Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 3/2016

01-06-2016 | ORIGINAL ARTICLE

The Impact of Chronic Glycogen Synthase Kinase-3 Inhibition on Remodeling of Normal and Pre-Diabetic Rat Hearts

Authors: B. Huisamen, T. Lubelwana Hafver, D. Lumkwana, A. Lochner

Published in: Cardiovascular Drugs and Therapy | Issue 3/2016

Login to get access

Abstract

Purpose

There is an ongoing search for new drugs and drug targets to treat diseases like Alzheimer’s disease, cancer and type 2 diabetes (T2D). Both obesity and T2D are characterized by the development of a cardiomyopathy associated with increased hypertension and compensatory left ventricular hypertrophy.
Small, specific glycogen synthase kinase-3 (GSK-3) inhibitors were developed to replace lithium chloride for use in psychiatric disorders. In addition, they were advocated as treatment for T2D since GSK-3 inhibition improves blood glucose handling. However, GSK-3 is a regulator of hypertrophic signalling in the heart via phosphorylation of NFATc3 and β-catenin respectively. In view of this, we hypothesized that chronic inhibition of GSK-3 will induce myocardial hypertrophy or exacerbate existing hypertrophy.

Methods

Rats with obesity-induced prediabetes were treated orally with GSK-3 inhibitor (CHIR118637 (CT20026)), 30 mg/kg/day for the last 8 weeks of a 20-week diet high in sugar content vs a control diet. Biometric and biochemical parameters were measured, echocardiography performed and localization and co-localization of NFATc3 and GATA4 determined in cardiomyocytes.

Results

Obesity initiated myocardial hypertrophy, evidenced by increased ventricular mass (1.158 ± 0.029 vs 0.983 ± 0.03 g) and enlarged cardiomyocytes (18.86 ± 2.25 vs 14.92 ± 0.50um2) in association with increased end-diastolic diameter (EDD = 8.48 ± 0.11 vs 8.15 ± 0.10 mm). GSK-3 inhibition (i) increased ventricular mass only in controls (1.075 ± 0.022 g) and (ii) EDD in both groups (controls: 8.63 ± 0.07; obese: 8.72 ± 0.15 mm) (iii) localized NFATc3 and GATA4 peri-nuclearly.

