Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 2/2014

01-04-2014 | ORIGINAL ARTICLE

AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion

Authors: Silvio Rodrigues Marques-Neto, Emanuelle Baptista Ferraz, Deivid Carvalho Rodrigues, Brian Njaine, Edson Rondinelli, Antônio Carlos Campos de Carvalho, Jose Hamilton Matheus Nascimento

Published in: Cardiovascular Drugs and Therapy | Issue 2/2014

Login to get access

Abstract

Purpose

Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection.

Methods and Results

Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments.

Conclusion

The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.
Literature
1.
go back to reference Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart Disease and Stroke Statistics–2008 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–e146.PubMedCrossRef Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart Disease and Stroke Statistics–2008 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–e146.PubMedCrossRef
2.
go back to reference World Health Organization. Cardiovascular diseases (CVDs). Fact sheet No. 317, 2011. World Health Organization. Cardiovascular diseases (CVDs). Fact sheet No. 317, 2011.
3.
4.
go back to reference Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107:e2–5.PubMedCrossRef Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107:e2–5.PubMedCrossRef
5.
go back to reference Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423–34.PubMedCrossRef Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423–34.PubMedCrossRef
6.
go back to reference Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116:1094–105.PubMedCrossRef Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116:1094–105.PubMedCrossRef
7.
go back to reference Leung FP, Yung LM, Laher I, Yao X, Chen ZY, Huang Y. Exercise, vascular wall and cardiovascular diseases: an update (part 1). Sports Med. 2008;38:1009–24.PubMedCrossRef Leung FP, Yung LM, Laher I, Yao X, Chen ZY, Huang Y. Exercise, vascular wall and cardiovascular diseases: an update (part 1). Sports Med. 2008;38:1009–24.PubMedCrossRef
8.
go back to reference McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57:958–62.PubMedCrossRef McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57:958–62.PubMedCrossRef
9.
go back to reference Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol Heart Circ Physiol. 1992;263:H804–9. Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol Heart Circ Physiol. 1992;263:H804–9.
10.
go back to reference Yamashita N, Baxter GF, Yellon DM. Exercise directly enhances myocardial tolerance to ischemia-reperfusion injury in the rat through a protein kinase C mediated mechanism. Heart. 2001;85:331–6.PubMedCentralPubMedCrossRef Yamashita N, Baxter GF, Yellon DM. Exercise directly enhances myocardial tolerance to ischemia-reperfusion injury in the rat through a protein kinase C mediated mechanism. Heart. 2001;85:331–6.PubMedCentralPubMedCrossRef
11.
go back to reference Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training–molecular mechanisms. Circulation. 2010;122:1221–38.PubMedCrossRef Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training–molecular mechanisms. Circulation. 2010;122:1221–38.PubMedCrossRef
12.
go back to reference Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol. 2011;111:905–15.PubMedCrossRef Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol. 2011;111:905–15.PubMedCrossRef
13.
go back to reference Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, et al. Cardioprotection afforded by chronic exercise is mediated by sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005;569:913–24.PubMedCentralPubMedCrossRef Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, et al. Cardioprotection afforded by chronic exercise is mediated by sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005;569:913–24.PubMedCentralPubMedCrossRef
14.
go back to reference Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, et al. Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol. 2005;564:619–30.PubMedCentralPubMedCrossRef Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, et al. Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol. 2005;564:619–30.PubMedCentralPubMedCrossRef
