Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 5-6/2010

01-12-2010

Cytochrome P450 Pathway Contributes to Methanandamide-induced Vasorelaxation in Rat Aorta

Authors: Visitación López-Miranda, M. Teresa Dannert, Esperanza Herradón, Angela Alsasua, M. Isabel Martín

Published in: Cardiovascular Drugs and Therapy | Issue 5-6/2010

Login to get access

Abstract

Purpose

The generation of hyperpolarising vasorelaxant endothelial cytochrome P450 epoxygenase (CYP)—derived metabolites of arachidonic may provide beneficial effects for the treatment of cardiovascular diseases in which the bioavailability of NO is impaired. The cannabinoid methanandamide has vasodilatory properties linked to hyperpolarisation. The aim of the present work was to investigate the vasorelaxant effects of methanandamide in rat aorta, focusing on the role of cytochrome P450 pathway.

Methods

Changes in isometric tension in response to a cumulative concentration-response curve of methanandamide (1 nM–100 μM) were recorded in aortic rings from male Wistar rats. The involvement of cannabinoid receptors, endothelial nitric oxide (NO)-, prostacyclin- and some hyperpolarising-mediated pathways were investigated. The activation of large-conductance Ca2+-activated K+ (BKCa) channels have also been evaluated.

Results

Methanandamide provoked an endothelium-dependent vasorelaxation in rat aorta, reaching a maximal effect (Rmax) of 67% ± 2.6%. This vasorelaxation was clearly inhibited by the combination of CB1 and CB2 cannabinoid antagonists (Rmax: 21.6% ± 1.3%) and by the combination of guanylate cyclase and CYP inhibitors (Rmax: 16.7% ± 1.1%). The blockade induced separately by guanylate cyclase (31.3% ± 2.8%) or CYP (36.3% ± 6.6%) inhibitors on methanandamide vasorelaxation was not significantly modified by either CB1 or CB2 inhibition. BKCa channels inhibition caused a partial and significant inhibition of the methanandamide vasorelaxation (Rmax: 39.9% ± 3.3%).

