Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2019

01-09-2019 | Metastasis

Functional disparities within the TIMP family in cancer: hints from molecular divergence

Authors: Celina Eckfeld, Daniel Häußler, Benjamin Schoeps, Chris D. Hermann, Achim Krüger

Published in: Cancer and Metastasis Reviews | Issue 3/2019

Login to get access

Abstract

The members of the tissue inhibitor of metalloproteinase (TIMP) family (TIMP-1, 2, 3, 4) are prominently appreciated as natural inhibitors of cancer-promoting metalloproteinases. However, clinical and recent functional studies indicate that some of them correlate with bad prognosis and contribute to the progression of cancer and metastasis, pointing towards mechanisms beyond inhibition of cancer-promoting proteases. Indeed, it is increasingly recognized that TIMPs are multi-functional proteins mediating a variety of cellular effects including direct cell signaling. Our aim was to provide comprehensive information towards a better appreciation and understanding of the biological heterogeneity and complexity of the TIMPs in cancer. Comparison of all four members revealed distinct cancer-associated expression patterns and distinct prognostic impact including a clear correlation of TIMP-1 with bad prognosis for almost all cancer types. For the first time, we present the interactomes of all TIMPs regarding overlapping and non-overlapping interaction partners. Interestingly, the overlap was maximal for metalloproteinases (e.g., matrix metalloproteinase 1, 2, 3, 9) and decreased for non-protease molecules, especially cell surface receptors (e.g., CD63, overlapping only for TIMP-1 and 4; IGF-1R unique for TIMP-2; VEGFR2 unique for TIMP-3). Finally, we attempted to identify and summarize experimental evidence for common and unique structural traits of the four TIMPs on the basis of amino acid sequence and protein folding, which account for functional disparities. Altogether, the four TIMPs have to be appreciated as molecules with commonalities, but, more importantly, functional disparities, which need to be investigated further in the future, since those determine their distinct roles in cancer and metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lambert, E., Dassé, E., Haye, B., & Petitfrère, E. (2004). TIMPs as multifacial proteins. Critical Reviews in Oncology/Hematology, 49(3), 187–198.PubMedCrossRef Lambert, E., Dassé, E., Haye, B., & Petitfrère, E. (2004). TIMPs as multifacial proteins. Critical Reviews in Oncology/Hematology, 49(3), 187–198.PubMedCrossRef
2.
go back to reference Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3, a005058. Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3, a005058.
3.
go back to reference Arpino, V., Brock, M., & Gill, S. E. (2015). The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology: Journal of the International Society for Matrix Biology, 44-46, 247–254.CrossRef Arpino, V., Brock, M., & Gill, S. E. (2015). The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology: Journal of the International Society for Matrix Biology, 44-46, 247–254.CrossRef
4.
go back to reference Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15(12), 786–801.PubMedPubMedCentralCrossRef Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15(12), 786–801.PubMedPubMedCentralCrossRef
5.
go back to reference Brand, K. (2002). Cancer gene therapy with tissue inhibitors of metalloproteinases (TIMPs). Current Gene Therapy, 2(2), 255–271.PubMedCrossRef Brand, K. (2002). Cancer gene therapy with tissue inhibitors of metalloproteinases (TIMPs). Current Gene Therapy, 2(2), 255–271.PubMedCrossRef
6.
go back to reference Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–68.PubMedCrossRef Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–68.PubMedCrossRef
7.
go back to reference Köppel, P., Baici, A., Keist, R., Matzku, S., & Keller, R. (1984). Cathepsin B-like proteinase as a marker for metastatic tumor cell variants. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 52(5), 293–299.CrossRef Köppel, P., Baici, A., Keist, R., Matzku, S., & Keller, R. (1984). Cathepsin B-like proteinase as a marker for metastatic tumor cell variants. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 52(5), 293–299.CrossRef
8.