15.
go back to reference Chicco AJ, Johnson MS, Armstrong CJ, Lynch JM, Gardner RT, Fasen GS, et al. Sex-specific and exercise-acquired cardioprotection is abolished by sarcolemmal KATP channel blockade in the rat heart. Am J Physiol Heart Circ Physiol. 2007;292:H2432–7.PubMedCrossRef Chicco AJ, Johnson MS, Armstrong CJ, Lynch JM, Gardner RT, Fasen GS, et al. Sex-specific and exercise-acquired cardioprotection is abolished by sarcolemmal KATP channel blockade in the rat heart. Am J Physiol Heart Circ Physiol. 2007;292:H2432–7.PubMedCrossRef
16.
go back to reference Quindry JC, Schreiber L, Hosick P, Wrieden J, Irwin JM, Hoyt E. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts. Am J Physiol Heart Circ Physiol. 2010;299:H175–83.PubMedCentralPubMedCrossRef Quindry JC, Schreiber L, Hosick P, Wrieden J, Irwin JM, Hoyt E. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts. Am J Physiol Heart Circ Physiol. 2010;299:H175–83.PubMedCentralPubMedCrossRef
17.
go back to reference Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34:513–54.PubMedCrossRef Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34:513–54.PubMedCrossRef
18.
go back to reference Sjӧqvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet. 2008;371:1872–82.CrossRef Sjӧqvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet. 2008;371:1872–82.CrossRef
19.
go back to reference Sullivan ML, Martinez CM, Gennis P, Gallagher EJ. The cardiac toxicity of anabolic steroids. Prog Cardiovasc Dis. 1998;41:1–15.PubMedCrossRef Sullivan ML, Martinez CM, Gennis P, Gallagher EJ. The cardiac toxicity of anabolic steroids. Prog Cardiovasc Dis. 1998;41:1–15.PubMedCrossRef
20.
go back to reference Di Paolo M, Agozzino M, Toni C, Luciani AB, Molendini L, Scaglione M, et al. Sudden anabolic steroid abuse-related death in athletes. Int J Cardiol. 2007;114:114–7.PubMedCrossRef Di Paolo M, Agozzino M, Toni C, Luciani AB, Molendini L, Scaglione M, et al. Sudden anabolic steroid abuse-related death in athletes. Int J Cardiol. 2007;114:114–7.PubMedCrossRef
21.
go back to reference Fineschi V, Baroldi G, Monciotti F, Reattelli LP, Turillazzi E. Anabolic steroid abuse and cardiac sudden death: a pathologic study. Arch Pathol Lab Med. 2001;125:253–5.PubMed Fineschi V, Baroldi G, Monciotti F, Reattelli LP, Turillazzi E. Anabolic steroid abuse and cardiac sudden death: a pathologic study. Arch Pathol Lab Med. 2001;125:253–5.PubMed
22.
23.
go back to reference Du Toit EF, Rossouw E, Van Rooyen J, Lochner A. Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischemia/reperfusion injury. Cardiovasc J South Afr. 2005;16:21–8. Du Toit EF, Rossouw E, Van Rooyen J, Lochner A. Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischemia/reperfusion injury. Cardiovasc J South Afr. 2005;16:21–8.
24.
go back to reference Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, Carvalho ACC, Carvalho DP, et al. Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol. 2006;99:223–30.PubMedCrossRef Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, Carvalho ACC, Carvalho DP, et al. Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol. 2006;99:223–30.PubMedCrossRef
25.
go back to reference Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, et al. Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol. 2007;293:H3575–83.PubMedCrossRef Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, et al. Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol. 2007;293:H3575–83.PubMedCrossRef
26.
go back to reference Do Carmo EC, Fernandes T, Koike D, Da Silva Jr ND, Mattos KC, Rosa KT, et al. Anabolic steroid associated to physical training induces deleterious cardiac effects. Med Sci Sports Exerc. 2011;43:1836–48.PubMedCrossRef Do Carmo EC, Fernandes T, Koike D, Da Silva Jr ND, Mattos KC, Rosa KT, et al. Anabolic steroid associated to physical training induces deleterious cardiac effects. Med Sci Sports Exerc. 2011;43:1836–48.PubMedCrossRef
27.
go back to reference Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256–61.PubMedCrossRef Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256–61.PubMedCrossRef
28.