Conclusion

Indications of onset of myocardial hypertrophy in both control and obese rats treated with a GSK-3 inhibitor were found. It remains speculation whether these changes were adaptive or maladaptive.
Literature
2.
go back to reference Licata G, Scaglione R, Barbagallo M, Parrinello G, Capuana G, Lipari R, Merlino G, Ganguzza A. Effect of obesity on left ventricular functional studies by radionuclide angiocardiography. Int J Obes. 1991;15:295–302.PubMed Licata G, Scaglione R, Barbagallo M, Parrinello G, Capuana G, Lipari R, Merlino G, Ganguzza A. Effect of obesity on left ventricular functional studies by radionuclide angiocardiography. Int J Obes. 1991;15:295–302.PubMed
3.
go back to reference Devitiis O, Fazio S, Petitto M, Maddalena G, Contaldo F, Mancini M. Obesity and cardiac function. Circulation. 1981;64:477–82.CrossRef Devitiis O, Fazio S, Petitto M, Maddalena G, Contaldo F, Mancini M. Obesity and cardiac function. Circulation. 1981;64:477–82.CrossRef
4.
go back to reference Messerli FH, Ventura HO, Reisin E, Dreslinki GR, Dunn FG, Mac Phee AA, Frohlich ED. Borderline hypertension and obesity: two prehypertensive states with elevated cardiac output. Circulation. 1982;66:55–60.CrossRefPubMed Messerli FH, Ventura HO, Reisin E, Dreslinki GR, Dunn FG, Mac Phee AA, Frohlich ED. Borderline hypertension and obesity: two prehypertensive states with elevated cardiac output. Circulation. 1982;66:55–60.CrossRefPubMed
5.
go back to reference Opie LH. The heart: Physiology from cell to circulation. Second ed. New York: Raven Press; 1991. p. p184–5 .p396–400 Opie LH. The heart: Physiology from cell to circulation. Second ed. New York: Raven Press; 1991. p. p184–5 .p396–400
7.
go back to reference Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128:191–227.CrossRefPubMed Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128:191–227.CrossRefPubMed
8.
9.
go back to reference Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002;99:907–12.CrossRefPubMedPubMedCentral Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002;99:907–12.CrossRefPubMedPubMedCentral
10.
go back to reference Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.CrossRefPubMedPubMedCentral Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.CrossRefPubMedPubMedCentral
11.
go back to reference Huisamen B, Lochner A. GSK-3 protein and the heart – friend of foe? SA Heart. 2010;7:48–57. Huisamen B, Lochner A. GSK-3 protein and the heart – friend of foe? SA Heart. 2010;7:48–57.
12.
go back to reference Vollenweider P, Ménard B, Nicod P. Insulin resistance, defective insulin receptor substrate 2-associated phosphatidylinositol-3' kinase activation, and impaired atypical protein kinase C (zeta/lambda) activation in myotubes from obese patients with impaired glucose tolerance. Diabetes. 2002;51(4):1052–9.CrossRefPubMed Vollenweider P, Ménard B, Nicod P. Insulin resistance, defective insulin receptor substrate 2-associated phosphatidylinositol-3' kinase activation, and impaired atypical protein kinase C (zeta/lambda) activation in myotubes from obese patients with impaired glucose tolerance. Diabetes. 2002;51(4):1052–9.CrossRefPubMed
13.
go back to reference Huisamen B. Protein kinase B in the diabetic heart – an invited publication. J Mol Cell Biochem. 2003;249:31–8.CrossRef Huisamen B. Protein kinase B in the diabetic heart – an invited publication. J Mol Cell Biochem. 2003;249:31–8.CrossRef
14.
go back to reference Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006;7:1435–41.CrossRefPubMed Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006;7:1435–41.CrossRefPubMed
15.
go back to reference Van Wauwe J, Haefner B. Glycogen synthase kinase-3 as drug target: from wallflower to center of attention. Drug News Perspect. 2003;16:557–65.CrossRefPubMed Van Wauwe J, Haefner B. Glycogen synthase kinase-3 as drug target: from wallflower to center of attention. Drug News Perspect. 2003;16:557–65.CrossRefPubMed
16.
go back to reference Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–80.CrossRefPubMed Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–80.CrossRefPubMed
18.
go back to reference Wagman AS, Johnson KW, Bussiere DE. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des. 2004;10:1105–37.CrossRefPubMed Wagman AS, Johnson KW, Bussiere DE. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des. 2004;10:1105–37.CrossRefPubMed
20.
go back to reference Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antor CL, Olson EN, Solott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signalling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–49.CrossRefPubMedPubMedCentral Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antor CL, Olson EN, Solott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signalling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–49.CrossRefPubMedPubMedCentral
21.
go back to reference Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation. 2008;117:2761–8.CrossRefPubMed Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation. 2008;117:2761–8.CrossRefPubMed
22.
go back to reference Cheng H, Woodgett J, Maamari M, Force T. Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol. 2011;51:607–13.CrossRefPubMed Cheng H, Woodgett J, Maamari M, Force T. Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol. 2011;51:607–13.CrossRefPubMed
23.
go back to reference Xia Y, Rao J, Yao A, Zhang F, Li G, Wang X, Lu L. Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3/NF-KB-mediated protective signalling in mice. Eur J Pharmacol. 2012;697:117–25.CrossRefPubMed Xia Y, Rao J, Yao A, Zhang F, Li G, Wang X, Lu L. Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3/NF-KB-mediated protective signalling in mice. Eur J Pharmacol. 2012;697:117–25.CrossRefPubMed
24.
go back to reference Liu A, Fang H, Dahmen U, Dirsch O. Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats. Liver Transpl. 2013;19:762–72.CrossRefPubMed Liu A, Fang H, Dahmen U, Dirsch O. Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats. Liver Transpl. 2013;19:762–72.CrossRefPubMed
25.
