Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 3/2008

01-06-2008

Metformin: Effects on Micro and Macrovascular Complications in Type 2 Diabetes

Author: Clifford J. Bailey

Published in: Cardiovascular Drugs and Therapy | Issue 3/2008

Login to get access

Abstract

Introduction

The antihyperglycaemic agent metformin is widely used in the treatment of type 2 diabetes. Data from the UK Prospective Diabetes Study and retrospective analyses of large healthcare databases concur that metformin reduces the incidence of myocardial infarction and increases survival in these patients. This apparently vasoprotective effect appears to be independent of the blood glucose-lowering efficacy.

Effects of metformin

Metformin has long been known to reduce the development of atherosclerotic lesions in animal models, and clinical studies have shown the drug to reduce surrogate measures such as carotid intima-media thickness. The anti-atherogenic effects of metformin include reductions in insulin resistance, hyperinsulinaemia and obesity. There may be modest favourable effects against dyslipidaemia, reductions in pro-inflammatory cytokines and monocyte adhesion molecules, and improved glycation status, benefiting endothelial function in the macro- and micro-vasculature. Additionally metformin exerts anti-thrombotic effects, contributing to overall reductions in athero-thrombotic risk in type 2 diabetic patients.
Literature
1.
go back to reference Bailey CJ, Campbell IW, Chan JCN, et al. Metformin. The gold standard. Chichester: Wiley; 2007. p. 288. Bailey CJ, Campbell IW, Chan JCN, et al. Metformin. The gold standard. Chichester: Wiley; 2007. p. 288.
2.
go back to reference Nathan DM, Buse JB, Davidson MB, Heine RJ, et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetologia. 2006;49:1711–21.PubMedCrossRef Nathan DM, Buse JB, Davidson MB, Heine RJ, et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetologia. 2006;49:1711–21.PubMedCrossRef
3.
go back to reference Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65:384–411.CrossRef Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65:384–411.CrossRef
6.
go back to reference Wiernsperger NF, Bailey CJ. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs. 1999;58:31–9.PubMedCrossRef Wiernsperger NF, Bailey CJ. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs. 1999;58:31–9.PubMedCrossRef
7.
go back to reference Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.PubMed Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.PubMed
8.
go back to reference Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Revs. 1998;6:89–130. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Revs. 1998;6:89–130.
9.
go back to reference Howlett HCS, Bailey CJ. Risk-benefit assessment of metformin in type 2 diabetes. Drug Safety. 1999;20:489–503.PubMedCrossRef Howlett HCS, Bailey CJ. Risk-benefit assessment of metformin in type 2 diabetes. Drug Safety. 1999;20:489–503.PubMedCrossRef
10.
go back to reference Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis. Epidemiology, pathophysiology and management. JAMA. 2002;287:2570–81.PubMedCrossRef Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis. Epidemiology, pathophysiology and management. JAMA. 2002;287:2570–81.PubMedCrossRef
12.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRef
13.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRef
14.
go back to reference Holman RR. Invited presentation at 18th International Diabetes Federation Congress, Paris, 2003. Holman RR. Invited presentation at 18th International Diabetes Federation Congress, Paris, 2003.
15.
go back to reference Kao J, Tobis J, McClelland RL, et al. Relation of metformin treatment to clinical events in diabetic patients undergoing percutaneous intervention. Am J Cardiol. 2004;93:1347–50.PubMedCrossRef Kao J, Tobis J, McClelland RL, et al. Relation of metformin treatment to clinical events in diabetic patients undergoing percutaneous intervention. Am J Cardiol. 2004;93:1347–50.PubMedCrossRef
16.
go back to reference Kahn SE, Haffner SM, Heise MA, Herman WH, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.PubMedCrossRef Kahn SE, Haffner SM, Heise MA, Herman WH, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.PubMedCrossRef
17.
go back to reference Cleland JGF, Atkin SL. Thiazolidinediones, deadly sins, surrogates and elephants. Lancet. 2007;370:1103–4.PubMedCrossRef Cleland JGF, Atkin SL. Thiazolidinediones, deadly sins, surrogates and elephants. Lancet. 2007;370:1103–4.PubMedCrossRef
18.