Conclusions

Methanandamide endothelium-dependent vasorelaxation is mediated by CB1 and CB2 cannabinoid receptors. The NO- and CYP-mediated pathways contribute in a concurrent manner in this vascular effect. Stimulation of both cannabinoid receptor subtypes is indistinctly linked to NO or CYP routes to cause vasorelaxation.
Literature
1.
go back to reference Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:31–85. Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:31–85.
2.
go back to reference Spector AA, Norris AW. Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol. 2007;292:C996–C1012.PubMedCrossRef Spector AA, Norris AW. Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol. 2007;292:C996–C1012.PubMedCrossRef
3.
4.
go back to reference Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation. 1996;94:3341–7.PubMed Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R. Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation. 1996;94:3341–7.PubMed
5.
go back to reference Hercule HC, Schunck WH, Gross V, et al. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2009;29:54–60.PubMedCrossRef Hercule HC, Schunck WH, Gross V, et al. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2009;29:54–60.PubMedCrossRef
6.
7.
go back to reference Kunos G, Járai Z, Bátkai S, et al. Endocannabinoids as cardiovascular modulators. Chem Phys Lipids. 2000;108:159–68.PubMedCrossRef Kunos G, Járai Z, Bátkai S, et al. Endocannabinoids as cardiovascular modulators. Chem Phys Lipids. 2000;108:159–68.PubMedCrossRef
8.
go back to reference Randall MD, Harris D, Kendall DA, Ralevic V. Cardiovascular effects of cannabinoids. Pharmacol Ther. 2002;95:191–202.PubMedCrossRef Randall MD, Harris D, Kendall DA, Ralevic V. Cardiovascular effects of cannabinoids. Pharmacol Ther. 2002;95:191–202.PubMedCrossRef
9.
go back to reference López-Miranda V, Herradón E, Martín MI. Vasorelaxation caused by cannabinoids: mechanisms in different vascular beds. Curr Vasc Pharmacol. 2008;6:335–46.CrossRef López-Miranda V, Herradón E, Martín MI. Vasorelaxation caused by cannabinoids: mechanisms in different vascular beds. Curr Vasc Pharmacol. 2008;6:335–46.CrossRef
10.
go back to reference Dannert MT, Alsasua A, Herradón E, Martín MI, López-Miranda V. Vasorelaxant effect of Win 55, 212-2 in rat aorta: new mechanisms involved. Vascul Pharmacol. 2007;46:16–23.PubMedCrossRef Dannert MT, Alsasua A, Herradón E, Martín MI, López-Miranda V. Vasorelaxant effect of Win 55, 212-2 in rat aorta: new mechanisms involved. Vascul Pharmacol. 2007;46:16–23.PubMedCrossRef
11.
go back to reference Herradón E, Martín MI, López-Miranda V. Characterization of the vasorelaxant mechanisms of the endocannabinoid anandamide in rat aorta. Br J Pharmacol. 2007;152:699–708.PubMedCrossRef Herradón E, Martín MI, López-Miranda V. Characterization of the vasorelaxant mechanisms of the endocannabinoid anandamide in rat aorta. Br J Pharmacol. 2007;152:699–708.PubMedCrossRef
12.
go back to reference Grainger J, Boachie-Ansah G. Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels. Br J Pharmacol. 2001;134:1003–12.PubMedCrossRef Grainger J, Boachie-Ansah G. Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels. Br J Pharmacol. 2001;134:1003–12.PubMedCrossRef
13.
go back to reference Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424:434–8.PubMedCrossRef Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424:434–8.PubMedCrossRef
14.
go back to reference Ho WSV, Randall MD. Endothelium-dependent metabolism by endocannabinoid hydrolases and cyclooxygenases limits vasorelaxation to anandamide and 2-arachidonoylglycerol. Br J Pharmacol. 2007;150:641–51.PubMedCrossRef Ho WSV, Randall MD. Endothelium-dependent metabolism by endocannabinoid hydrolases and cyclooxygenases limits vasorelaxation to anandamide and 2-arachidonoylglycerol. Br J Pharmacol. 2007;150:641–51.PubMedCrossRef
15.