go back to reference Flepisi TB, Lochner A, Huisamen B. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts. Cardiovasc Drugs Ther. 2013;27:381–92.CrossRefPubMed Flepisi TB, Lochner A, Huisamen B. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts. Cardiovasc Drugs Ther. 2013;27:381–92.CrossRefPubMed
26.
go back to reference Cline GW, Johnson K, Regittnig W, Perret P, Tozzo E, Xiao L, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51:2903–10.CrossRefPubMed Cline GW, Johnson K, Regittnig W, Perret P, Tozzo E, Xiao L, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51:2903–10.CrossRefPubMed
27.
go back to reference Marais E, Genade S, Salie R, Huisamen B, Maritz S, Moolman JA, Lochner A. The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Res Cardiol. 2005;100:35–47.CrossRefPubMed Marais E, Genade S, Salie R, Huisamen B, Maritz S, Moolman JA, Lochner A. The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Res Cardiol. 2005;100:35–47.CrossRefPubMed
28.
go back to reference Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anals Biochem. 1976;72:248–54.CrossRef Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anals Biochem. 1976;72:248–54.CrossRef
29.
go back to reference Huisamen B, Genis A, Marais E, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011;25:13–20.CrossRefPubMed Huisamen B, Genis A, Marais E, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011;25:13–20.CrossRefPubMed
30.
go back to reference Bird SD, Doevendans PA. Van Rooijen MA, Brutel de la Riviere a, Hassink RJ, Passier, R, mummery CL. The human adult cardiomyocyte phenotype. Cardiovasc Res. 2003;58:423–34.CrossRefPubMed Bird SD, Doevendans PA. Van Rooijen MA, Brutel de la Riviere a, Hassink RJ, Passier, R, mummery CL. The human adult cardiomyocyte phenotype. Cardiovasc Res. 2003;58:423–34.CrossRefPubMed
31.
go back to reference Tokudome T, Horio T, Kishimoto I, Soeki T, Mori K, Kawano Y, Kohno M, Garbers DL, Nakao K, Kangawa K. Calcineurin–nuclear factor of activated T cells pathway–dependent cardiac remodeling in mice deficient in guanylyl cyclase a, a receptor for atrial and brain natriuretic peptides. Circulation. 2005;111:3095–104.CrossRefPubMed Tokudome T, Horio T, Kishimoto I, Soeki T, Mori K, Kawano Y, Kohno M, Garbers DL, Nakao K, Kangawa K. Calcineurin–nuclear factor of activated T cells pathway–dependent cardiac remodeling in mice deficient in guanylyl cyclase a, a receptor for atrial and brain natriuretic peptides. Circulation. 2005;111:3095–104.CrossRefPubMed
32.
go back to reference Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res. 2011;50:171–82.PubMed Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res. 2011;50:171–82.PubMed
33.
go back to reference Wensley I, Salaveria K, Bulmer AC, Donner DG, Du Toit EF. Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp Physiol. 2013;11:1552–64.CrossRef Wensley I, Salaveria K, Bulmer AC, Donner DG, Du Toit EF. Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp Physiol. 2013;11:1552–64.CrossRef
34.
go back to reference Dokken BB, Sloniger JA, Henriksen EJ. Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin resistant rat skeletal muscle. Am J Physiol Endocrinol Metal. 2005;288:E1188–94.CrossRef Dokken BB, Sloniger JA, Henriksen EJ. Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin resistant rat skeletal muscle. Am J Physiol Endocrinol Metal. 2005;288:E1188–94.CrossRef
35.
go back to reference Rao R, Hao CM, Redha R, Wasserman DH, McGuinness OP, Breyer MD. Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat C57BL/6 J mice. Diabetologia. 2007;50:452–60.CrossRefPubMed Rao R, Hao CM, Redha R, Wasserman DH, McGuinness OP, Breyer MD. Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat C57BL/6 J mice. Diabetologia. 2007;50:452–60.CrossRefPubMed
36.
go back to reference Kaidanovich-Beilin O, Eldar FH. Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. J Pharmacol Exp Ther. 2006;316:17–24.CrossRefPubMed Kaidanovich-Beilin O, Eldar FH. Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. J Pharmacol Exp Ther. 2006;316:17–24.CrossRefPubMed
37.
go back to reference Hargreaves M. Interactions between muscle glycogen and blood glucose during exercise. Exerc Sport Sci Rev. 1997;25:21–39.CrossRefPubMed Hargreaves M. Interactions between muscle glycogen and blood glucose during exercise. Exerc Sport Sci Rev. 1997;25:21–39.CrossRefPubMed
38.
go back to reference Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci U S A. 1997;94:9660–4.CrossRefPubMedPubMedCentral Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci U S A. 1997;94:9660–4.CrossRefPubMedPubMedCentral
39.
go back to reference Stypmann J, Engelen MA, Troatz C, Rothenburger M, Eckard L, Tiemann K. Echocardiographic assessment of global left ventricular function in mice. Lab Anim. 2009;43:127–37.CrossRefPubMed Stypmann J, Engelen MA, Troatz C, Rothenburger M, Eckard L, Tiemann K. Echocardiographic assessment of global left ventricular function in mice. Lab Anim. 2009;43:127–37.CrossRefPubMed
40.
go back to reference Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res. 2003;93:277–9.CrossRefPubMed Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res. 2003;93:277–9.CrossRefPubMed
41.
go back to reference Abe Y, Ono K, Kawamura T, Wada H, Kita T, Shimatsu A, Hasegawa K. Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol. 2007;292:H2387–96.CrossRefPubMed Abe Y, Ono K, Kawamura T, Wada H, Kita T, Shimatsu A, Hasegawa K. Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol. 2007;292:H2387–96.CrossRefPubMed
42.
go back to reference C.R B, C.M S, C.W T, Gardner P, Crabtree GR. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science. 1997;275:1930–4.CrossRef C.R B, C.M S, C.W T, Gardner P, Crabtree GR. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science. 1997;275:1930–4.CrossRef
Metadata
Title
The Impact of Chronic Glycogen Synthase Kinase-3 Inhibition on Remodeling of Normal and Pre-Diabetic Rat Hearts
Authors
B. Huisamen
T. Lubelwana Hafver
D. Lumkwana
A. Lochner
Publication date
01-06-2016
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 3/2016
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-016-6665-2

Other articles of this Issue 3/2016

Cardiovascular Drugs and Therapy 3/2016 Go to the issue