Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2021

Open Access 01-03-2021 | Epigenetics | Non-Thematic Review

Epigenetic modulation of immunotherapy and implications in head and neck cancer

Authors: Liye Zhou, Na Xu, Hirofumi Shibata, Vassiliki Saloura, Ravindra Uppaluri

Published in: Cancer and Metastasis Reviews | Issue 1/2021

Login to get access

Abstract

Cancer progression is facilitated by distinct mechanisms developed by cancer cells to avoid immune recognition and clearance. The clinical application of immune checkpoint blockade (ICB), via monoclonal antibodies blocking PD-1/PD-L1 and CTLA4, has achieved promising durable therapeutic response in various cancer types, including recurrent and metastatic head and neck squamous cell carcinomas (HNSCC). HNSCC represents a rational target of ICB treatment given its relatively high mutation burden and the presence of immune infiltrates. However, the limited response rates and recent negative clinical trials data identify an urgent need for new strategies to overcome immunotherapy resistance. Preclinical studies have revealed an important contribution of epigenetic regulators in the anti-tumor immune response. Multiple components of the tumor and host immune system interaction are under epigenetic regulation, including the cancer cells themselves, cytotoxic T lymphocytes, regulatory T lymphocytes, natural killer cells, and tumor-associated macrophages. Epigenetic targeting drugs such as DNA methyltransferase inhibitors, histone deacetylase, and methyltransferase inhibitors have demonstrated the potential to reverse immune suppression in various cancer models. The aim of this review is to summarize recent preclinical studies focused on investigating the function of epigenetic modulation in the host immune and cancer cell interface. We also provide a perspective on combining epigenetic modulation and immunotherapy in the management of HNSCC to improve outcomes—an area of great interest in future clinical studies.
Literature
2.
go back to reference Tang, H., Wang, Y., Chlewicki, L. K., Zhang, Y., Guo, J., Liang, W., Wang, J., Wang, X., & Fu, Y. X. (2016). Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell, 29(3), 285–296.PubMedPubMedCentralCrossRef Tang, H., Wang, Y., Chlewicki, L. K., Zhang, Y., Guo, J., Liang, W., Wang, J., Wang, X., & Fu, Y. X. (2016). Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell, 29(3), 285–296.PubMedPubMedCentralCrossRef
3.
go back to reference Wei, S. C., Duffy, C. R., & Allison, J. P. (2018). Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery, 8(9), 1069–1086.PubMedCrossRef Wei, S. C., Duffy, C. R., & Allison, J. P. (2018). Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery, 8(9), 1069–1086.PubMedCrossRef
4.
go back to reference Zou, W., Wolchok, J. D., & Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science Translational Medicine, 8(328), 328rv4.PubMedPubMedCentralCrossRef Zou, W., Wolchok, J. D., & Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science Translational Medicine, 8(328), 328rv4.PubMedPubMedCentralCrossRef
5.
go back to reference Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., Atkins, M. B., Leming, P. D., Spigel, D. R., Antonia, S. J., Horn, L., Drake, C. G., Pardoll, D. M., Chen, L., Sharfman, W. H., Anders, R. A., Taube, J. M., McMiller, T. L., Xu, H., Korman, A. J., Jure-Kunkel, M., Agrawal, S., McDonald, D., Kollia, G. D., Gupta, A., Wigginton, J. M., & Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454.PubMedPubMedCentralCrossRef Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., Atkins, M. B., Leming, P. D., Spigel, D. R., Antonia, S. J., Horn, L., Drake, C. G., Pardoll, D. M., Chen, L., Sharfman, W. H., Anders, R. A., Taube, J. M., McMiller, T. L., Xu, H., Korman, A. J., Jure-Kunkel, M., Agrawal, S., McDonald, D., Kollia, G. D., Gupta, A., Wigginton, J. M., & Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454.PubMedPubMedCentralCrossRef
6.
go back to reference Hamid, O., Robert, C., Daud, A., Hodi, F. S., Hwu, W. J., Kefford, R., Wolchok, J. D., Hersey, P., Joseph, R. W., Weber, J. S., Dronca, R., Gangadhar, T. C., Patnaik, A., Zarour, H., Joshua, A. M., Gergich, K., Elassaiss-Schaap, J., Algazi, A., Mateus, C., Boasberg, P., Tumeh, P. C., Chmielowski, B., Ebbinghaus, S. W., Li, X. N., Kang, S. P., & Ribas, A. (2013). Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. The New England Journal of Medicine, 369(2), 134–144.PubMedPubMedCentralCrossRef Hamid, O., Robert, C., Daud, A., Hodi, F. S., Hwu, W. J., Kefford, R., Wolchok, J. D., Hersey, P., Joseph, R. W., Weber, J. S., Dronca, R., Gangadhar, T. C., Patnaik, A., Zarour, H., Joshua, A. M., Gergich, K., Elassaiss-Schaap, J., Algazi, A., Mateus, C., Boasberg, P., Tumeh, P. C., Chmielowski, B., Ebbinghaus, S. W., Li, X. N., Kang, S. P., & Ribas, A. (2013). Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. The New England Journal of Medicine, 369(2), 134–144.PubMedPubMedCentralCrossRef
7.
go back to reference Pai, S. I., Faivre, S., Licitra, L., Machiels, J. P., Vermorken, J. B., Bruzzi, P., Gruenwald, V., Giglio, R. E., Leemans, C. R., Seiwert, T. Y., & Soulieres, D. (2019). Comparative analysis of the phase III clinical trials of anti-PD1 monotherapy in head and neck squamous cell carcinoma patients (CheckMate 141 and KEYNOTE 040). Journal for Immunotherapy of Cancer, 7(1), 96.PubMedPubMedCentralCrossRef Pai, S. I., Faivre, S., Licitra, L., Machiels, J. P., Vermorken, J. B., Bruzzi, P., Gruenwald, V., Giglio, R. E., Leemans, C. R., Seiwert, T. Y., & Soulieres, D. (2019). Comparative analysis of the phase III clinical trials of anti-PD1 monotherapy in head and neck squamous cell carcinoma patients (CheckMate 141 and KEYNOTE 040). Journal for Immunotherapy of Cancer, 7(1), 96.PubMedPubMedCentralCrossRef
9.
go back to reference Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 27(4), 450–461.PubMedPubMedCentralCrossRef Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 27(4), 450–461.PubMedPubMedCentralCrossRef
10.
go back to reference Mandal, R., Şenbabaoğlu, Y., Desrichard, A., Havel, J. J., Dalin, M. G., Riaz, N., Lee, K. W., Ganly, I., Hakimi, A. A., Chan, T. A., & Morris, L. G. (2016). The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight, 1(17), e89829.PubMedPubMedCentralCrossRef Mandal, R., Şenbabaoğlu, Y., Desrichard, A., Havel, J. J., Dalin, M. G., Riaz, N., Lee, K. W., Ganly, I., Hakimi, A. A., Chan, T. A., & Morris, L. G. (2016). The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight, 1(17), e89829.PubMedPubMedCentralCrossRef
11.
go back to reference Ennishi, D., et al. (2019). Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discovery. Ennishi, D., et al. (2019). Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discovery.
12.
go back to reference Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69–74.PubMedCrossRef Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348(6230), 69–74.PubMedCrossRef
13.
go back to reference Cohen, E. E. W., Bell, R. B., Bifulco, C. B., Burtness, B., Gillison, M. L., Harrington, K. J., le, Q. T., Lee, N. Y., Leidner, R., Lewis, R. L., Licitra, L., Mehanna, H., Mell, L. K., Raben, A., Sikora, A. G., Uppaluri, R., Whitworth, F., Zandberg, D. P., & Ferris, R. L. (2019). The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). Journal for Immunotherapy of Cancer, 7(1), 184.PubMedPubMedCentralCrossRef Cohen, E. E. W., Bell, R. B., Bifulco, C. B., Burtness, B., Gillison, M. L., Harrington, K. J., le, Q. T., Lee, N. Y., Leidner, R., Lewis, R. L., Licitra, L., Mehanna, H., Mell, L. K., Raben, A., Sikora, A. G., Uppaluri, R., Whitworth, F., Zandberg, D. P., & Ferris, R. L. (2019). The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). Journal for Immunotherapy of Cancer, 7(1), 184.PubMedPubMedCentralCrossRef
14.
go back to reference de Ruiter, E. J., Ooft, M. L., Devriese, L. A., & Willems, S. M. (2017). The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology, 6(11), e1356148.PubMedPubMedCentralCrossRef de Ruiter, E. J., Ooft, M. L., Devriese, L. A., & Willems, S. M. (2017). The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology, 6(11), e1356148.PubMedPubMedCentralCrossRef
15.
go back to reference Feng, Z., et al. (2017). Multiparametric immune profiling in HPV- oral squamous cell cancer. JCI Insight, 2(14). Feng, Z., et al. (2017). Multiparametric immune profiling in HPV- oral squamous cell cancer. JCI Insight, 2(14).