go back to reference Kozłowska H, Baranowska M, Schlicker E, Kozłowski M, Laudañski J, Malinowska B. Virodhamine relaxes the human pulmonary artery through the endothelial cannabinoid receptor and indirectly through a COX product. Br J Pharmacol. 2008;155:1034–42.PubMedCrossRef Kozłowska H, Baranowska M, Schlicker E, Kozłowski M, Laudañski J, Malinowska B. Virodhamine relaxes the human pulmonary artery through the endothelial cannabinoid receptor and indirectly through a COX product. Br J Pharmacol. 2008;155:1034–42.PubMedCrossRef
16.
go back to reference Lake KD, Compton DR, Varga K, Martin BR, Kunos G. Cannabinoid-induced hypotension and bradycardia in rats is mediated by CB1-like cannabinoid receptors. J Pharmacol Exp Ther. 1997;281:1030–7.PubMed Lake KD, Compton DR, Varga K, Martin BR, Kunos G. Cannabinoid-induced hypotension and bradycardia in rats is mediated by CB1-like cannabinoid receptors. J Pharmacol Exp Ther. 1997;281:1030–7.PubMed
17.
go back to reference Malinowska B, Kwolek G, Göthert M. Anandamide and methanandamide induce both vanilloid VR1- and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2001;364:562–9.CrossRef Malinowska B, Kwolek G, Göthert M. Anandamide and methanandamide induce both vanilloid VR1- and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2001;364:562–9.CrossRef
18.
go back to reference Wang Y, Kaminski NE, Wang DH. VR1-mediated depressor effects during high-salt intake: role of anandamide. Hypertension. 2005;46:986–91.PubMedCrossRef Wang Y, Kaminski NE, Wang DH. VR1-mediated depressor effects during high-salt intake: role of anandamide. Hypertension. 2005;46:986–91.PubMedCrossRef
19.
go back to reference Vanheel B, Van de Voorde J. Regional differences in anandamide- and methanandamide-induced membrane potential changes in rat mesenteric arteries. J Pharmacol Exp Ther. 2001;296:322–8.PubMed Vanheel B, Van de Voorde J. Regional differences in anandamide- and methanandamide-induced membrane potential changes in rat mesenteric arteries. J Pharmacol Exp Ther. 2001;296:322–8.PubMed
20.
go back to reference Breyne J, Vanheel B. Methanandamide hyperpolarizes gastric arteries by stimulation of TRPV1 receptors on perivascular CGRP containing nerves. J Cardiovasc Pharmacol. 2006;47:303–9.PubMedCrossRef Breyne J, Vanheel B. Methanandamide hyperpolarizes gastric arteries by stimulation of TRPV1 receptors on perivascular CGRP containing nerves. J Cardiovasc Pharmacol. 2006;47:303–9.PubMedCrossRef
21.
go back to reference Sade H, Muraki K, Ohya S, Hatano N, Imaizumi Y. Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. Am J Physiol Cell Physiol. 2006;290:C77–86.PubMedCrossRef Sade H, Muraki K, Ohya S, Hatano N, Imaizumi Y. Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. Am J Physiol Cell Physiol. 2006;290:C77–86.PubMedCrossRef
22.
go back to reference López-Miranda V, Herradón E, Dannert MT, Alsasua A, Martín MI. Anandamide vehicles: a comparative study. Eur J Pharmacol. 2004;505:151–61.PubMedCrossRef López-Miranda V, Herradón E, Dannert MT, Alsasua A, Martín MI. Anandamide vehicles: a comparative study. Eur J Pharmacol. 2004;505:151–61.PubMedCrossRef
23.
go back to reference Zhao J, Majewski H. Endothelial nitric oxide attenuates Na+/Ca2+ exchanger-mediated vasoconstriction in rat aorta. Br J Pharmacol. 2008;154:982–90.PubMedCrossRef Zhao J, Majewski H. Endothelial nitric oxide attenuates Na+/Ca2+ exchanger-mediated vasoconstriction in rat aorta. Br J Pharmacol. 2008;154:982–90.PubMedCrossRef
24.
go back to reference Van der Zypp A, Kang KB, Majewski H. Age-related involvement of the endothelium in b-adrenoceptor-mediated relaxation of rat aorta. Eur J Pharmacol. 2000;397:129–38.PubMedCrossRef Van der Zypp A, Kang KB, Majewski H. Age-related involvement of the endothelium in b-adrenoceptor-mediated relaxation of rat aorta. Eur J Pharmacol. 2000;397:129–38.PubMedCrossRef
25.
go back to reference Woodman OL, Malakul W. 3′, 4′-Dihydroxyflavonol prevents diabetes-induced endothelial dysfunction in rat aorta. Life Sci. 2009;85:54–9.PubMedCrossRef Woodman OL, Malakul W. 3′, 4′-Dihydroxyflavonol prevents diabetes-induced endothelial dysfunction in rat aorta. Life Sci. 2009;85:54–9.PubMedCrossRef