go back to reference Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–8.PubMedCrossRef Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–8.PubMedCrossRef
19.
go back to reference Evans JM, Ogston SA, Emslie-Smith MA, Morris A. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulphonylureas and metformin. Diabetologia. 2006;49:930–6.PubMedCrossRef Evans JM, Ogston SA, Emslie-Smith MA, Morris A. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulphonylureas and metformin. Diabetologia. 2006;49:930–6.PubMedCrossRef
20.
go back to reference Nichols GA, Koro CE, Gullion CM, et al. The incidence of congestive heart failure associated with antidiabetic therapies. Diabetes Metab Res Rev. 2005;21:51–7.PubMedCrossRef Nichols GA, Koro CE, Gullion CM, et al. The incidence of congestive heart failure associated with antidiabetic therapies. Diabetes Metab Res Rev. 2005;21:51–7.PubMedCrossRef
21.
go back to reference McAfee AT, Koro C, Landon J, et al. Coronary heart disease outcomes in patients receiving antidiabetic agents. Pharmacoepidemiol Drug Safety. 2007;16:711–25.CrossRef McAfee AT, Koro C, Landon J, et al. Coronary heart disease outcomes in patients receiving antidiabetic agents. Pharmacoepidemiol Drug Safety. 2007;16:711–25.CrossRef
22.
go back to reference Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care. 2002;25:2244–8.PubMedCrossRef Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care. 2002;25:2244–8.PubMedCrossRef
23.
go back to reference Johnson JA, Simpson SH, Toth EL, Majumbar SR. Reduced cardiovascular morbidity and mortality associated with metformin use in subjects with type 2 diabetes. Diabetic Med. 2005;22:497–502.PubMedCrossRef Johnson JA, Simpson SH, Toth EL, Majumbar SR. Reduced cardiovascular morbidity and mortality associated with metformin use in subjects with type 2 diabetes. Diabetic Med. 2005;22:497–502.PubMedCrossRef
24.
go back to reference Eurich DT, Majumdar SR, McAlister FA, et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28:2345–51.PubMedCrossRef Eurich DT, Majumdar SR, McAlister FA, et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28:2345–51.PubMedCrossRef
25.
go back to reference Masudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111:583–90.CrossRef Masudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111:583–90.CrossRef
27.
go back to reference Roberts F, Ryan GJ. The safety of metformin in heart failure. Ann Pharmacother. 2007;41:462–6. Roberts F, Ryan GJ. The safety of metformin in heart failure. Ann Pharmacother. 2007;41:462–6.
28.
go back to reference Jones GC, Macklin JP, Alexander WD. Contraindications to the use of metformin. Br Med J. 2003;326:4–5.CrossRef Jones GC, Macklin JP, Alexander WD. Contraindications to the use of metformin. Br Med J. 2003;326:4–5.CrossRef
29.
go back to reference Inzucchi SE. Metformin and heart failure: innocent until proven guilty. Diabetes Care. 2005;28:2585–7.PubMedCrossRef Inzucchi SE. Metformin and heart failure: innocent until proven guilty. Diabetes Care. 2005;28:2585–7.PubMedCrossRef
30.
go back to reference Holstein A, Stumvoll M. Contraindications can damage your health—is metformin a case in point? Diabetologia. 2005;48:2454–9.PubMedCrossRef Holstein A, Stumvoll M. Contraindications can damage your health—is metformin a case in point? Diabetologia. 2005;48:2454–9.PubMedCrossRef
31.
go back to reference Katakami N, Yamaski Y, Hayaishi-Okano R, et al. Metformin and gliclazide rather than glibenclamide attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47:1906–13.PubMedCrossRef Katakami N, Yamaski Y, Hayaishi-Okano R, et al. Metformin and gliclazide rather than glibenclamide attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia. 2004;47:1906–13.PubMedCrossRef
32.