16.
go back to reference Hanna, G. J., Liu, H., Jones, R. E., Bacay, A. F., Lizotte, P. H., Ivanova, E. V., Bittinger, M. A., Cavanaugh, M. E., Rode, A. J., Schoenfeld, J. D., Chau, N. G., Haddad, R. I., Lorch, J. H., Wong, K. K., Uppaluri, R., & Hammerman, P. S. (2017). Defining an inflamed tumor immunophenotype in recurrent, metastatic squamous cell carcinoma of the head and neck. Oral Oncology, 67, 61–69.PubMedCrossRef Hanna, G. J., Liu, H., Jones, R. E., Bacay, A. F., Lizotte, P. H., Ivanova, E. V., Bittinger, M. A., Cavanaugh, M. E., Rode, A. J., Schoenfeld, J. D., Chau, N. G., Haddad, R. I., Lorch, J. H., Wong, K. K., Uppaluri, R., & Hammerman, P. S. (2017). Defining an inflamed tumor immunophenotype in recurrent, metastatic squamous cell carcinoma of the head and neck. Oral Oncology, 67, 61–69.PubMedCrossRef
17.
go back to reference Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168(4), 707–723.PubMedPubMedCentralCrossRef Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168(4), 707–723.PubMedPubMedCentralCrossRef
18.
go back to reference Jenkins, R. W., Barbie, D. A., & Flaherty, K. T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 118(1), 9–16.PubMedPubMedCentralCrossRef Jenkins, R. W., Barbie, D. A., & Flaherty, K. T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 118(1), 9–16.PubMedPubMedCentralCrossRef
19.
go back to reference Pitt, J. M., Vétizou, M., Daillère, R., Roberti, M. P., Yamazaki, T., Routy, B., Lepage, P., Boneca, I. G., Chamaillard, M., Kroemer, G., & Zitvogel, L. (2016). Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity, 44(6), 1255–1269.PubMedCrossRef Pitt, J. M., Vétizou, M., Daillère, R., Roberti, M. P., Yamazaki, T., Routy, B., Lepage, P., Boneca, I. G., Chamaillard, M., Kroemer, G., & Zitvogel, L. (2016). Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity, 44(6), 1255–1269.PubMedCrossRef
20.
go back to reference Gao, J., Shi, L. Z., Zhao, H., Chen, J., Xiong, L., He, Q., Chen, T., Roszik, J., Bernatchez, C., Woodman, S. E., Chen, P. L., Hwu, P., Allison, J. P., Futreal, A., Wargo, J. A., & Sharma, P. (2016). Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell, 167(2), 397–404 e9.PubMedPubMedCentralCrossRef Gao, J., Shi, L. Z., Zhao, H., Chen, J., Xiong, L., He, Q., Chen, T., Roszik, J., Bernatchez, C., Woodman, S. E., Chen, P. L., Hwu, P., Allison, J. P., Futreal, A., Wargo, J. A., & Sharma, P. (2016). Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell, 167(2), 397–404 e9.PubMedPubMedCentralCrossRef
21.
go back to reference Garcia-Lora, A., Algarra, I., & Garrido, F. (2003). MHC class I antigens, immune surveillance, and tumor immune escape. Journal of Cellular Physiology, 195(3), 346–355.PubMedCrossRef Garcia-Lora, A., Algarra, I., & Garrido, F. (2003). MHC class I antigens, immune surveillance, and tumor immune escape. Journal of Cellular Physiology, 195(3), 346–355.PubMedCrossRef
22.
go back to reference Marincola, F. M., et al. (2000). Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Advances in Immunology, 74, 181–273.PubMedCrossRef Marincola, F. M., et al. (2000). Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Advances in Immunology, 74, 181–273.PubMedCrossRef
23.
go back to reference Chowell, D., Morris, L. G. T., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., Riaz, N., Greenbaum, B., Carroll, J., Garon, E., Hyman, D. M., Zehir, A., Solit, D., Berger, M., Zhou, R., Rizvi, N. A., & Chan, T. A. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 359(6375), 582–587.PubMedCrossRef Chowell, D., Morris, L. G. T., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., Riaz, N., Greenbaum, B., Carroll, J., Garon, E., Hyman, D. M., Zehir, A., Solit, D., Berger, M., Zhou, R., Rizvi, N. A., & Chan, T. A. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 359(6375), 582–587.PubMedCrossRef
25.
go back to reference Chesney, J. A., Mitchell, R. A., & Yaddanapudi, K. (2017). Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. Journal of Leukocyte Biology, 102(3), 727–740.PubMedPubMedCentralCrossRef Chesney, J. A., Mitchell, R. A., & Yaddanapudi, K. (2017). Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. Journal of Leukocyte Biology, 102(3), 727–740.PubMedPubMedCentralCrossRef
26.
go back to reference Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., Benyamin, F. W., Man Lei, Y., Jabri, B., Alegre, M. L., Chang, E. B., & Gajewski, T. F. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 350(6264), 1084–1089.PubMedPubMedCentralCrossRef Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., Benyamin, F. W., Man Lei, Y., Jabri, B., Alegre, M. L., Chang, E. B., & Gajewski, T. F. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 350(6264), 1084–1089.PubMedPubMedCentralCrossRef
27.
go back to reference Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., Prieto, P. A., Vicente, D., Hoffman, K., Wei, S. C., Cogdill, A. P., Zhao, L., Hudgens, C. W., Hutchinson, D. S., Manzo, T., Petaccia de Macedo, M., Cotechini, T., Kumar, T., Chen, W. S., Reddy, S. M., Szczepaniak Sloane, R., Galloway-Pena, J., Jiang, H., Chen, P. L., Shpall, E. J., Rezvani, K., Alousi, A. M., Chemaly, R. F., Shelburne, S., Vence, L. M., Okhuysen, P. C., Jensen, V. B., Swennes, A. G., McAllister, F., Marcelo Riquelme Sanchez, E., Zhang, Y., le Chatelier, E., Zitvogel, L., Pons, N., Austin-Breneman, J. L., Haydu, L. E., Burton, E. M., Gardner, J. M., Sirmans, E., Hu, J., Lazar, A. J., Tsujikawa, T., Diab, A., Tawbi, H., Glitza, I. C., Hwu, W. J., Patel, S. P., Woodman, S. E., Amaria, R. N., Davies, M. A., Gershenwald, J. E., Hwu, P., Lee, J. E., Zhang, J., Coussens, L. M., Cooper, Z. A., Futreal, P. A., Daniel, C. R., Ajami, N. J., Petrosino, J. F., Tetzlaff, M. T., Sharma, P., Allison, J. P., Jenq, R. R., & Wargo, J. A. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 359(6371), 97–103.CrossRef Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., Prieto, P. A., Vicente, D., Hoffman, K., Wei, S. C., Cogdill, A. P., Zhao, L., Hudgens, C. W., Hutchinson, D. S., Manzo, T., Petaccia de Macedo, M., Cotechini, T., Kumar, T., Chen, W. S., Reddy, S. M., Szczepaniak Sloane, R., Galloway-Pena, J., Jiang, H., Chen, P. L., Shpall, E. J., Rezvani, K., Alousi, A. M., Chemaly, R. F., Shelburne, S., Vence, L. M., Okhuysen, P. C., Jensen, V. B., Swennes, A. G., McAllister, F., Marcelo Riquelme Sanchez, E., Zhang, Y., le Chatelier, E., Zitvogel, L., Pons, N., Austin-Breneman, J. L., Haydu, L. E., Burton, E. M., Gardner, J. M., Sirmans, E., Hu, J., Lazar, A. J., Tsujikawa, T., Diab, A., Tawbi, H., Glitza, I. C., Hwu, W. J., Patel, S. P., Woodman, S. E., Amaria, R. N., Davies, M. A., Gershenwald, J. E., Hwu, P., Lee, J. E., Zhang, J., Coussens, L. M., Cooper, Z. A., Futreal, P. A., Daniel, C. R., Ajami, N. J., Petrosino, J. F., Tetzlaff, M. T., Sharma, P., Allison, J. P., Jenq, R. R., & Wargo, J. A. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 359(6371), 97–103.CrossRef
28.