go back to reference Thorgeirsson, U. P., Liotta, L., Kalebic, T., Thomas, K., Rios-Candelore, M., & Russo, R. G. (1982). Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. Journal of the National Cancer Institute, 69(5), 1049–1054.PubMed Thorgeirsson, U. P., Liotta, L., Kalebic, T., Thomas, K., Rios-Candelore, M., & Russo, R. G. (1982). Effect of natural protease inhibitors and a chemoattractant on tumor cell invasion in vitro. Journal of the National Cancer Institute, 69(5), 1049–1054.PubMed
9.
go back to reference Joyce, J. A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.-Y., Greenbaum, D. C., Hager, J. H., Bogyo, M., & Hanahan, D. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.PubMedCrossRef Joyce, J. A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.-Y., Greenbaum, D. C., Hager, J. H., Bogyo, M., & Hanahan, D. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.PubMedCrossRef
10.
go back to reference Albini, A., Melchiori, A., Santi, L., Liotta, L. A., Brown, P. D., & Stetler-Stevenson, W. G. (1991). Tumor cell invasion inhibited by TIMP-2. Journal of the National Cancer Institute, 83(11), 775–779.PubMedCrossRef Albini, A., Melchiori, A., Santi, L., Liotta, L. A., Brown, P. D., & Stetler-Stevenson, W. G. (1991). Tumor cell invasion inhibited by TIMP-2. Journal of the National Cancer Institute, 83(11), 775–779.PubMedCrossRef
11.
go back to reference Khokha, R. (1994). Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. Journal of the National Cancer Institute, 86(4), 299–304.PubMedCrossRef Khokha, R. (1994). Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. Journal of the National Cancer Institute, 86(4), 299–304.PubMedCrossRef
12.
go back to reference Rigg, A. S., & Lemoine, N. R. (2001). Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Therapy, 8(11), 869–878.PubMedCrossRef Rigg, A. S., & Lemoine, N. R. (2001). Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Therapy, 8(11), 869–878.PubMedCrossRef
13.
go back to reference Jiang, Y., Goldberg, I. D., & Shi, Y. E. (2002). Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 21(14), 2245–2252.PubMedCrossRef Jiang, Y., Goldberg, I. D., & Shi, Y. E. (2002). Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 21(14), 2245–2252.PubMedCrossRef
14.
go back to reference Baker, A. H., George, S. J., Zaltsman, A. B., Murphy, G., & Newby, A. C. (1999). Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British Journal of Cancer, 79(9), 1347–1355.PubMedPubMedCentralCrossRef Baker, A. H., George, S. J., Zaltsman, A. B., Murphy, G., & Newby, A. C. (1999). Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. British Journal of Cancer, 79(9), 1347–1355.PubMedPubMedCentralCrossRef
15.
go back to reference McCarthy, K., Maguire, T., McGreal, G., McDermott, E., O’Higgins, N., & Duffy, M. J. (1999). High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. International Journal of Cancer, 84(1), 44–48.PubMedCrossRef McCarthy, K., Maguire, T., McGreal, G., McDermott, E., O’Higgins, N., & Duffy, M. J. (1999). High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. International Journal of Cancer, 84(1), 44–48.PubMedCrossRef
16.
go back to reference Remacle, A., McCarthy, K., Noël, A., Maguire, T., McDermott, E., O’Higgins, N., Foidart, J. M., & Duffy, M. J. (2000). High levels of TIMP-2 correlate with adverse prognosis in breast cancer. International Journal of Cancer, 89(2), 118–121.PubMedCrossRef Remacle, A., McCarthy, K., Noël, A., Maguire, T., McDermott, E., O’Higgins, N., Foidart, J. M., & Duffy, M. J. (2000). High levels of TIMP-2 correlate with adverse prognosis in breast cancer. International Journal of Cancer, 89(2), 118–121.PubMedCrossRef
17.
go back to reference Kopitz, C., Gerg, M., Bandapalli, O. R., Ister, D., Pennington, C. J., Hauser, S., Flechsig, C., Krell, H.-W., Antolovic, D., Brew, K., Nagase, H., Stangl, M., von Weyhern, C. W. H., Brücher, B. L. D. M., Brand, K., Coussens, L. M., Edwards, D. R., & Krüger, A. (2007). Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Research, 67(18), 8615–8623.PubMedCrossRef Kopitz, C., Gerg, M., Bandapalli, O. R., Ister, D., Pennington, C. J., Hauser, S., Flechsig, C., Krell, H.-W., Antolovic, D., Brew, K., Nagase, H., Stangl, M., von Weyhern, C. W. H., Brücher, B. L. D. M., Brand, K., Coussens, L. M., Edwards, D. R., & Krüger, A. (2007). Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Research, 67(18), 8615–8623.PubMedCrossRef
18.