go back to reference Matsumoto K, Sera Y, Abbe Y, et al. Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Res Clin Prac. 2004;64:2205–8.CrossRef Matsumoto K, Sera Y, Abbe Y, et al. Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Res Clin Prac. 2004;64:2205–8.CrossRef
33.
go back to reference Orio F, Palomba S, Cascella T, et al. Improvement in endothelial structure and function after metformin treatment in young normal weight women with polycystic ovary syndrome: results of a 6-month study. J Clin Endocrinol Metab. 2005;90:6072–6.PubMedCrossRef Orio F, Palomba S, Cascella T, et al. Improvement in endothelial structure and function after metformin treatment in young normal weight women with polycystic ovary syndrome: results of a 6-month study. J Clin Endocrinol Metab. 2005;90:6072–6.PubMedCrossRef
34.
go back to reference Li L, Mamputu JC, Wiernsperger N, Renier G. Signalling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes. 2005;54:2227–34.PubMedCrossRef Li L, Mamputu JC, Wiernsperger N, Renier G. Signalling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase-2 expression induced by leptin: inhibitory effect of metformin. Diabetes. 2005;54:2227–34.PubMedCrossRef
35.
go back to reference Sirtori CR, Franceschini G, Gianfranceschi G, et al. Metformin improves peripheral vascular in nonhyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol. 1984;6:914–23.PubMedCrossRef Sirtori CR, Franceschini G, Gianfranceschi G, et al. Metformin improves peripheral vascular in nonhyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol. 1984;6:914–23.PubMedCrossRef
36.
go back to reference Montaguti U, Cellin D, Ceredi C, Descovitch GC. Efficacy of the long-term administration of metformin in hyperlipidaemic patients. Res Clin Forums. 1979;1:95–103. Montaguti U, Cellin D, Ceredi C, Descovitch GC. Efficacy of the long-term administration of metformin in hyperlipidaemic patients. Res Clin Forums. 1979;1:95–103.
37.
go back to reference Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabetic Med. 2003;20:255–68.PubMedCrossRef Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabetic Med. 2003;20:255–68.PubMedCrossRef
38.
go back to reference Sjoholm A, Nystrom T. Endothelial inflammation in insulin resistance. Lancet. 2005;365:610–2.PubMed Sjoholm A, Nystrom T. Endothelial inflammation in insulin resistance. Lancet. 2005;365:610–2.PubMed
39.
go back to reference Lyon CJ, Law RE, Hsueh WA. Adiposity, inflammation and atherogenesis. Endocrinology. 2003;144:2195–200.PubMedCrossRef Lyon CJ, Law RE, Hsueh WA. Adiposity, inflammation and atherogenesis. Endocrinology. 2003;144:2195–200.PubMedCrossRef
40.
go back to reference Saenz A, Fernandez-Esteban I, Mataix A et al. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 2005, CD002966. Saenz A, Fernandez-Esteban I, Mataix A et al. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews, 2005, CD002966.
41.
go back to reference Schafers RF. Do effects on blood pressure contribute to improved clinical outcomes with metformin? Diabetes Metab. 2003;29:62–70. Schafers RF. Do effects on blood pressure contribute to improved clinical outcomes with metformin? Diabetes Metab. 2003;29:62–70.
42.
go back to reference Wulffele MG, Kooy A, de Zeeuw D, et al. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med. 2004;256:1–14.PubMedCrossRef Wulffele MG, Kooy A, de Zeeuw D, et al. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med. 2004;256:1–14.PubMedCrossRef
43.
go back to reference Lawrence JM, Reid J, Taylor GJ, et al. Favorable effects of pioglitazone and metformin compared with gliclazide on lipoprotein subfractions in overweight patients with early type 2 diabetes. Diabetes Care. 2004;27:41–6.PubMedCrossRef Lawrence JM, Reid J, Taylor GJ, et al. Favorable effects of pioglitazone and metformin compared with gliclazide on lipoprotein subfractions in overweight patients with early type 2 diabetes. Diabetes Care. 2004;27:41–6.PubMedCrossRef
44.