go back to reference Routy, B., le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragón, L., Jacquelot, N., Qu, B., Ferrere, G., Clémenson, C., Mezquita, L., Masip, J. R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rizvi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J. C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M. D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G., & Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359(6371), 91–97.CrossRef Routy, B., le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragón, L., Jacquelot, N., Qu, B., Ferrere, G., Clémenson, C., Mezquita, L., Masip, J. R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rizvi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J. C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M. D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G., & Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359(6371), 91–97.CrossRef
29.
go back to reference Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M. L., Luke, J. J., & Gajewski, T. F. (2018). The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science, 359(6371), 104–108.PubMedPubMedCentralCrossRef Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M. L., Luke, J. J., & Gajewski, T. F. (2018). The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science, 359(6371), 104–108.PubMedPubMedCentralCrossRef
30.
go back to reference Wu, K., Yi, M., Qin, S., Chu, Q., Zheng, X., & Wu, K. (2019). The efficacy and safety of combination of PD-1 and CTLA-4 inhibitors: a meta-analysis. Experimental Hematology & Oncology, 8, 26.CrossRef Wu, K., Yi, M., Qin, S., Chu, Q., Zheng, X., & Wu, K. (2019). The efficacy and safety of combination of PD-1 and CTLA-4 inhibitors: a meta-analysis. Experimental Hematology & Oncology, 8, 26.CrossRef
31.
go back to reference Wei, S. C., Anang, N. A. A. S., Sharma, R., Andrews, M. C., Reuben, A., Levine, J. H., Cogdill, A. P., Mancuso, J. J., Wargo, J. A., Pe’er, D., & Allison, J. P. (2019). Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proceedings of the National Academy of Sciences of the United States of America, 116(45), 22699–22709.PubMedPubMedCentralCrossRef Wei, S. C., Anang, N. A. A. S., Sharma, R., Andrews, M. C., Reuben, A., Levine, J. H., Cogdill, A. P., Mancuso, J. J., Wargo, J. A., Pe’er, D., & Allison, J. P. (2019). Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proceedings of the National Academy of Sciences of the United States of America, 116(45), 22699–22709.PubMedPubMedCentralCrossRef
32.
go back to reference Afzal, M. Z., Mabaera, R., & Shirai, K. (2018). Metastatic uveal melanoma showing durable response to anti-CTLA-4 and anti-PD-1 combination therapy after experiencing progression on anti-PD-1 therapy alone. Journal for Immunotherapy of Cancer, 6(1), 13.PubMedPubMedCentralCrossRef Afzal, M. Z., Mabaera, R., & Shirai, K. (2018). Metastatic uveal melanoma showing durable response to anti-CTLA-4 and anti-PD-1 combination therapy after experiencing progression on anti-PD-1 therapy alone. Journal for Immunotherapy of Cancer, 6(1), 13.PubMedPubMedCentralCrossRef
33.
go back to reference Grenier, J. M., Yeung, S. T., & Khanna, K. M. (2018). Combination immunotherapy: taking cancer vaccines to the next level. Frontiers in Immunology, 9, 610.PubMedPubMedCentralCrossRef Grenier, J. M., Yeung, S. T., & Khanna, K. M. (2018). Combination immunotherapy: taking cancer vaccines to the next level. Frontiers in Immunology, 9, 610.PubMedPubMedCentralCrossRef
34.
go back to reference Mougel, A., Terme, M., & Tanchot, C. (2019). Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Frontiers in Immunology, 10, 467.PubMedPubMedCentralCrossRef Mougel, A., Terme, M., & Tanchot, C. (2019). Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Frontiers in Immunology, 10, 467.PubMedPubMedCentralCrossRef
35.
go back to reference Peng, M., Mo, Y., Wang, Y., Wu, P., Zhang, Y., Xiong, F., Guo, C., Wu, X., Li, Y., Li, X., Li, G., Xiong, W., & Zeng, Z. (2019). Neoantigen vaccine: an emerging tumor immunotherapy. Molecular Cancer, 18(1), 128.PubMedPubMedCentralCrossRef Peng, M., Mo, Y., Wang, Y., Wu, P., Zhang, Y., Xiong, F., Guo, C., Wu, X., Li, Y., Li, X., Li, G., Xiong, W., & Zeng, Z. (2019). Neoantigen vaccine: an emerging tumor immunotherapy. Molecular Cancer, 18(1), 128.PubMedPubMedCentralCrossRef
36.
go back to reference Lv, J. W., Li, J. Y., Luo, L. N., Wang, Z. X., & Chen, Y. P. (2019). Comparative safety and efficacy of anti-PD-1 monotherapy, chemotherapy alone, and their combination therapy in advanced nasopharyngeal carcinoma: findings from recent advances in landmark trials. Journal for Immunotherapy of Cancer, 7(1), 159.PubMedPubMedCentralCrossRef Lv, J. W., Li, J. Y., Luo, L. N., Wang, Z. X., & Chen, Y. P. (2019). Comparative safety and efficacy of anti-PD-1 monotherapy, chemotherapy alone, and their combination therapy in advanced nasopharyngeal carcinoma: findings from recent advances in landmark trials. Journal for Immunotherapy of Cancer, 7(1), 159.PubMedPubMedCentralCrossRef
37.
go back to reference Sun, D., Ma, J., Wang, J., Han, C., Qian, Y., Chen, G., Li, X., Zhang, J., Cui, P., du, W., Wu, Z., Chen, S., Zheng, X., Yue, Z., Song, J., Gao, C., Zhao, X., Cai, S., & Hu, Y. (2019). Anti-PD-1 therapy combined with chemotherapy in patients with advanced biliary tract cancer. Cancer Immunology, Immunotherapy, 68(9), 1527–1535.PubMedPubMedCentralCrossRef Sun, D., Ma, J., Wang, J., Han, C., Qian, Y., Chen, G., Li, X., Zhang, J., Cui, P., du, W., Wu, Z., Chen, S., Zheng, X., Yue, Z., Song, J., Gao, C., Zhao, X., Cai, S., & Hu, Y. (2019). Anti-PD-1 therapy combined with chemotherapy in patients with advanced biliary tract cancer. Cancer Immunology, Immunotherapy, 68(9), 1527–1535.PubMedPubMedCentralCrossRef
38.
go back to reference Karachaliou, N., Gonzalez-Cao, M., Sosa, A., Berenguer, J., Bracht, J. W. P., Ito, M., & Rosell, R. (2017). The combination of checkpoint immunotherapy and targeted therapy in cancer. Annals of Translational Medicine, 5(19), 388.PubMedPubMedCentralCrossRef Karachaliou, N., Gonzalez-Cao, M., Sosa, A., Berenguer, J., Bracht, J. W. P., Ito, M., & Rosell, R. (2017). The combination of checkpoint immunotherapy and targeted therapy in cancer. Annals of Translational Medicine, 5(19), 388.PubMedPubMedCentralCrossRef
39.
go back to reference Prieto, P. A., Reuben, A., Cooper, Z. A., & Wargo, J. A. (2016). Targeted therapies combined with immune checkpoint therapy. Cancer Journal, 22(2), 138–146.CrossRef Prieto, P. A., Reuben, A., Cooper, Z. A., & Wargo, J. A. (2016). Targeted therapies combined with immune checkpoint therapy. Cancer Journal, 22(2), 138–146.CrossRef
40.
go back to reference Gong, J., le, T. Q., Massarelli, E., Hendifar, A. E., & Tuli, R. (2018). Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. Journal for Immunotherapy of Cancer, 6(1), 46.PubMedPubMedCentralCrossRef Gong, J., le, T. Q., Massarelli, E., Hendifar, A. E., & Tuli, R. (2018). Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. Journal for Immunotherapy of Cancer, 6(1), 46.PubMedPubMedCentralCrossRef
41.
go back to reference Ferris, R. L., Haddad, R., Even, C., Tahara, M., Dvorkin, M., Ciuleanu, T. E., Clement, P. M., Mesia, R., Kutukova, S., Zholudeva, L., Daste, A., Caballero-Daroqui, J., Keam, B., Vynnychenko, I., Lafond, C., Shetty, J., Mann, H., Fan, J., Wildsmith, S., Morsli, N., Fayette, J., & Licitra, L. (2020). Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Annals of Oncology, 31, 942–950.PubMedCrossRef Ferris, R. L., Haddad, R., Even, C., Tahara, M., Dvorkin, M., Ciuleanu, T. E., Clement, P. M., Mesia, R., Kutukova, S., Zholudeva, L., Daste, A., Caballero-Daroqui, J., Keam, B., Vynnychenko, I., Lafond, C., Shetty, J., Mann, H., Fan, J., Wildsmith, S., Morsli, N., Fayette, J., & Licitra, L. (2020). Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Annals of Oncology, 31, 942–950.PubMedCrossRef
42.