go back to reference Schelter, F., Grandl, M., Seubert, B., Schaten, S., Hauser, S., Gerg, M., Boccaccio, C., Comoglio, P., & Krüger, A. (2011). Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clinical & Experimental Metastasis, 28(8), 793–802.CrossRef Schelter, F., Grandl, M., Seubert, B., Schaten, S., Hauser, S., Gerg, M., Boccaccio, C., Comoglio, P., & Krüger, A. (2011). Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clinical & Experimental Metastasis, 28(8), 793–802.CrossRef
19.
go back to reference Seubert, B., Grünwald, B., Kobuch, J., Cui, H., Schelter, F., Schaten, S., Siveke, J. T., Lim, N. H., Nagase, H., Simonavicius, N., Heikenwalder, M., Reinheckel, T., Sleeman, J. P., Janssen, K. P., Knolle, P. A., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology, 61(1), 238–248.PubMedCrossRef Seubert, B., Grünwald, B., Kobuch, J., Cui, H., Schelter, F., Schaten, S., Siveke, J. T., Lim, N. H., Nagase, H., Simonavicius, N., Heikenwalder, M., Reinheckel, T., Sleeman, J. P., Janssen, K. P., Knolle, P. A., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology, 61(1), 238–248.PubMedCrossRef
20.
go back to reference Cui, H., Seubert, B., Stahl, E., Dietz, H., Reuning, U., Moreno-Leon, L., Ilie, M., Hofman, P., Nagase, H., Mari, B., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene, 34(28), 3640–3650.PubMedCrossRef Cui, H., Seubert, B., Stahl, E., Dietz, H., Reuning, U., Moreno-Leon, L., Ilie, M., Hofman, P., Nagase, H., Mari, B., & Krüger, A. (2015). Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene, 34(28), 3640–3650.PubMedCrossRef
21.
go back to reference Grünwald, B., Schoeps, B., & Krüger, A. (2019). Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends in Cell Biology, 29(1), 6–19.PubMedCrossRef Grünwald, B., Schoeps, B., & Krüger, A. (2019). Recognizing the molecular multifunctionality and interactome of TIMP-1. Trends in Cell Biology, 29(1), 6–19.PubMedCrossRef
22.
go back to reference Ries, C. (2014). Cytokine functions of TIMP-1. Cellular and Molecular Life Sciences, 71(4), 659–672.PubMedCrossRef Ries, C. (2014). Cytokine functions of TIMP-1. Cellular and Molecular Life Sciences, 71(4), 659–672.PubMedCrossRef
23.
go back to reference Chirco, R., Liu, X.-W., Jung, K.-K., & Kim, H.-R. C. (2006). Novel functions of TIMPs in cell signaling. Cancer Metastasis Reviews, 25(1), 99–113.PubMedCrossRef Chirco, R., Liu, X.-W., Jung, K.-K., & Kim, H.-R. C. (2006). Novel functions of TIMPs in cell signaling. Cancer Metastasis Reviews, 25(1), 99–113.PubMedCrossRef
24.
go back to reference Mason, S. D., & Joyce, J. A. (2011). Proteolytic networks in cancer. Trends in Cell Biology, 21(4), 228–237.PubMedCrossRef Mason, S. D., & Joyce, J. A. (2011). Proteolytic networks in cancer. Trends in Cell Biology, 21(4), 228–237.PubMedCrossRef
25.
go back to reference Murthy, A., Cruz-Munoz, W., & Khokha, R. (2008). TIMPs: Extracellular modifiers in cancer development. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The cancer degradome (pp. 373–400). Springer. Murthy, A., Cruz-Munoz, W., & Khokha, R. (2008). TIMPs: Extracellular modifiers in cancer development. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The cancer degradome (pp. 373–400). Springer.