go back to reference Iwai N, Shimoike H, Kinoshita M. Cardiac rennin-angiotensin system in the hypertrophied heart. Circulation. 1995;92:2690–6.PubMedCrossRef Iwai N, Shimoike H, Kinoshita M. Cardiac rennin-angiotensin system in the hypertrophied heart. Circulation. 1995;92:2690–6.PubMedCrossRef
29.
go back to reference Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R381–7.PubMedCrossRef Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R381–7.PubMedCrossRef
30.
go back to reference Zhang AD, Cat AND, Soukaseum C, Escoubet B, Cherfa A, Messaoudi S, et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension. 2008;52:1060–7.PubMedCrossRef Zhang AD, Cat AND, Soukaseum C, Escoubet B, Cherfa A, Messaoudi S, et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension. 2008;52:1060–7.PubMedCrossRef
31.
go back to reference Kalra D, Sivasubramanian N, Mann DL. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C–dependent pathway. Circulation. 2002;105:2198–205.PubMedCrossRef Kalra D, Sivasubramanian N, Mann DL. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C–dependent pathway. Circulation. 2002;105:2198–205.PubMedCrossRef
32.
go back to reference Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. 1998;98:794–9. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. 1998;98:794–9.
33.
go back to reference Tavares NI, Philip-Couderc P, Baertschi AJ, Lerch R, Montessuit C. Angiotensin II and tumour necrosis factor α as mediators of ATP-dependent potassium channel remodeling in post-infarction heart failure. Cardiovasc Res. 2009;83:726–36.CrossRef Tavares NI, Philip-Couderc P, Baertschi AJ, Lerch R, Montessuit C. Angiotensin II and tumour necrosis factor α as mediators of ATP-dependent potassium channel remodeling in post-infarction heart failure. Cardiovasc Res. 2009;83:726–36.CrossRef
34.
go back to reference Serejo FC, Rodrigues-Junior LF, Tavares KCS, Campos de Carvalho AC, Nascimento JHM. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol. 2007;49:214–20.PubMedCrossRef Serejo FC, Rodrigues-Junior LF, Tavares KCS, Campos de Carvalho AC, Nascimento JHM. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol. 2007;49:214–20.PubMedCrossRef
35.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.PubMedCrossRef Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.PubMedCrossRef
36.
go back to reference Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension. 1999;33:981–6.PubMedCrossRef Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension. 1999;33:981–6.PubMedCrossRef
37.
go back to reference Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105:677–9.PubMedCrossRef Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105:677–9.PubMedCrossRef
38.
go back to reference Silvestre JS, Heymes C, Oubénaïssa A, Robert V, Aupetit-Faisant B, Carayon A, et al. Activation of cardiac aldosterone production in rat myocardial infarction. Circulation. 1999;99:2694–701.PubMedCrossRef Silvestre JS, Heymes C, Oubénaïssa A, Robert V, Aupetit-Faisant B, Carayon A, et al. Activation of cardiac aldosterone production in rat myocardial infarction. Circulation. 1999;99:2694–701.PubMedCrossRef
39.
go back to reference Ullian ME, Schelling JR, Linas SL. Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension. 1992;20:67–73.PubMedCrossRef Ullian ME, Schelling JR, Linas SL. Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension. 1992;20:67–73.PubMedCrossRef
40.
go back to reference Mill JG, Milanez MC, Rezende MM, Gomes MGS, Leite CM. Spironolactone prevents cardiac collagen proliferation after myocardial infarction in rats. Clin Exp Pharmacol Physiol. 2003;30:739–44.PubMedCrossRef Mill JG, Milanez MC, Rezende MM, Gomes MGS, Leite CM. Spironolactone prevents cardiac collagen proliferation after myocardial infarction in rats. Clin Exp Pharmacol Physiol. 2003;30:739–44.PubMedCrossRef
41.
go back to reference Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JMJ, Danser AHJ. Genomic and nongenomic effects of aldosterone in the rat: why is spironolactone cardioprotective. Br J Pharmacol. 2005;145:664–71.PubMedCentralPubMedCrossRef Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JMJ, Danser AHJ. Genomic and nongenomic effects of aldosterone in the rat: why is spironolactone cardioprotective. Br J Pharmacol. 2005;145:664–71.PubMedCentralPubMedCrossRef