go back to reference Yu, Y., & Lee, N. Y. (2019). JAVELIN head and neck 100: a phase III trial of avelumab and chemoradiation for locally advanced head and neck cancer. Future Oncology, 15(7), 687–694.PubMedCrossRef Yu, Y., & Lee, N. Y. (2019). JAVELIN head and neck 100: a phase III trial of avelumab and chemoradiation for locally advanced head and neck cancer. Future Oncology, 15(7), 687–694.PubMedCrossRef
44.
go back to reference Dombret, H., Seymour, J. F., Butrym, A., Wierzbowska, A., Selleslag, D., Jang, J. H., Kumar, R., Cavenagh, J., Schuh, A. C., Candoni, A., Récher, C., Sandhu, I., Bernal del Castillo, T., al-Ali, H. K., Martinelli, G., Falantes, J., Noppeney, R., Stone, R. M., Minden, M. D., McIntyre, H., Songer, S., Lucy, L. M., Beach, C. L., & Döhner, H. (2015). International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood, 126(3), 291–299.PubMedPubMedCentralCrossRef Dombret, H., Seymour, J. F., Butrym, A., Wierzbowska, A., Selleslag, D., Jang, J. H., Kumar, R., Cavenagh, J., Schuh, A. C., Candoni, A., Récher, C., Sandhu, I., Bernal del Castillo, T., al-Ali, H. K., Martinelli, G., Falantes, J., Noppeney, R., Stone, R. M., Minden, M. D., McIntyre, H., Songer, S., Lucy, L. M., Beach, C. L., & Döhner, H. (2015). International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood, 126(3), 291–299.PubMedPubMedCentralCrossRef
45.
go back to reference Gallagher, S. J., Shklovskaya, E., & Hersey, P. (2017). Epigenetic modulation in cancer immunotherapy. Current Opinion in Pharmacology, 35, 48–56.PubMedCrossRef Gallagher, S. J., Shklovskaya, E., & Hersey, P. (2017). Epigenetic modulation in cancer immunotherapy. Current Opinion in Pharmacology, 35, 48–56.PubMedCrossRef
46.
go back to reference Li, Y., & Seto, E. (2016). HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harbor Perspectives in Medicine, 6(10). Li, Y., & Seto, E. (2016). HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harbor Perspectives in Medicine, 6(10).
47.
go back to reference Richon, V. M., Emiliani S., Verdin E., Webb Y., Breslow R., Rifkind R. A., Marks P. A. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3003–3007. Richon, V. M., Emiliani S., Verdin E., Webb Y., Breslow R., Rifkind R. A., Marks P. A. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3003–3007.
48.
go back to reference Sheng, W., LaFleur, M. W., Nguyen, T. H., Chen, S., Chakravarthy, A., Conway, J. R., Li, Y., Chen, H., Yang, H., Hsu, P. H., van Allen, E. M., Freeman, G. J., de Carvalho, D. D., He, H. H., Sharpe, A. H., & Shi, Y. (2018). LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell, 174(3), 549–563 e19.PubMedPubMedCentralCrossRef Sheng, W., LaFleur, M. W., Nguyen, T. H., Chen, S., Chakravarthy, A., Conway, J. R., Li, Y., Chen, H., Yang, H., Hsu, P. H., van Allen, E. M., Freeman, G. J., de Carvalho, D. D., He, H. H., Sharpe, A. H., & Shi, Y. (2018). LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell, 174(3), 549–563 e19.PubMedPubMedCentralCrossRef
49.
go back to reference Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S. Y., Han, H., Liang, G., Jones, P. A., Pugh, T. J., O’Brien, C., & de Carvalho, D. D. (2015). DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell, 162(5), 961–973.PubMedPubMedCentralCrossRef Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S. Y., Han, H., Liang, G., Jones, P. A., Pugh, T. J., O’Brien, C., & de Carvalho, D. D. (2015). DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell, 162(5), 961–973.PubMedPubMedCentralCrossRef
50.
go back to reference Chiappinelli, K. B., Strissel, P. L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N. S., Cope, L. M., Snyder, A., Makarov, V., Buhu, S., Slamon, D. J., Wolchok, J. D., Pardoll, D. M., Beckmann, M. W., Zahnow, C. A., Merghoub, T., Chan, T. A., Baylin, S. B., & Strick, R. (2015). Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell, 162(5), 974–986.PubMedPubMedCentralCrossRef Chiappinelli, K. B., Strissel, P. L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N. S., Cope, L. M., Snyder, A., Makarov, V., Buhu, S., Slamon, D. J., Wolchok, J. D., Pardoll, D. M., Beckmann, M. W., Zahnow, C. A., Merghoub, T., Chan, T. A., Baylin, S. B., & Strick, R. (2015). Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell, 162(5), 974–986.PubMedPubMedCentralCrossRef
51.
go back to reference Siebenkas, C., et al. (2017). Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS One, 12(6), e0179501.PubMedPubMedCentralCrossRef Siebenkas, C., et al. (2017). Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. PLoS One, 12(6), e0179501.PubMedPubMedCentralCrossRef
52.
go back to reference Li, H., Chiappinelli, K. B., Guzzetta, A. A., Easwaran, H., Yen, R. W. C., Vatapalli, R., Topper, M. J., Luo, J., Connolly, R. M., Azad, N. S., Stearns, V., Pardoll, D. M., Davidson, N., Jones, P. A., Slamon, D. J., Baylin, S. B., Zahnow, C. A., & Ahuja, N. (2014). Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget, 5(3), 587–598.PubMedPubMedCentralCrossRef Li, H., Chiappinelli, K. B., Guzzetta, A. A., Easwaran, H., Yen, R. W. C., Vatapalli, R., Topper, M. J., Luo, J., Connolly, R. M., Azad, N. S., Stearns, V., Pardoll, D. M., Davidson, N., Jones, P. A., Slamon, D. J., Baylin, S. B., Zahnow, C. A., & Ahuja, N. (2014). Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget, 5(3), 587–598.PubMedPubMedCentralCrossRef
53.
go back to reference Stone, M. L., Chiappinelli, K. B., Li, H., Murphy, L. M., Travers, M. E., Topper, M. J., Mathios, D., Lim, M., Shih, I. M., Wang, T. L., Hung, C. F., Bhargava, V., Wiehagen, K. R., Cowley, G. S., Bachman, K. E., Strick, R., Strissel, P. L., Baylin, S. B., & Zahnow, C. A. (2017). Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proceedings of the National Academy of Sciences of the United States of America, 114(51), E10981–E10990.PubMedPubMedCentral Stone, M. L., Chiappinelli, K. B., Li, H., Murphy, L. M., Travers, M. E., Topper, M. J., Mathios, D., Lim, M., Shih, I. M., Wang, T. L., Hung, C. F., Bhargava, V., Wiehagen, K. R., Cowley, G. S., Bachman, K. E., Strick, R., Strissel, P. L., Baylin, S. B., & Zahnow, C. A. (2017). Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proceedings of the National Academy of Sciences of the United States of America, 114(51), E10981–E10990.PubMedPubMedCentral
54.
go back to reference Topper, M. J., Vaz, M., Chiappinelli, K. B., DeStefano Shields, C. E., Niknafs, N., Yen, R. W. C., Wenzel, A., Hicks, J., Ballew, M., Stone, M., Tran, P. T., Zahnow, C. A., Hellmann, M. D., Anagnostou, V., Strissel, P. L., Strick, R., Velculescu, V. E., & Baylin, S. B. (2017). Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell, 171(6), 1284–1300 e21.PubMedPubMedCentralCrossRef Topper, M. J., Vaz, M., Chiappinelli, K. B., DeStefano Shields, C. E., Niknafs, N., Yen, R. W. C., Wenzel, A., Hicks, J., Ballew, M., Stone, M., Tran, P. T., Zahnow, C. A., Hellmann, M. D., Anagnostou, V., Strissel, P. L., Strick, R., Velculescu, V. E., & Baylin, S. B. (2017). Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell, 171(6), 1284–1300 e21.PubMedPubMedCentralCrossRef
55.
go back to reference Concha-Benavente, F., Srivastava, R., Ferrone, S., & Ferris, R. L. (2016). Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncology, 58, 52–58.PubMedPubMedCentralCrossRef Concha-Benavente, F., Srivastava, R., Ferrone, S., & Ferris, R. L. (2016). Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncology, 58, 52–58.PubMedPubMedCentralCrossRef
56.