go back to reference Ohira M, Miyashita Y, Ebisuno M, et al. Effect of metformin on serum lipoprotein lipase mass levels and LDL particle size in type 2 diabetes mellitus patients. Diabetes Res Clin Pract. 2007;78:34–41.PubMedCrossRef Ohira M, Miyashita Y, Ebisuno M, et al. Effect of metformin on serum lipoprotein lipase mass levels and LDL particle size in type 2 diabetes mellitus patients. Diabetes Res Clin Pract. 2007;78:34–41.PubMedCrossRef
45.
go back to reference Chu NV, Kong AP, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care. 2002;25:542–9.PubMedCrossRef Chu NV, Kong AP, Kim DD, et al. Differential effects of metformin and troglitazone on cardiovascular risk factors in patients with type 2 diabetes. Diabetes Care. 2002;25:542–9.PubMedCrossRef
46.
go back to reference Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37:1344–50.PubMedCrossRef Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37:1344–50.PubMedCrossRef
47.
go back to reference De Aguiar LG, Bahia LR, Villela N, et al. Metformin improves endothelial vascular reactivity in first degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care. 2006;29:1083–9.PubMedCrossRef De Aguiar LG, Bahia LR, Villela N, et al. Metformin improves endothelial vascular reactivity in first degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care. 2006;29:1083–9.PubMedCrossRef
48.
go back to reference Vitale C, Mercuro G, Cornoldi F, et al. Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med. 2005;258:250–6.PubMedCrossRef Vitale C, Mercuro G, Cornoldi F, et al. Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med. 2005;258:250–6.PubMedCrossRef
49.
go back to reference Marfella R, Acampora R, Verrazzo G, et al. Metformin improves hemodynamic and fheological responses to L-arginine in NIDDM patients. Diabetes Care. 1996;19:934–9.PubMedCrossRef Marfella R, Acampora R, Verrazzo G, et al. Metformin improves hemodynamic and fheological responses to L-arginine in NIDDM patients. Diabetes Care. 1996;19:934–9.PubMedCrossRef
50.
go back to reference Asagami T, Abbasi F, Stuelinger M, et al. Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism. 2002;51:843–6.PubMedCrossRef Asagami T, Abbasi F, Stuelinger M, et al. Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism. 2002;51:843–6.PubMedCrossRef
51.
go back to reference Natale A, Baldeweg S, Toschi E, et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care. 2004;27:1349–57.CrossRef Natale A, Baldeweg S, Toschi E, et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care. 2004;27:1349–57.CrossRef
52.
go back to reference Kautzky-Willer A, ra A, Winzer C, et al. Insulin sensitivity during oral glucose tolerance test and its relation to parameters of glucose metabolism and endothelial function in type 2 diabetes subjects under metformin of thiazolidinedione. Diab Obesity Metab. 2006;8:561–7.CrossRef Kautzky-Willer A, ra A, Winzer C, et al. Insulin sensitivity during oral glucose tolerance test and its relation to parameters of glucose metabolism and endothelial function in type 2 diabetes subjects under metformin of thiazolidinedione. Diab Obesity Metab. 2006;8:561–7.CrossRef
53.
go back to reference Carantoni M, Abbasi F, Chu L, et al. Adherence of mononuclear cells to endothelium in vitro is increased in NIDDM. Diabetes Care. 1997;20:1462–6.PubMedCrossRef Carantoni M, Abbasi F, Chu L, et al. Adherence of mononuclear cells to endothelium in vitro is increased in NIDDM. Diabetes Care. 1997;20:1462–6.PubMedCrossRef
54.
go back to reference Mamputu JC, Wiernsperger N, Renier G. Metformin inhibits monocyte adhesion to endothelial cells and foam cell formation. Br J Diabetes Vasc Dis. 2003;3:302–10. Mamputu JC, Wiernsperger N, Renier G. Metformin inhibits monocyte adhesion to endothelial cells and foam cell formation. Br J Diabetes Vasc Dis. 2003;3:302–10.