26.
go back to reference Wagner JA, Varga K, Jarai Z, Kunos G. Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension. 1999;33:429–34.PubMed Wagner JA, Varga K, Jarai Z, Kunos G. Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension. 1999;33:429–34.PubMed
27.
go back to reference Wagner JA, Jarai Z, Bátkai S, Kunos G. Hemodynamic effects of cannabinoids: coronary and cerebral vasodilation mediated by cannabinoid CB1 receptors. Eur J Pharmacol. 2001;423:203–10.PubMedCrossRef Wagner JA, Jarai Z, Bátkai S, Kunos G. Hemodynamic effects of cannabinoids: coronary and cerebral vasodilation mediated by cannabinoid CB1 receptors. Eur J Pharmacol. 2001;423:203–10.PubMedCrossRef
28.
go back to reference Ralevic V, Kendall DA, Zygmunt PM, Movahed P, Högestätt ED. Vanilloid receptors on capsaicin-sensitive sensory nerves mediate relaxation to methanandamide in the rat isolated mesenteric arterial bed. Br J Pharmacol. 2000;130:1483–8.PubMedCrossRef Ralevic V, Kendall DA, Zygmunt PM, Movahed P, Högestätt ED. Vanilloid receptors on capsaicin-sensitive sensory nerves mediate relaxation to methanandamide in the rat isolated mesenteric arterial bed. Br J Pharmacol. 2000;130:1483–8.PubMedCrossRef
29.
go back to reference Breyne J, Van de Voorde J, Vanheel B. Characterization of the vasorelaxation to methanandamide in rat gastric arteries. Can J Physiol Pharmacol. 2006;84:1121–32.PubMedCrossRef Breyne J, Van de Voorde J, Vanheel B. Characterization of the vasorelaxation to methanandamide in rat gastric arteries. Can J Physiol Pharmacol. 2006;84:1121–32.PubMedCrossRef
30.
go back to reference Mukhopadhyay S, Chapnick BM, Howlett AC. Anandamide-induced vasorelaxation in rabbit aortic rings has two components: G protein dependent and independent. Am J Physiol Heart Circ Physiol. 2002;282:H2046–54.PubMed Mukhopadhyay S, Chapnick BM, Howlett AC. Anandamide-induced vasorelaxation in rabbit aortic rings has two components: G protein dependent and independent. Am J Physiol Heart Circ Physiol. 2002;282:H2046–54.PubMed
31.
go back to reference Randall MD, Kendall DA, O’Sullivan S. The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol. 2004;142:20–6.PubMedCrossRef Randall MD, Kendall DA, O’Sullivan S. The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol. 2004;142:20–6.PubMedCrossRef
32.
go back to reference Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol. 2005;67:2016–24.PubMedCrossRef Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol. 2005;67:2016–24.PubMedCrossRef
33.
go back to reference Wagner JA, Abesser M, Karcher J, Laser M, Kunos G. Coronary vasodilator effects of endogenous cannabinoids in vasopressin-preconstricted unpaced rat isolated hearts. J Cardiovasc Pharmacol. 2005;46:348–55.PubMedCrossRef Wagner JA, Abesser M, Karcher J, Laser M, Kunos G. Coronary vasodilator effects of endogenous cannabinoids in vasopressin-preconstricted unpaced rat isolated hearts. J Cardiovasc Pharmacol. 2005;46:348–55.PubMedCrossRef
34.
go back to reference Járai Z, Wagner JA, Varga K, et al. Cannabinoid-induced mesenteric vasodilation through an endotelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci USA. 1999;96:14136–41.PubMedCrossRef Járai Z, Wagner JA, Varga K, et al. Cannabinoid-induced mesenteric vasodilation through an endotelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci USA. 1999;96:14136–41.PubMedCrossRef
35.
go back to reference Mendizabal VE, Orliac ML, Adler-Graschinsky E. Long-term inhibition of nitric oxide synthase potentiates effects of anandamide in the rat mesenteric bed. Eur J Pharmacol. 2001;427:251–62.PubMedCrossRef Mendizabal VE, Orliac ML, Adler-Graschinsky E. Long-term inhibition of nitric oxide synthase potentiates effects of anandamide in the rat mesenteric bed. Eur J Pharmacol. 2001;427:251–62.PubMedCrossRef
36.