go back to reference Zhou, L., Mudianto, T., Ma, X., Riley, R., & Uppaluri, R. (2020). Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer. Clinical Cancer Research, 26(1), 290–300.PubMedCrossRef Zhou, L., Mudianto, T., Ma, X., Riley, R., & Uppaluri, R. (2020). Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer. Clinical Cancer Research, 26(1), 290–300.PubMedCrossRef
57.
go back to reference Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R. A., Antunes, A. T., Haeusel, J., Sommer, L., & Boyman, O. (2017). The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Reports, 20(4), 854–867.PubMedCrossRef Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R. A., Antunes, A. T., Haeusel, J., Sommer, L., & Boyman, O. (2017). The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Reports, 20(4), 854–867.PubMedCrossRef
58.
go back to reference Burr, M. L., Sparbier, C. E., Chan, K. L., Chan, Y. C., Kersbergen, A., Lam, E. Y. N., Azidis-Yates, E., Vassiliadis, D., Bell, C. C., Gilan, O., Jackson, S., Tan, L., Wong, S. Q., Hollizeck, S., Michalak, E. M., Siddle, H. V., McCabe, M. T., Prinjha, R. K., Guerra, G. R., Solomon, B. J., Sandhu, S., Dawson, S. J., Beavis, P. A., Tothill, R. W., Cullinane, C., Lehner, P. J., Sutherland, K. D., & Dawson, M. A. (2019). An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell, 36(4), 385–401 e8.PubMedPubMedCentralCrossRef Burr, M. L., Sparbier, C. E., Chan, K. L., Chan, Y. C., Kersbergen, A., Lam, E. Y. N., Azidis-Yates, E., Vassiliadis, D., Bell, C. C., Gilan, O., Jackson, S., Tan, L., Wong, S. Q., Hollizeck, S., Michalak, E. M., Siddle, H. V., McCabe, M. T., Prinjha, R. K., Guerra, G. R., Solomon, B. J., Sandhu, S., Dawson, S. J., Beavis, P. A., Tothill, R. W., Cullinane, C., Lehner, P. J., Sutherland, K. D., & Dawson, M. A. (2019). An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell, 36(4), 385–401 e8.PubMedPubMedCentralCrossRef
59.
go back to reference Luo, N., Nixon, M. J., Gonzalez-Ericsson, P. I., Sanchez, V., Opalenik, S. R., Li, H., Zahnow, C. A., Nickels, M. L., Liu, F., Tantawy, M. N., Sanders, M. E., Manning, H. C., & Balko, J. M. (2018). DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nature Communications, 9(1), 248.PubMedPubMedCentralCrossRef Luo, N., Nixon, M. J., Gonzalez-Ericsson, P. I., Sanchez, V., Opalenik, S. R., Li, H., Zahnow, C. A., Nickels, M. L., Liu, F., Tantawy, M. N., Sanders, M. E., Manning, H. C., & Balko, J. M. (2018). DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nature Communications, 9(1), 248.PubMedPubMedCentralCrossRef
60.
go back to reference Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., Kotarski, J., Tarkowski, R., Dou, Y., Cho, K., Hensley-Alford, S., Munkarah, A., Liu, R., & Zou, W. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577), 249–253.PubMedPubMedCentralCrossRef Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., Kotarski, J., Tarkowski, R., Dou, Y., Cho, K., Hensley-Alford, S., Munkarah, A., Liu, R., & Zou, W. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577), 249–253.PubMedPubMedCentralCrossRef
61.
go back to reference Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H., & Kaech, S. M. (2017). Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency. Immunity, 46(4), 596–608.PubMedPubMedCentralCrossRef Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H., & Kaech, S. M. (2017). Polycomb repressive complex 2-mediated chromatin repression guides effector CD8(+) T cell terminal differentiation and loss of multipotency. Immunity, 46(4), 596–608.PubMedPubMedCentralCrossRef
62.
go back to reference Henning, A. N., Roychoudhuri, R., & Restifo, N. P. (2018). Epigenetic control of CD8(+) T cell differentiation. Nature Reviews. Immunology, 18(5), 340–356.PubMedPubMedCentralCrossRef Henning, A. N., Roychoudhuri, R., & Restifo, N. P. (2018). Epigenetic control of CD8(+) T cell differentiation. Nature Reviews. Immunology, 18(5), 340–356.PubMedPubMedCentralCrossRef
63.
go back to reference Zhao, E., Maj, T., Kryczek, I., Li, W., Wu, K., Zhao, L., Wei, S., Crespo, J., Wan, S., Vatan, L., Szeliga, W., Shao, I., Wang, Y., Liu, Y., Varambally, S., Chinnaiyan, A. M., Welling, T. H., Marquez, V., Kotarski, J., Wang, H., Wang, Z., Zhang, Y., Liu, R., Wang, G., & Zou, W. (2016). Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nature Immunology, 17(1), 95–103.PubMedCrossRef Zhao, E., Maj, T., Kryczek, I., Li, W., Wu, K., Zhao, L., Wei, S., Crespo, J., Wan, S., Vatan, L., Szeliga, W., Shao, I., Wang, Y., Liu, Y., Varambally, S., Chinnaiyan, A. M., Welling, T. H., Marquez, V., Kotarski, J., Wang, H., Wang, Z., Zhang, Y., Liu, R., Wang, G., & Zou, W. (2016). Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nature Immunology, 17(1), 95–103.PubMedCrossRef
64.
go back to reference He, S., Liu, Y., Meng, L., Sun, H., Wang, Y., Ji, Y., Purushe, J., Chen, P., Li, C., Madzo, J., Issa, J. P., Soboloff, J., Reshef, R., Moore, B., Gattinoni, L., & Zhang, Y. (2017). Ezh2 phosphorylation state determines its capacity to maintain CD8(+) T memory precursors for antitumor immunity. Nature Communications, 8(1), 2125.PubMedPubMedCentralCrossRef He, S., Liu, Y., Meng, L., Sun, H., Wang, Y., Ji, Y., Purushe, J., Chen, P., Li, C., Madzo, J., Issa, J. P., Soboloff, J., Reshef, R., Moore, B., Gattinoni, L., & Zhang, Y. (2017). Ezh2 phosphorylation state determines its capacity to maintain CD8(+) T memory precursors for antitumor immunity. Nature Communications, 8(1), 2125.PubMedPubMedCentralCrossRef
65.
go back to reference Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J., & Ahmed, R. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077), 682–687.PubMedCrossRef Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J., & Ahmed, R. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077), 682–687.PubMedCrossRef
66.
go back to reference Pauken, K. E., Sammons, M. A., Odorizzi, P. M., Manne, S., Godec, J., Khan, O., Drake, A. M., Chen, Z., Sen, D. R., Kurachi, M., Barnitz, R. A., Bartman, C., Bengsch, B., Huang, A. C., Schenkel, J. M., Vahedi, G., Haining, W. N., Berger, S. L., & Wherry, E. J. (2016). Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 354(6316), 1160–1165.PubMedPubMedCentralCrossRef Pauken, K. E., Sammons, M. A., Odorizzi, P. M., Manne, S., Godec, J., Khan, O., Drake, A. M., Chen, Z., Sen, D. R., Kurachi, M., Barnitz, R. A., Bartman, C., Bengsch, B., Huang, A. C., Schenkel, J. M., Vahedi, G., Haining, W. N., Berger, S. L., & Wherry, E. J. (2016). Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 354(6316), 1160–1165.PubMedPubMedCentralCrossRef
67.
go back to reference Laurie, S. J., & Ford, M. L. (2017). Epigenetic remodeling in exhausted T cells: implications for transplantation tolerance. Transplantation, 101(5), 894–895.PubMedPubMedCentralCrossRef Laurie, S. J., & Ford, M. L. (2017). Epigenetic remodeling in exhausted T cells: implications for transplantation tolerance. Transplantation, 101(5), 894–895.PubMedPubMedCentralCrossRef
68.
go back to reference Ghoneim, H.E., Fan Y., Moustaki A., Abdelsamed H. A., Dash P., Dogra P., Carter R., Awad W., Neale G., Thomas P. G., Youngblood B. (2017) De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell, 170(1), p. 142–157 e19. Ghoneim, H.E., Fan Y., Moustaki A., Abdelsamed H. A., Dash P., Dogra P., Carter R., Awad W., Neale G., Thomas P. G., Youngblood B. (2017) De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell, 170(1), p. 142–157 e19.