55.
go back to reference De Jager J, Kooy A, Lehert P. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized placebo-controlled trial. J Intern Med. 2005;257:100–9.PubMedCrossRef De Jager J, Kooy A, Lehert P. Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized placebo-controlled trial. J Intern Med. 2005;257:100–9.PubMedCrossRef
56.
go back to reference Skrha J, Praznv M, Milgertova J, et al. Oxidative stress and endothelium influenced by metformin in type 2 diabetes mellitus. Eur J Clin Pharmacol. 2007;63:1107–14.PubMedCrossRef Skrha J, Praznv M, Milgertova J, et al. Oxidative stress and endothelium influenced by metformin in type 2 diabetes mellitus. Eur J Clin Pharmacol. 2007;63:1107–14.PubMedCrossRef
58.
go back to reference Carter AM, Bennett CE, Bostock JA, Grant PJ. Metformin reduces C-reactive protein but not complement factor C3 in overweight patients with type 2 diabetes mellitus. Diabetic Med. 2005;22:1282–4.PubMedCrossRef Carter AM, Bennett CE, Bostock JA, Grant PJ. Metformin reduces C-reactive protein but not complement factor C3 in overweight patients with type 2 diabetes mellitus. Diabetic Med. 2005;22:1282–4.PubMedCrossRef
59.
go back to reference Akbar DH. Effect of metformin and sulfonylurea on C-reactive protein level in well-controlled type 2 diabetics with metabolic syndrome. Endocrine. 2005;20:215–8.CrossRef Akbar DH. Effect of metformin and sulfonylurea on C-reactive protein level in well-controlled type 2 diabetics with metabolic syndrome. Endocrine. 2005;20:215–8.CrossRef
60.
go back to reference Morin-Papunen L, Rautio K, Ruokonen A, et al. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:4649–54.PubMedCrossRef Morin-Papunen L, Rautio K, Ruokonen A, et al. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:4649–54.PubMedCrossRef
61.
go back to reference Caballero AE, Degado A, Aguillar-Salinas CA, et al. The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J Clin Endocrinol Metab. 2004;89:3943–8.PubMedCrossRef Caballero AE, Degado A, Aguillar-Salinas CA, et al. The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J Clin Endocrinol Metab. 2004;89:3943–8.PubMedCrossRef
62.
go back to reference Hattori Y, Suzuki K, Hattori S, et al. Metformin inhibits cytokine-induced nuclear factor kappa B activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47:1183–8.PubMedCrossRef Hattori Y, Suzuki K, Hattori S, et al. Metformin inhibits cytokine-induced nuclear factor kappa B activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47:1183–8.PubMedCrossRef
63.
go back to reference Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114:597–605.PubMedCrossRef Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114:597–605.PubMedCrossRef
64.
go back to reference Meifen C, Jie X, Linuo Z, et al. Nonenzymatical glycation of protein in vitro and its inhibition by aminoguanidine or metformin. Acta Acad Med Shanghai. 1998;25:35–8. Meifen C, Jie X, Linuo Z, et al. Nonenzymatical glycation of protein in vitro and its inhibition by aminoguanidine or metformin. Acta Acad Med Shanghai. 1998;25:35–8.
65.
go back to reference Beisswenger P, Howell S, Touchette A, et al. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. 1999;48:198–202.PubMedCrossRef Beisswenger P, Howell S, Touchette A, et al. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes. 1999;48:198–202.PubMedCrossRef
66.
go back to reference Wiernsperger NF. 50 years later: is metformin a vascular drug with antidiabetic properties? Br J Diabetes Vasc Dis. 2007;7:204–10.CrossRef Wiernsperger NF. 50 years later: is metformin a vascular drug with antidiabetic properties? Br J Diabetes Vasc Dis. 2007;7:204–10.CrossRef
67.
go back to reference Pavlovic D, Kocic R, Kocic G, et al. Effect of four-week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes. Diabetes Obesity Metab. 2000;2:251–6.CrossRef Pavlovic D, Kocic R, Kocic G, et al. Effect of four-week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes. Diabetes Obesity Metab. 2000;2:251–6.CrossRef
68.