26.
go back to reference Murphy, G., Cawston, T. E., & Reynolds, J. J. (1981). An inhibitor of collagenase from human amniotic fluid. Purification, characterization and action on metalloproteinases. The Biochemical Journal, 195(1), 167–170.PubMedPubMedCentralCrossRef Murphy, G., Cawston, T. E., & Reynolds, J. J. (1981). An inhibitor of collagenase from human amniotic fluid. Purification, characterization and action on metalloproteinases. The Biochemical Journal, 195(1), 167–170.PubMedPubMedCentralCrossRef
27.
go back to reference Docherty, A. J. P., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J. R., Murphy, G., & Reynolds, J. J. (1985). Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature, 318(6041), 66–69.PubMedCrossRef Docherty, A. J. P., Lyons, A., Smith, B. J., Wright, E. M., Stephens, P. E., Harris, T. J. R., Murphy, G., & Reynolds, J. J. (1985). Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature, 318(6041), 66–69.PubMedCrossRef
28.
go back to reference Gasson, J. C., Golde, D. W., Kaufman, S. E., Westbrook, C. A., Hewick, R. M., Kaufman, R. J., Wong, G. G., Temple, P. A., Leary, A. C., Brown, E. L., Orr, E. C., & Clark, S. C. (1985). Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature, 315(6022), 768–771.PubMedCrossRef Gasson, J. C., Golde, D. W., Kaufman, S. E., Westbrook, C. A., Hewick, R. M., Kaufman, R. J., Wong, G. G., Temple, P. A., Leary, A. C., Brown, E. L., Orr, E. C., & Clark, S. C. (1985). Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature, 315(6022), 768–771.PubMedCrossRef
29.
go back to reference Cruz-Munoz, W., & Khokha, R. (2008). The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Critical Reviews in Clinical Laboratory Sciences, 45(3), 291–338.PubMedCrossRef Cruz-Munoz, W., & Khokha, R. (2008). The role of tissue inhibitors of metalloproteinases in tumorigenesis and metastasis. Critical Reviews in Clinical Laboratory Sciences, 45(3), 291–338.PubMedCrossRef
30.
go back to reference Goldberg, G. I., Marmer, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S., & He, C. S. (1989). Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proceedings of the National Academy of Sciences of the United States of America, 86(21), 8207–8211.PubMedPubMedCentralCrossRef Goldberg, G. I., Marmer, B. L., Grant, G. A., Eisen, A. Z., Wilhelm, S., & He, C. S. (1989). Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proceedings of the National Academy of Sciences of the United States of America, 86(21), 8207–8211.PubMedPubMedCentralCrossRef
31.
go back to reference Hamze, A. B., Wei, S., Bahudhanapati, H., Kota, S., Acharya, K. R., & Brew, K. (2007). Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors. Protein Science, 16(9), 1905–1913.PubMedPubMedCentralCrossRef Hamze, A. B., Wei, S., Bahudhanapati, H., Kota, S., Acharya, K. R., & Brew, K. (2007). Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors. Protein Science, 16(9), 1905–1913.PubMedPubMedCentralCrossRef
32.
go back to reference Stetler-Stevenson, W. G., Bersch, N., & Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Letters, 296(2), 231–234.PubMedCrossRef Stetler-Stevenson, W. G., Bersch, N., & Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Letters, 296(2), 231–234.PubMedCrossRef
33.
go back to reference Stetler-Stevenson, W. G., Brown, P. D., Onisto, M., Levy, A. T., & Liotta, L. A. (1990). Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. The Journal of Biological Chemistry, 265(23), 13933–13938.PubMed Stetler-Stevenson, W. G., Brown, P. D., Onisto, M., Levy, A. T., & Liotta, L. A. (1990). Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. The Journal of Biological Chemistry, 265(23), 13933–13938.PubMed
34.