69.
go back to reference DuPage, M., Chopra, G., Quiros, J., Rosenthal, W. L., Morar, M. M., Holohan, D., Zhang, R., Turka, L., Marson, A., & Bluestone, J. A. (2015). The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity, 42(2), 227–238.PubMedPubMedCentralCrossRef DuPage, M., Chopra, G., Quiros, J., Rosenthal, W. L., Morar, M. M., Holohan, D., Zhang, R., Turka, L., Marson, A., & Bluestone, J. A. (2015). The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity, 42(2), 227–238.PubMedPubMedCentralCrossRef
70.
go back to reference Yang, X. P., Jiang, K., Hirahara, K., Vahedi, G., Afzali, B., Sciume, G., Bonelli, M., Sun, H. W., Jankovic, D., Kanno, Y., Sartorelli, V., O’Shea, J. J., & Laurence, A. (2015). EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 5, 10643.PubMedPubMedCentralCrossRef Yang, X. P., Jiang, K., Hirahara, K., Vahedi, G., Afzali, B., Sciume, G., Bonelli, M., Sun, H. W., Jankovic, D., Kanno, Y., Sartorelli, V., O’Shea, J. J., & Laurence, A. (2015). EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 5, 10643.PubMedPubMedCentralCrossRef
71.
go back to reference Wang, D., Quiros, J., Mahuron, K., Pai, C. C., Ranzani, V., Young, A., Silveria, S., Harwin, T., Abnousian, A., Pagani, M., Rosenblum, M. D., van Gool, F., Fong, L., Bluestone, J. A., & DuPage, M. (2018). Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Reports, 23(11), 3262–3274.PubMedPubMedCentralCrossRef Wang, D., Quiros, J., Mahuron, K., Pai, C. C., Ranzani, V., Young, A., Silveria, S., Harwin, T., Abnousian, A., Pagani, M., Rosenblum, M. D., van Gool, F., Fong, L., Bluestone, J. A., & DuPage, M. (2018). Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Reports, 23(11), 3262–3274.PubMedPubMedCentralCrossRef
72.
go back to reference Goswami, S., Apostolou, I., Zhang, J., Skepner, J., Anandhan, S., Zhang, X., Xiong, L., Trojer, P., Aparicio, A., Subudhi, S. K., Allison, J. P., Zhao, H., & Sharma, P. (2018). Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. The Journal of Clinical Investigation, 128(9), 3813–3818.PubMedPubMedCentralCrossRef Goswami, S., Apostolou, I., Zhang, J., Skepner, J., Anandhan, S., Zhang, X., Xiong, L., Trojer, P., Aparicio, A., Subudhi, S. K., Allison, J. P., Zhao, H., & Sharma, P. (2018). Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. The Journal of Clinical Investigation, 128(9), 3813–3818.PubMedPubMedCentralCrossRef
73.
go back to reference Yin, J., Leavenworth J. W., Li Y., Luo Q., Xie H., Liu X., Huang S., Yan H., Fu Z., Zhang L. Y., Zhang L., Hao J., Wu X., Deng X., Roberts C. W. M., Orkin S. H., Cantor H., Wang X. (2015) Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences of the United States of America, 112 (52), 15988–15993. Yin, J., Leavenworth J. W., Li Y., Luo Q., Xie H., Liu X., Huang S., Yan H., Fu Z., Zhang L. Y., Zhang L., Hao J., Wu X., Deng X., Roberts C. W. M., Orkin S. H., Cantor H., Wang X. (2015) Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences of the United States of America, 112 (52), 15988–15993.
74.
go back to reference Cribbs, A., Hookway, E. S., Wells, G., Lindow, M., Obad, S., Oerum, H., Prinjha, R. K., Athanasou, N., Sowman, A., Philpott, M., Penn, H., Soderstrom, K., Feldmann, M., & Oppermann, U. (2018). Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. The Journal of Biological Chemistry, 293(7), 2422–2437.PubMedPubMedCentralCrossRef Cribbs, A., Hookway, E. S., Wells, G., Lindow, M., Obad, S., Oerum, H., Prinjha, R. K., Athanasou, N., Sowman, A., Philpott, M., Penn, H., Soderstrom, K., Feldmann, M., & Oppermann, U. (2018). Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. The Journal of Biological Chemistry, 293(7), 2422–2437.PubMedPubMedCentralCrossRef
75.
go back to reference Bugide, S., Janostiak, R., & Wajapeyee, N. (2018). Epigenetic mechanisms dictating eradication of cancer by natural killer cells. Trends Cancer, 4(8), 553–566.PubMedPubMedCentralCrossRef Bugide, S., Janostiak, R., & Wajapeyee, N. (2018). Epigenetic mechanisms dictating eradication of cancer by natural killer cells. Trends Cancer, 4(8), 553–566.PubMedPubMedCentralCrossRef
76.
go back to reference Ramakrishnan, S., Granger, V., Rak, M., Hu, Q., Attwood, K., Aquila, L., Krishnan, N., Osiecki, R., Azabdaftari, G., Guru, K., Chatta, G., Gueron, G., McNally, L., Ohm, J., Wang, J., & Woloszynska, A. (2019). Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death and Differentiation, 26(10), 2100–2114.PubMedPubMedCentralCrossRef Ramakrishnan, S., Granger, V., Rak, M., Hu, Q., Attwood, K., Aquila, L., Krishnan, N., Osiecki, R., Azabdaftari, G., Guru, K., Chatta, G., Gueron, G., McNally, L., Ohm, J., Wang, J., & Woloszynska, A. (2019). Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death and Differentiation, 26(10), 2100–2114.PubMedPubMedCentralCrossRef
77.
go back to reference Bugide, S., Green, M. R., & Wajapeyee, N. (2018). Inhibition of enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 115(15), E3509–E3518.PubMedPubMedCentral Bugide, S., Green, M. R., & Wajapeyee, N. (2018). Inhibition of enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 115(15), E3509–E3518.PubMedPubMedCentral
78.
go back to reference Yoon, S. R., Kim, T. D., & Choi, I. (2015). Understanding of molecular mechanisms in natural killer cell therapy. Experimental & Molecular Medicine, 47, e141.CrossRef Yoon, S. R., Kim, T. D., & Choi, I. (2015). Understanding of molecular mechanisms in natural killer cell therapy. Experimental & Molecular Medicine, 47, e141.CrossRef
79.
go back to reference Jayasingam, S. D., et al. (2019). Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Frontiers in Oncology, 9, 1512.PubMedCrossRef Jayasingam, S. D., et al. (2019). Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Frontiers in Oncology, 9, 1512.PubMedCrossRef
80.
go back to reference Kumar, A. T., Knops, A., Swendseid, B., Martinez-Outschoom, U., Harshyne, L., Philp, N., Rodeck, U., Luginbuhl, A., Cognetti, D., Johnson, J., & Curry, J. (2019). Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a meta-analysis. Frontiers in Oncology, 9, 656.PubMedPubMedCentralCrossRef Kumar, A. T., Knops, A., Swendseid, B., Martinez-Outschoom, U., Harshyne, L., Philp, N., Rodeck, U., Luginbuhl, A., Cognetti, D., Johnson, J., & Curry, J. (2019). Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: a meta-analysis. Frontiers in Oncology, 9, 656.PubMedPubMedCentralCrossRef
81.
go back to reference Evrard, D., Szturz, P., Tijeras-Raballand, A., Astorgues-Xerri, L., Abitbol, C., Paradis, V., Raymond, E., Albert, S., Barry, B., & Faivre, S. (2019). Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncology, 88, 29–38.PubMedCrossRef Evrard, D., Szturz, P., Tijeras-Raballand, A., Astorgues-Xerri, L., Abitbol, C., Paradis, V., Raymond, E., Albert, S., Barry, B., & Faivre, S. (2019). Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncology, 88, 29–38.PubMedCrossRef
82.
go back to reference Qiao, Y., Kang, K., Giannopoulou, E., Fang, C., & Ivashkiv, L. B. (2016). IFN-gamma induces histone 3 lysine 27 Trimethylation in a small subset of promoters to stably silence gene expression in human macrophages. Cell Reports, 16(12), 3121–3129.PubMedPubMedCentralCrossRef Qiao, Y., Kang, K., Giannopoulou, E., Fang, C., & Ivashkiv, L. B. (2016). IFN-gamma induces histone 3 lysine 27 Trimethylation in a small subset of promoters to stably silence gene expression in human macrophages. Cell Reports, 16(12), 3121–3129.PubMedPubMedCentralCrossRef
83.
go back to reference Cheng, C., Huang, C., Ma, T. T., Bian, E. B., He, Y., Zhang, L., & Li, J. (2014). SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicology Letters, 225(3), 488–497.PubMedCrossRef Cheng, C., Huang, C., Ma, T. T., Bian, E. B., He, Y., Zhang, L., & Li, J. (2014). SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages. Toxicology Letters, 225(3), 488–497.PubMedCrossRef
84.