go back to reference Ouslimani N, Peynet J, Bonnefont-Rousselot D, et al. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism. 2005;54:829–34.PubMedCrossRef Ouslimani N, Peynet J, Bonnefont-Rousselot D, et al. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism. 2005;54:829–34.PubMedCrossRef
69.
go back to reference Mahrouf M, Ouslimani N, Peynet J, et al. Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein kinase C. Biochem Pharmacol. 2006;72:176–83.PubMedCrossRef Mahrouf M, Ouslimani N, Peynet J, et al. Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein kinase C. Biochem Pharmacol. 2006;72:176–83.PubMedCrossRef
70.
go back to reference Onaran I, Guven GS, Ozdas SB, et al. Metformin does not prevent DNA damage in lymphocytes despite its antioxidant properties against cumene hydroperoxide-induced oxidative stress. Mutation Res. 2006;611:1–8.PubMed Onaran I, Guven GS, Ozdas SB, et al. Metformin does not prevent DNA damage in lymphocytes despite its antioxidant properties against cumene hydroperoxide-induced oxidative stress. Mutation Res. 2006;611:1–8.PubMed
71.
go back to reference Gargiulo P, Caccese D, Pignatelli P, et al. Metformin decreases platelet superoxide anion production in diabetic patients. Diabetes Metabolism Res Revs. 2002;18:156–9.CrossRef Gargiulo P, Caccese D, Pignatelli P, et al. Metformin decreases platelet superoxide anion production in diabetic patients. Diabetes Metabolism Res Revs. 2002;18:156–9.CrossRef
72.
go back to reference Tessier D, Maheux P, Khalil A, Fulop T. Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes. Metabolism. 1999;48:897–903.PubMedCrossRef Tessier D, Maheux P, Khalil A, Fulop T. Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes. Metabolism. 1999;48:897–903.PubMedCrossRef
73.
go back to reference Wiernsperger NF. Metformin: intrinsic vasculoprotective properties. Diabetes Technol Therap. 2000;2:259–72.CrossRef Wiernsperger NF. Metformin: intrinsic vasculoprotective properties. Diabetes Technol Therap. 2000;2:259–72.CrossRef
74.
go back to reference Mamputu JC, Wiernsperger NF, Renier G. Antiatherogenic properties of metformin: the experimental evidence. Diabetes Metab. 2003;29:6S71–76.PubMedCrossRef Mamputu JC, Wiernsperger NF, Renier G. Antiatherogenic properties of metformin: the experimental evidence. Diabetes Metab. 2003;29:6S71–76.PubMedCrossRef
75.
go back to reference Marquie G. Effect of metformin on lipid metabolism in the rabbit aortic wall. Atherosclerosis. 1978;30:165–70.PubMedCrossRef Marquie G. Effect of metformin on lipid metabolism in the rabbit aortic wall. Atherosclerosis. 1978;30:165–70.PubMedCrossRef
76.
go back to reference Marquie G. Metformin action on lipid metabolism in lesions of experimental aortic atherosclerosis of rabbits. Atherosclerosis. 1983;47:7–17.PubMedCrossRef Marquie G. Metformin action on lipid metabolism in lesions of experimental aortic atherosclerosis of rabbits. Atherosclerosis. 1983;47:7–17.PubMedCrossRef
77.
go back to reference Chakrabarti R, Hocking ED, Fearnley GR. Fibrinolytic effect of metformin in coronary artery disease. Lancet. 1965;II:256–9.CrossRef Chakrabarti R, Hocking ED, Fearnley GR. Fibrinolytic effect of metformin in coronary artery disease. Lancet. 1965;II:256–9.CrossRef
78.
go back to reference Hocking ED, Chakrabarti R, Evans J, Fearnley GR. Effects of biguanides and atromid on fibrinolysis. J Atheroscl Res. 1967;7:121–30. Hocking ED, Chakrabarti R, Evans J, Fearnley GR. Effects of biguanides and atromid on fibrinolysis. J Atheroscl Res. 1967;7:121–30.