42.
go back to reference Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack III JE, et al. Myocardial protection by preconditioning of heart with losartan, na angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation. 2000;102(Supl 3):346–51. Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack III JE, et al. Myocardial protection by preconditioning of heart with losartan, na angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation. 2000;102(Supl 3):346–51.
43.
go back to reference Flynn JD, Akers WS. Effects of the angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy. 2003;23:1401–10.PubMedCrossRef Flynn JD, Akers WS. Effects of the angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy. 2003;23:1401–10.PubMedCrossRef
44.
go back to reference Tsounapi P, Saito M, Dimitriadis F, Kitatani K, Kinoshita Y, Shomori K, et al. The role of KATP channels on ischemia-reperfusion injury in the rat testis. Life Sci. 2012;90:649–56.PubMedCrossRef Tsounapi P, Saito M, Dimitriadis F, Kitatani K, Kinoshita Y, Shomori K, et al. The role of KATP channels on ischemia-reperfusion injury in the rat testis. Life Sci. 2012;90:649–56.PubMedCrossRef
45.
go back to reference Seharaseyon J, Sasaki N, Ohler A, Sato T, Fraser H, Johns DC, et al. Evidence against functional heteromultimerization of the KATP channel subunits Kir6.1 and Kir6.2. 275. J Biol Chem. 2000;23:17561–5.CrossRef Seharaseyon J, Sasaki N, Ohler A, Sato T, Fraser H, Johns DC, et al. Evidence against functional heteromultimerization of the KATP channel subunits Kir6.1 and Kir6.2. 275. J Biol Chem. 2000;23:17561–5.CrossRef
46.
go back to reference Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res. 2008;103:1458–65.PubMedCentralPubMedCrossRef Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res. 2008;103:1458–65.PubMedCentralPubMedCrossRef
47.
go back to reference Morrissey A, Rosner E, Lanning J, Parachuru L, Chowdhury PD, Han S, et al. Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol. 2005;5:1.PubMedCentralPubMedCrossRef Morrissey A, Rosner E, Lanning J, Parachuru L, Chowdhury PD, Han S, et al. Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol. 2005;5:1.PubMedCentralPubMedCrossRef
48.
go back to reference Seharaseyon J, Ohler A, Sasaki N, Fraser H, Sato T, Johns DC, et al. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol. 2000;32:1923–30.PubMedCrossRef Seharaseyon J, Ohler A, Sasaki N, Fraser H, Sato T, Johns DC, et al. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol. 2000;32:1923–30.PubMedCrossRef
49.
go back to reference Cuong DV, Kim N, Joo H, Youm JB, Chung J-Y, Lee Y, et al. Subunit composition of ATP-sensitive potassium channels in mitochondria of rat hearts. Mitochondrion. 2005;5:121–33.PubMedCrossRef Cuong DV, Kim N, Joo H, Youm JB, Chung J-Y, Lee Y, et al. Subunit composition of ATP-sensitive potassium channels in mitochondria of rat hearts. Mitochondrion. 2005;5:121–33.PubMedCrossRef
51.
go back to reference Kubo M, Quayle JM, Standen NB. Angiotensin II inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C. J Physiol. 1997;503:480–96.CrossRef Kubo M, Quayle JM, Standen NB. Angiotensin II inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C. J Physiol. 1997;503:480–96.CrossRef
52.
go back to reference Sampson LJ, Davies LM, Barrett-Jolley R, Standen NB, Dart C. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATPsensitive potassium channels. Cardiovasc Res. 2007;76:61–70.PubMedCrossRef Sampson LJ, Davies LM, Barrett-Jolley R, Standen NB, Dart C. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATPsensitive potassium channels. Cardiovasc Res. 2007;76:61–70.PubMedCrossRef
Metadata
Title
AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion
Authors
Silvio Rodrigues Marques-Neto
Emanuelle Baptista Ferraz
Deivid Carvalho Rodrigues
Brian Njaine
Edson Rondinelli
Antônio Carlos Campos de Carvalho
Jose Hamilton Matheus Nascimento
Publication date
01-04-2014
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 2/2014
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-013-6503-8

Other articles of this Issue 2/2014

Cardiovascular Drugs and Therapy 2/2014 Go to the issue