go back to reference Pavloff, N., Staskus, P. W., Kishnani, N. S., & Hawkes, S. P. (1992). A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. The Journal of Biological Chemistry, 267(24), 17321–17326.PubMed Pavloff, N., Staskus, P. W., Kishnani, N. S., & Hawkes, S. P. (1992). A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. The Journal of Biological Chemistry, 267(24), 17321–17326.PubMed
35.
go back to reference Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C., & Shi, Y. E. (1996). Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. The Journal of Biological Chemistry, 271(48), 30375–30380.PubMedCrossRef Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C., & Shi, Y. E. (1996). Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. The Journal of Biological Chemistry, 271(48), 30375–30380.PubMedCrossRef
36.
go back to reference Terpos, E., Dimopoulos, M. A., Shrivastava, V., Leitzel, K., Christoulas, D., Migkou, M., Gavriatopoulou, M., Anargyrou, K., Hamer, P., Kastritis, E., Carney, W., & Lipton, A. (2010). High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leukemia Research, 34(3), 399–402.PubMedCrossRef Terpos, E., Dimopoulos, M. A., Shrivastava, V., Leitzel, K., Christoulas, D., Migkou, M., Gavriatopoulou, M., Anargyrou, K., Hamer, P., Kastritis, E., Carney, W., & Lipton, A. (2010). High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leukemia Research, 34(3), 399–402.PubMedCrossRef
37.
go back to reference Fong, K. M., Kida, Y., Zimmerman, P. V., & Smith, P. J. (1996). TIMP1 and adverse prognosis in non-small cell lung cancer. Clinical Cancer Research, 2(8), 1369–1372.PubMed Fong, K. M., Kida, Y., Zimmerman, P. V., & Smith, P. J. (1996). TIMP1 and adverse prognosis in non-small cell lung cancer. Clinical Cancer Research, 2(8), 1369–1372.PubMed
38.
go back to reference Honkavuori, M., Talvensaari-Mattila, A., Puistola, U., Turpeenniemi-Hujanen, T., & Santala, M. (2008). High serum TIMP-1 is associated with adverse prognosis in endometrial carcinoma. Anticancer Research, 28(5A), 2715–2719.PubMed Honkavuori, M., Talvensaari-Mattila, A., Puistola, U., Turpeenniemi-Hujanen, T., & Santala, M. (2008). High serum TIMP-1 is associated with adverse prognosis in endometrial carcinoma. Anticancer Research, 28(5A), 2715–2719.PubMed
39.
go back to reference Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., & Asplund, A. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419.PubMedCrossRef Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., & Asplund, A. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419.PubMedCrossRef
40.
go back to reference Lichtinghagen, R., Musholt, P. B., Lein, M., Römer, A., Rudolph, B., Kristiansen, G., Hauptmann, S., Schnorr, D., Loening, S. A., & Jung, K. (2002). Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. European Urology, 42(4), 398–406.PubMedCrossRef Lichtinghagen, R., Musholt, P. B., Lein, M., Römer, A., Rudolph, B., Kristiansen, G., Hauptmann, S., Schnorr, D., Loening, S. A., & Jung, K. (2002). Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. European Urology, 42(4), 398–406.PubMedCrossRef
41.
go back to reference Grünwald, B., Harant, V., Schaten, S., Frühschütz, M., Spallek, R., Höchst, B., Stutzer, K., Berchtold, S., Erkan, M., Prokopchuk, O., Martignoni, M., Esposito, I., Heikenwalder, M., Gupta, A., Siveke, J., Saftig, P., Knolle, P., Wohlleber, D., & Krüger, A. (2016). Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology, 151(5), 1011–1024.PubMedCrossRef Grünwald, B., Harant, V., Schaten, S., Frühschütz, M., Spallek, R., Höchst, B., Stutzer, K., Berchtold, S., Erkan, M., Prokopchuk, O., Martignoni, M., Esposito, I., Heikenwalder, M., Gupta, A., Siveke, J., Saftig, P., Knolle, P., Wohlleber, D., & Krüger, A. (2016). Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology, 151(5), 1011–1024.PubMedCrossRef
42.