go back to reference Shalapour, S., Font-Burgada, J., di Caro, G., Zhong, Z., Sanchez-Lopez, E., Dhar, D., Willimsky, G., Ammirante, M., Strasner, A., Hansel, D. E., Jamieson, C., Kane, C. J., Klatte, T., Birner, P., Kenner, L., & Karin, M. (2015). Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature, 521(7550), 94–98.PubMedPubMedCentralCrossRef Shalapour, S., Font-Burgada, J., di Caro, G., Zhong, Z., Sanchez-Lopez, E., Dhar, D., Willimsky, G., Ammirante, M., Strasner, A., Hansel, D. E., Jamieson, C., Kane, C. J., Klatte, T., Birner, P., Kenner, L., & Karin, M. (2015). Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature, 521(7550), 94–98.PubMedPubMedCentralCrossRef
85.
go back to reference Germain, C., Gnjatic, S., Tamzalit, F., Knockaert, S., Remark, R., Goc, J., Lepelley, A., Becht, E., Katsahian, S., Bizouard, G., Validire, P., Damotte, D., Alifano, M., Magdeleinat, P., Cremer, I., Teillaud, J. L., Fridman, W. H., Sautès-Fridman, C., & Dieu-Nosjean, M. C. (2014). Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. American Journal of Respiratory and Critical Care Medicine, 189(7), 832–844.PubMedCrossRef Germain, C., Gnjatic, S., Tamzalit, F., Knockaert, S., Remark, R., Goc, J., Lepelley, A., Becht, E., Katsahian, S., Bizouard, G., Validire, P., Damotte, D., Alifano, M., Magdeleinat, P., Cremer, I., Teillaud, J. L., Fridman, W. H., Sautès-Fridman, C., & Dieu-Nosjean, M. C. (2014). Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. American Journal of Respiratory and Critical Care Medicine, 189(7), 832–844.PubMedCrossRef
86.
go back to reference Bodogai, M., Lee Chang, C., Wejksza, K., Lai, J., Merino, M., Wersto, R. P., Gress, R. E., Chan, A. C., Hesdorffer, C., & Biragyn, A. (2013). Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Research, 73(7), 2127–2138.PubMedPubMedCentralCrossRef Bodogai, M., Lee Chang, C., Wejksza, K., Lai, J., Merino, M., Wersto, R. P., Gress, R. E., Chan, A. C., Hesdorffer, C., & Biragyn, A. (2013). Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Research, 73(7), 2127–2138.PubMedPubMedCentralCrossRef
87.
go back to reference Zhang, Y., Morgan, R., Podack, E. R., & Rosenblatt, J. (2013). B cell regulation of anti-tumor immune response. Immunologic Research, 57(1–3), 115–124.PubMedCrossRef Zhang, Y., Morgan, R., Podack, E. R., & Rosenblatt, J. (2013). B cell regulation of anti-tumor immune response. Immunologic Research, 57(1–3), 115–124.PubMedCrossRef
88.
go back to reference Petitprez, F., de Reyniès, A., Keung, E. Z., Chen, T. W. W., Sun, C. M., Calderaro, J., Jeng, Y. M., Hsiao, L. P., Lacroix, L., Bougoüin, A., Moreira, M., Lacroix, G., Natario, I., Adam, J., Lucchesi, C., Laizet, Y.′., Toulmonde, M., Burgess, M. A., Bolejack, V., Reinke, D., Wani, K. M., Wang, W. L., Lazar, A. J., Roland, C. L., Wargo, J. A., Italiano, A., Sautès-Fridman, C., Tawbi, H. A., & Fridman, W. H. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature, 577(7791), 556–560.PubMedCrossRef Petitprez, F., de Reyniès, A., Keung, E. Z., Chen, T. W. W., Sun, C. M., Calderaro, J., Jeng, Y. M., Hsiao, L. P., Lacroix, L., Bougoüin, A., Moreira, M., Lacroix, G., Natario, I., Adam, J., Lucchesi, C., Laizet, Y.′., Toulmonde, M., Burgess, M. A., Bolejack, V., Reinke, D., Wani, K. M., Wang, W. L., Lazar, A. J., Roland, C. L., Wargo, J. A., Italiano, A., Sautès-Fridman, C., Tawbi, H. A., & Fridman, W. H. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature, 577(7791), 556–560.PubMedCrossRef
89.
go back to reference Cabrita, R., Lauss, M., Sanna, A., Donia, M., Skaarup Larsen, M., Mitra, S., Johansson, I., Phung, B., Harbst, K., Vallon-Christersson, J., van Schoiack, A., Lövgren, K., Warren, S., Jirström, K., Olsson, H., Pietras, K., Ingvar, C., Isaksson, K., Schadendorf, D., Schmidt, H., Bastholt, L., Carneiro, A., Wargo, J. A., Svane, I. M., & Jönsson, G. (2020). Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 577(7791), 561–565.PubMedCrossRef Cabrita, R., Lauss, M., Sanna, A., Donia, M., Skaarup Larsen, M., Mitra, S., Johansson, I., Phung, B., Harbst, K., Vallon-Christersson, J., van Schoiack, A., Lövgren, K., Warren, S., Jirström, K., Olsson, H., Pietras, K., Ingvar, C., Isaksson, K., Schadendorf, D., Schmidt, H., Bastholt, L., Carneiro, A., Wargo, J. A., Svane, I. M., & Jönsson, G. (2020). Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 577(7791), 561–565.PubMedCrossRef
90.
go back to reference Helmink, B. A., Reddy, S. M., Gao, J., Zhang, S., Basar, R., Thakur, R., Yizhak, K., Sade-Feldman, M., Blando, J., Han, G., Gopalakrishnan, V., Xi, Y., Zhao, H., Amaria, R. N., Tawbi, H. A., Cogdill, A. P., Liu, W., LeBleu, V. S., Kugeratski, F. G., Patel, S., Davies, M. A., Hwu, P., Lee, J. E., Gershenwald, J. E., Lucci, A., Arora, R., Woodman, S., Keung, E. Z., Gaudreau, P. O., Reuben, A., Spencer, C. N., Burton, E. M., Haydu, L. E., Lazar, A. J., Zapassodi, R., Hudgens, C. W., Ledesma, D. A., Ong, S. F., Bailey, M., Warren, S., Rao, D., Krijgsman, O., Rozeman, E. A., Peeper, D., Blank, C. U., Schumacher, T. N., Butterfield, L. H., Zelazowska, M. A., McBride, K. M., Kalluri, R., Allison, J., Petitprez, F., Fridman, W. H., Sautès-Fridman, C., Hacohen, N., Rezvani, K., Sharma, P., Tetzlaff, M. T., Wang, L., & Wargo, J. A. (2020). B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 577(7791), 549–555.PubMedCrossRef Helmink, B. A., Reddy, S. M., Gao, J., Zhang, S., Basar, R., Thakur, R., Yizhak, K., Sade-Feldman, M., Blando, J., Han, G., Gopalakrishnan, V., Xi, Y., Zhao, H., Amaria, R. N., Tawbi, H. A., Cogdill, A. P., Liu, W., LeBleu, V. S., Kugeratski, F. G., Patel, S., Davies, M. A., Hwu, P., Lee, J. E., Gershenwald, J. E., Lucci, A., Arora, R., Woodman, S., Keung, E. Z., Gaudreau, P. O., Reuben, A., Spencer, C. N., Burton, E. M., Haydu, L. E., Lazar, A. J., Zapassodi, R., Hudgens, C. W., Ledesma, D. A., Ong, S. F., Bailey, M., Warren, S., Rao, D., Krijgsman, O., Rozeman, E. A., Peeper, D., Blank, C. U., Schumacher, T. N., Butterfield, L. H., Zelazowska, M. A., McBride, K. M., Kalluri, R., Allison, J., Petitprez, F., Fridman, W. H., Sautès-Fridman, C., Hacohen, N., Rezvani, K., Sharma, P., Tetzlaff, M. T., Wang, L., & Wargo, J. A. (2020). B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 577(7791), 549–555.PubMedCrossRef
91.
go back to reference Hu, X., Zhang, J., Wang, J., Fu, J., Li, T., Zheng, X., Wang, B., Gu, S., Jiang, P., Fan, J., Ying, X., Zhang, J., Carroll, M. C., Wucherpfennig, K. W., Hacohen, N., Zhang, F., Zhang, P., Liu, J. S., Li, B., & Liu, X. S. (2019). Landscape of B cell immunity and related immune evasion in human cancers. Nature Genetics, 51(3), 560–567.PubMedPubMedCentralCrossRef Hu, X., Zhang, J., Wang, J., Fu, J., Li, T., Zheng, X., Wang, B., Gu, S., Jiang, P., Fan, J., Ying, X., Zhang, J., Carroll, M. C., Wucherpfennig, K. W., Hacohen, N., Zhang, F., Zhang, P., Liu, J. S., Li, B., & Liu, X. S. (2019). Landscape of B cell immunity and related immune evasion in human cancers. Nature Genetics, 51(3), 560–567.PubMedPubMedCentralCrossRef
92.