go back to reference Högestätt ED, Zygmung PM. Cardiovascular pharmacology of anandamide. Prostaglandins Leukot Essent Fatty Acids. 2002;66:343–51.PubMedCrossRef Högestätt ED, Zygmung PM. Cardiovascular pharmacology of anandamide. Prostaglandins Leukot Essent Fatty Acids. 2002;66:343–51.PubMedCrossRef
37.
go back to reference Poblete IM, Orliac ML, Briones R, Adler-Graschinsky E, Huidobro-Toro JP. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol. 2005;568:539–51.PubMedCrossRef Poblete IM, Orliac ML, Briones R, Adler-Graschinsky E, Huidobro-Toro JP. Anandamide elicits an acute release of nitric oxide through endothelial TRPV1 receptor activation in the rat arterial mesenteric bed. J Physiol. 2005;568:539–51.PubMedCrossRef
38.
go back to reference McCollum L, Howlett AC, Mukhopadhyay S. Anandamide-mediated CB1/CB2 cannabinoid receptor-independent nitric oxide production in rabbit aortic endothelial cells. J Pharmacol Exp Ther. 2007;321:930–7.PubMedCrossRef McCollum L, Howlett AC, Mukhopadhyay S. Anandamide-mediated CB1/CB2 cannabinoid receptor-independent nitric oxide production in rabbit aortic endothelial cells. J Pharmacol Exp Ther. 2007;321:930–7.PubMedCrossRef
39.
go back to reference Luria A, Weldon SM, Kabcenell AK, Ingraham RH, Matera D, Jiang H, et al. Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J Biol Chem. 2007;282:2891–8.PubMedCrossRef Luria A, Weldon SM, Kabcenell AK, Ingraham RH, Matera D, Jiang H, et al. Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J Biol Chem. 2007;282:2891–8.PubMedCrossRef
40.
go back to reference Gollasch M, Wellman GC, Knot HJ, Jaggar JH, Damon DH, Bonev AD, et al. Ontogeny of loval sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events. Circ Res. 1998;83:1104–14.PubMed Gollasch M, Wellman GC, Knot HJ, Jaggar JH, Damon DH, Bonev AD, et al. Ontogeny of loval sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events. Circ Res. 1998;83:1104–14.PubMed
41.
go back to reference Lohn M, Jessner W, Furstenau M, et al. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res. 2001;89:1051–7.PubMedCrossRef Lohn M, Jessner W, Furstenau M, et al. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res. 2001;89:1051–7.PubMedCrossRef
42.
go back to reference Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol. 2009;156:545–62.PubMedCrossRef Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol. 2009;156:545–62.PubMedCrossRef
43.
go back to reference Busse R, Edward G, Félétou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23:374–80.PubMedCrossRef Busse R, Edward G, Félétou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23:374–80.PubMedCrossRef
44.
go back to reference Félétou M, Vanhoutte PM. Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol. 2006;26:1215–25.PubMedCrossRef Félétou M, Vanhoutte PM. Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol. 2006;26:1215–25.PubMedCrossRef
45.
go back to reference Yang Z, Zhang A, Altura BT, Altura BM. Hydrogen peroxide-induced endothelium-dependent relaxation of rat aorta involvement of Ca2+ and other cellular metabolites. Gen Pharmacol. 1999;33:325–36.PubMedCrossRef Yang Z, Zhang A, Altura BT, Altura BM. Hydrogen peroxide-induced endothelium-dependent relaxation of rat aorta involvement of Ca2+ and other cellular metabolites. Gen Pharmacol. 1999;33:325–36.PubMedCrossRef
46.
go back to reference Chen JK, Chen J, Imig JD, et al. Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. J Biol Chem. 2008;283:24514–24.PubMedCrossRef Chen JK, Chen J, Imig JD, et al. Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. J Biol Chem. 2008;283:24514–24.PubMedCrossRef
Metadata
Title
Cytochrome P450 Pathway Contributes to Methanandamide-induced Vasorelaxation in Rat Aorta
Authors
Visitación López-Miranda
M. Teresa Dannert
Esperanza Herradón
Angela Alsasua
M. Isabel Martín
Publication date
01-12-2010
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 5-6/2010
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-010-6261-9

Other articles of this Issue 5-6/2010

Cardiovascular Drugs and Therapy 5-6/2010 Go to the issue

EditorialNotes

President’s Page