79.
go back to reference Vague PH, Juhan-Vague I, Alessi MC, et al. Metformin decreases the high plasminogen activation inhibitor activity, plasma insulin and triglyceride levels in non-diabetic obese subjects. Thromb Haemostasis. 1987;57:326–8. Vague PH, Juhan-Vague I, Alessi MC, et al. Metformin decreases the high plasminogen activation inhibitor activity, plasma insulin and triglyceride levels in non-diabetic obese subjects. Thromb Haemostasis. 1987;57:326–8.
80.
go back to reference Grant PJ, Strickl;and MH, Booth NA, Prentice CRM. Metformin causes a reduction in basal and post-venous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabetic Med. 1991;8:361–5.PubMedCrossRef Grant PJ, Strickl;and MH, Booth NA, Prentice CRM. Metformin causes a reduction in basal and post-venous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabetic Med. 1991;8:361–5.PubMedCrossRef
81.
go back to reference Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. Diabetes Care. 1993;16:621–9.PubMedCrossRef Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. Diabetes Care. 1993;16:621–9.PubMedCrossRef
82.
go back to reference Grant PJ. The effect of high- and medium-dose metformin therapy on cardiovascular risk factors in patients with type II diabetes. Diabetes Care. 1996;19:64–6.PubMedCrossRef Grant PJ. The effect of high- and medium-dose metformin therapy on cardiovascular risk factors in patients with type II diabetes. Diabetes Care. 1996;19:64–6.PubMedCrossRef
83.
go back to reference Grant PJ. Metformin reduces circulating factor VII concentrations in patients with type 2 diabetes mellitus. Thromb Haemostasis 1998;80:209.CrossRef Grant PJ. Metformin reduces circulating factor VII concentrations in patients with type 2 diabetes mellitus. Thromb Haemostasis 1998;80:209.CrossRef
84.
go back to reference He G, Pedersen SB, Bruun JM, et al. Metformin, but not thiazolidinediones, inhibits plasminogen activator inhibitor-1 production in human adipose tissue. Horm Metab Res. 2003;35:18–23.PubMedCrossRef He G, Pedersen SB, Bruun JM, et al. Metformin, but not thiazolidinediones, inhibits plasminogen activator inhibitor-1 production in human adipose tissue. Horm Metab Res. 2003;35:18–23.PubMedCrossRef
85.
go back to reference Standeven KF, Ariens RAS, Whitaker P, et al. The effect of dimethyl biguanide on thrombin activity FXIII activation, fibrin polymerization and fibrin clot formation. Diabetes. 2002;51:189–97.PubMedCrossRef Standeven KF, Ariens RAS, Whitaker P, et al. The effect of dimethyl biguanide on thrombin activity FXIII activation, fibrin polymerization and fibrin clot formation. Diabetes. 2002;51:189–97.PubMedCrossRef
86.
go back to reference Grant PJ. Beneficial effects of metformin on haemostasis and vascular function in man. Diabetes Metab. 2003;29:6S44–52.PubMed Grant PJ. Beneficial effects of metformin on haemostasis and vascular function in man. Diabetes Metab. 2003;29:6S44–52.PubMed
87.
go back to reference Janka HU. Platelet and endothelial function tests during metformin treatment in diabetes mellitus. Horm Metab Res. 1985;12:120–2. Janka HU. Platelet and endothelial function tests during metformin treatment in diabetes mellitus. Horm Metab Res. 1985;12:120–2.
88.
go back to reference Gregorio F, Ambrosi F, Manfrini S. Poorly controlled elderly type 2 diabetic patients: the effects of increasing sulphonylurea dosages or adding metformin. Diabetic Med. 1999;16:1016–24.PubMedCrossRef Gregorio F, Ambrosi F, Manfrini S. Poorly controlled elderly type 2 diabetic patients: the effects of increasing sulphonylurea dosages or adding metformin. Diabetic Med. 1999;16:1016–24.PubMedCrossRef
89.
go back to reference Weichert W, Breddin K. Antithrombotic effects of metformin in laser injured arteries. Diabetes Metab. 1988;14:540–43. Weichert W, Breddin K. Antithrombotic effects of metformin in laser injured arteries. Diabetes Metab. 1988;14:540–43.