go back to reference Wu, H., Deng, Y., Feng, Y., Long, D., Ma, K., Wang, X., Zhao, M., Lu, L., & Lu, Q. (2018). Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cellular & Molecular Immunology, 15(7), 676–684.CrossRef Wu, H., Deng, Y., Feng, Y., Long, D., Ma, K., Wang, X., Zhao, M., Lu, L., & Lu, Q. (2018). Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cellular & Molecular Immunology, 15(7), 676–684.CrossRef
93.
go back to reference Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R. E., Luoma, A. M., Tsoucas, D., Qiu, X., Lim, K., Rao, P., Long, H. W., Yuan, G. C., Doench, J., Brown, M., Liu, X. S., & Wucherpfennig, K. W. (2018). A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science, 359(6377), 770–775.PubMedPubMedCentralCrossRef Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R. E., Luoma, A. M., Tsoucas, D., Qiu, X., Lim, K., Rao, P., Long, H. W., Yuan, G. C., Doench, J., Brown, M., Liu, X. S., & Wucherpfennig, K. W. (2018). A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science, 359(6377), 770–775.PubMedPubMedCentralCrossRef
94.
go back to reference Patel, S. J., Sanjana, N. E., Kishton, R. J., Eidizadeh, A., Vodnala, S. K., Cam, M., Gartner, J. J., Jia, L., Steinberg, S. M., Yamamoto, T. N., Merchant, A. S., Mehta, G. U., Chichura, A., Shalem, O., Tran, E., Eil, R., Sukumar, M., Guijarro, E. P., Day, C. P., Robbins, P., Feldman, S., Merlino, G., Zhang, F., & Restifo, N. P. (2017). Identification of essential genes for cancer immunotherapy. Nature, 548(7669), 537–542.PubMedPubMedCentralCrossRef Patel, S. J., Sanjana, N. E., Kishton, R. J., Eidizadeh, A., Vodnala, S. K., Cam, M., Gartner, J. J., Jia, L., Steinberg, S. M., Yamamoto, T. N., Merchant, A. S., Mehta, G. U., Chichura, A., Shalem, O., Tran, E., Eil, R., Sukumar, M., Guijarro, E. P., Day, C. P., Robbins, P., Feldman, S., Merlino, G., Zhang, F., & Restifo, N. P. (2017). Identification of essential genes for cancer immunotherapy. Nature, 548(7669), 537–542.PubMedPubMedCentralCrossRef
95.
go back to reference Manguso, R. T., Pope, H. W., Zimmer, M. D., Brown, F. D., Yates, K. B., Miller, B. C., Collins, N. B., Bi, K., LaFleur, M. W., Juneja, V. R., Weiss, S. A., Lo, J., Fisher, D. E., Miao, D., van Allen, E., Root, D. E., Sharpe, A. H., Doench, J. G., & Haining, W. N. (2017). In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature, 547(7664), 413–418.PubMedPubMedCentralCrossRef Manguso, R. T., Pope, H. W., Zimmer, M. D., Brown, F. D., Yates, K. B., Miller, B. C., Collins, N. B., Bi, K., LaFleur, M. W., Juneja, V. R., Weiss, S. A., Lo, J., Fisher, D. E., Miao, D., van Allen, E., Root, D. E., Sharpe, A. H., Doench, J. G., & Haining, W. N. (2017). In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature, 547(7664), 413–418.PubMedPubMedCentralCrossRef
96.
go back to reference Ennishi, D., Takata, K., Béguelin, W., Duns, G., Mottok, A., Farinha, P., Bashashati, A., Saberi, S., Boyle, M., Meissner, B., Ben-Neriah, S., Woolcock, B. W., Telenius, A., Lai, D., Teater, M., Kridel, R., Savage, K. J., Sehn, L. H., Morin, R. D., Marra, M. A., Shah, S. P., Connors, J. M., Gascoyne, R. D., Scott, D. W., Melnick, A. M., & Steidl, C. (2019). Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discovery, 9(4), 546–563.PubMedCrossRef Ennishi, D., Takata, K., Béguelin, W., Duns, G., Mottok, A., Farinha, P., Bashashati, A., Saberi, S., Boyle, M., Meissner, B., Ben-Neriah, S., Woolcock, B. W., Telenius, A., Lai, D., Teater, M., Kridel, R., Savage, K. J., Sehn, L. H., Morin, R. D., Marra, M. A., Shah, S. P., Connors, J. M., Gascoyne, R. D., Scott, D. W., Melnick, A. M., & Steidl, C. (2019). Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discovery, 9(4), 546–563.PubMedCrossRef
97.
go back to reference Li, F., Huang, Q., Luster, T. A., Hu, H., Zhang, H., Ng, W. L., Khodadadi-Jamayran, A., Wang, W., Chen, T., Deng, J., Ranieri, M., Fang, Z., Pyon, V., Dowling, C. M., Bagdatlioglu, E., Almonte, C., Labbe, K., Silver, H., Rabin, A. R., Jani, K., Tsirigos, A., Papagiannakopoulos, T., Hammerman, P. S., Velcheti, V., Freeman, G. J., Qi, J., Miller, G., & Wong, K. K. (2020). In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma. Cancer Discovery, 10(2), 270–287.PubMedCrossRef Li, F., Huang, Q., Luster, T. A., Hu, H., Zhang, H., Ng, W. L., Khodadadi-Jamayran, A., Wang, W., Chen, T., Deng, J., Ranieri, M., Fang, Z., Pyon, V., Dowling, C. M., Bagdatlioglu, E., Almonte, C., Labbe, K., Silver, H., Rabin, A. R., Jani, K., Tsirigos, A., Papagiannakopoulos, T., Hammerman, P. S., Velcheti, V., Freeman, G. J., Qi, J., Miller, G., & Wong, K. K. (2020). In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras-mutant lung adenocarcinoma. Cancer Discovery, 10(2), 270–287.PubMedCrossRef
98.
go back to reference Dong, M. B., Wang, G., Chow, R. D., Ye, L., Zhu, L., Dai, X., Park, J. J., Kim, H. R., Errami, Y., Guzman, C. D., Zhou, X., Chen, K. Y., Renauer, P. A., du, Y., Shen, J., Lam, S. Z., Zhou, J. J., Lannin, D. R., Herbst, R. S., & Chen, S. (2019). Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell, 178(5), 1189–1204 e23.PubMedPubMedCentralCrossRef Dong, M. B., Wang, G., Chow, R. D., Ye, L., Zhu, L., Dai, X., Park, J. J., Kim, H. R., Errami, Y., Guzman, C. D., Zhou, X., Chen, K. Y., Renauer, P. A., du, Y., Shen, J., Lam, S. Z., Zhou, J. J., Lannin, D. R., Herbst, R. S., & Chen, S. (2019). Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell, 178(5), 1189–1204 e23.PubMedPubMedCentralCrossRef
99.
go back to reference Rodriguez, C. P., Wu, Q. (. V.)., Voutsinas, J., Fromm, J. R., Jiang, X., Pillarisetty, V. G., Lee, S. M., Santana-Davila, R., Goulart, B., Baik, C. S., Chow, L. Q. M., Eaton, K., & Martins, R. (2020). A phase II trial of Pembrolizumab and Vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clinical Cancer Research, 26(4), 837–845. Rodriguez, C. P., Wu, Q. (. V.)., Voutsinas, J., Fromm, J. R., Jiang, X., Pillarisetty, V. G., Lee, S. M., Santana-Davila, R., Goulart, B., Baik, C. S., Chow, L. Q. M., Eaton, K., & Martins, R. (2020). A phase II trial of Pembrolizumab and Vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clinical Cancer Research, 26(4), 837–845.
Metadata
Title
Epigenetic modulation of immunotherapy and implications in head and neck cancer
Authors
Liye Zhou
Na Xu
Hirofumi Shibata
Vassiliki Saloura
Ravindra Uppaluri
Publication date
01-03-2021
Publisher
Springer US
Keyword
Epigenetics
Published in
Cancer and Metastasis Reviews / Issue 1/2021
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09944-0

Other articles of this Issue 1/2021

Cancer and Metastasis Reviews 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine