubMedCentral Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15(4):545–53.CrossRefPubMedPubMedCentral
36.
go back to reference Magné J, Gustafsson P, Jin H, Maegdefessel L, Hultenby K, Wernerson A, et al. ATG16L1 Expression in Carotid Atherosclerotic Plaques Is Associated With Plaque Vulnerability. Arterioscler Thromb Vasc Biol. 2015;35(5):1226–35.CrossRefPubMed Magné J, Gustafsson P, Jin H, Maegdefessel L, Hultenby K, Wernerson A, et al. ATG16L1 Expression in Carotid Atherosclerotic Plaques Is Associated With Plaque Vulnerability. Arterioscler Thromb Vasc Biol. 2015;35(5):1226–35.CrossRefPubMed
37.
go back to reference Liu H, Cao Y, Tong T, Shi J, Zhang Y, Yang Y, et al. Autophagy in atherosclerosis: a phenomenon found in human carotid atherosclerotic plaques. Chin Med J. 2015;128(1):69–74.CrossRefPubMedPubMedCentral Liu H, Cao Y, Tong T, Shi J, Zhang Y, Yang Y, et al. Autophagy in atherosclerosis: a phenomenon found in human carotid atherosclerotic plaques. Chin Med J. 2015;128(1):69–74.CrossRefPubMedPubMedCentral
38.
go back to reference Leng S, Iwanowycz S, Saaoud F, Wang J, Wang Y, Sergin I, et al. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. J Lipid Res. 2016;57(6):1006–16.CrossRefPubMedPubMedCentral Leng S, Iwanowycz S, Saaoud F, Wang J, Wang Y, Sergin I, et al. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. J Lipid Res. 2016;57(6):1006–16.CrossRefPubMedPubMedCentral
Metadata
Title
K-80003 Inhibition of Macrophage Apoptosis and Necrotic Core Development in Atherosclerotic Vulnerable Plaques
Authors
Xiaolei Wang
Zhe Sun
Ruosen Yuan
Weifeng Zhang
Yejiao Shen
Anwen Yin
Yanjie Li
Qingqi Ji
Xia Wang
Yi Li
Min Zhang
Xin Pan
Linghong Shen
Ben He
Publication date
19-08-2021
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 6/2022
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-021-07237-4

Other articles of this Issue 6/2022

Cardiovascular Drugs and Therapy 6/2022 Go to the issue