90.
go back to reference Massad L, Plotkine M, Allix M, Boulu RG. Antithrombic drugs in a carotid occlusion model: beneficial effect of the antidiabetic agent metformin. Diabetes Metab. 1988;14:544–48. Massad L, Plotkine M, Allix M, Boulu RG. Antithrombic drugs in a carotid occlusion model: beneficial effect of the antidiabetic agent metformin. Diabetes Metab. 1988;14:544–48.
91.
go back to reference Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–68.PubMedCrossRef Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–68.PubMedCrossRef
92.
go back to reference Diabetes Control and complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRef Diabetes Control and complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRef
93.
go back to reference Wiernsperger NF, Bouskela E. Microcirculation in insulin resistance and diabetes: more than just a complication. Diabetes Metab. 2003;29:6S77–87.PubMedCrossRef Wiernsperger NF, Bouskela E. Microcirculation in insulin resistance and diabetes: more than just a complication. Diabetes Metab. 2003;29:6S77–87.PubMedCrossRef
94.
go back to reference Tooke JE. Microvascular function in human diabetes: a physiological perspective. Diabetes. 1995;44:721–6.PubMedCrossRef Tooke JE. Microvascular function in human diabetes: a physiological perspective. Diabetes. 1995;44:721–6.PubMedCrossRef
95.
go back to reference Stansberry KB, Shapiro SA, Hill MA, et al. Impaired peripheral vasomotion in diabetes. Diabetes Care. 1996;19:715–21.PubMedCrossRef Stansberry KB, Shapiro SA, Hill MA, et al. Impaired peripheral vasomotion in diabetes. Diabetes Care. 1996;19:715–21.PubMedCrossRef
96.
go back to reference Sartoretto JL, Melo GA, Carvalho MH, et al. Metformin treatment restores the altered micro-vascular reactivity in neonatal streptozotocin-induced diabetic rats by increasing NOS activity, but not NOS expression. Life Sci. 2005;77:2676–89.PubMedCrossRef Sartoretto JL, Melo GA, Carvalho MH, et al. Metformin treatment restores the altered micro-vascular reactivity in neonatal streptozotocin-induced diabetic rats by increasing NOS activity, but not NOS expression. Life Sci. 2005;77:2676–89.PubMedCrossRef
97.
go back to reference Rapin JR, Lespinasse P, Yoa R. Effect of metformin on diabetic erythrocyte deformability in the presence of insulin: in vitro study on erythrocytes from diabetic patients. Diabetes Metab. 1988;14:610–12. Rapin JR, Lespinasse P, Yoa R. Effect of metformin on diabetic erythrocyte deformability in the presence of insulin: in vitro study on erythrocytes from diabetic patients. Diabetes Metab. 1988;14:610–12.
98.
go back to reference Valensi P, Behar A, Andre P, et al. The effects of metformin on the capillary permeability to albumin in women patients with cyclic edema. Angiology. 1995;46:401–8.PubMed Valensi P, Behar A, Andre P, et al. The effects of metformin on the capillary permeability to albumin in women patients with cyclic edema. Angiology. 1995;46:401–8.PubMed
99.
go back to reference Jyothirmayi GN, Soni BJ, Masurekar M, et al. Effects of metformin on collagen glycation and diastolic dysfunction in diabetic myocardium. J Cardiovasc Pharmacol Therap. 1998;3:319–26.CrossRef Jyothirmayi GN, Soni BJ, Masurekar M, et al. Effects of metformin on collagen glycation and diastolic dysfunction in diabetic myocardium. J Cardiovasc Pharmacol Therap. 1998;3:319–26.CrossRef
Metadata
Title
Metformin: Effects on Micro and Macrovascular Complications in Type 2 Diabetes
Author
Clifford J. Bailey
Publication date
01-06-2008
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 3/2008
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-008-6092-0

Other articles of this Issue 3/2008

Cardiovascular Drugs and Therapy 3/2008 Go to the issue