go back to reference Prokopchuk, O., Grünwald, B., Nitsche, U., Jäger, C., Prokopchuk, O. L., Schubert, E. C., Friess, H., Martignoni, M. E., & Krüger, A. (2018). Elevated systemic levels of the matrix metalloproteinase inhibitor TIMP-1 correlate with clinical markers of cachexia in patients with chronic pancreatitis and pancreatic cancer. BMC Cancer, 18(1), 128.PubMedPubMedCentralCrossRef Prokopchuk, O., Grünwald, B., Nitsche, U., Jäger, C., Prokopchuk, O. L., Schubert, E. C., Friess, H., Martignoni, M. E., & Krüger, A. (2018). Elevated systemic levels of the matrix metalloproteinase inhibitor TIMP-1 correlate with clinical markers of cachexia in patients with chronic pancreatitis and pancreatic cancer. BMC Cancer, 18(1), 128.PubMedPubMedCentralCrossRef
43.
go back to reference Laitinen, A., Hagström, J., Mustonen, H., Kokkola, A., Tervahartiala, T., Sorsa, T., Böckelman, C., & Haglund, C. (2018). Serum MMP-8 and TIMP-1 as prognostic biomarkers in gastric cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 40(9), 1010428318799266.CrossRef Laitinen, A., Hagström, J., Mustonen, H., Kokkola, A., Tervahartiala, T., Sorsa, T., Böckelman, C., & Haglund, C. (2018). Serum MMP-8 and TIMP-1 as prognostic biomarkers in gastric cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 40(9), 1010428318799266.CrossRef
44.
go back to reference Wang, C.-S., Wu, T.-L., Tsao, K.-C., & Sun, C.-F. (2006). Serum TIMP-1 in gastric cancer patients: a potential prognostic biomarker. Annals of Clinical and Laboratory Science, 36(1), 23–30.PubMed Wang, C.-S., Wu, T.-L., Tsao, K.-C., & Sun, C.-F. (2006). Serum TIMP-1 in gastric cancer patients: a potential prognostic biomarker. Annals of Clinical and Laboratory Science, 36(1), 23–30.PubMed
45.
go back to reference Gouyer, V., Conti, M., Devos, P., Zerimech, F., Copin, M.-C., Créme, E., Wurtz, A., Porte, H., & Huet, G. (2005). Tissue inhibitor of metalloproteinase 1 is an independent predictor of prognosis in patients with nonsmall cell lung carcinoma who undergo resection with curative intent. Cancer, 103(8), 1676–1684.PubMedCrossRef Gouyer, V., Conti, M., Devos, P., Zerimech, F., Copin, M.-C., Créme, E., Wurtz, A., Porte, H., & Huet, G. (2005). Tissue inhibitor of metalloproteinase 1 is an independent predictor of prognosis in patients with nonsmall cell lung carcinoma who undergo resection with curative intent. Cancer, 103(8), 1676–1684.PubMedCrossRef
46.
go back to reference Visscher, D. W., Höyhtyä, M., Ottosen, S. K., Liang, C.-M., Sarkar, F. H., Crissman, J. D., & Fridman, R. (1994). Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumor recurrence. International Journal of Cancer, 59(3), 339–344.PubMedCrossRef Visscher, D. W., Höyhtyä, M., Ottosen, S. K., Liang, C.-M., Sarkar, F. H., Crissman, J. D., & Fridman, R. (1994). Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumor recurrence. International Journal of Cancer, 59(3), 339–344.PubMedCrossRef
47.
go back to reference Ylisirniö, S., Höyhtyä, M., & Turpeenniemi-Hujanen, T. (2000). Serum matrix metalloproteinases-2,-9 and tissue inhibitors of metalloproteinases-1,-2 in lung cancer--TIMP-1 as a prognostic marker. Anticancer Research, 20(2B), 1311–1316.PubMed Ylisirniö, S., Höyhtyä, M., & Turpeenniemi-Hujanen, T. (2000). Serum matrix metalloproteinases-2,-9 and tissue inhibitors of metalloproteinases-1,-2 in lung cancer--TIMP-1 as a prognostic marker. Anticancer Research, 20(2B), 1311–1316.PubMed
48.
go back to reference Drzewiecka-Jędrzejczyk, M., Wlazeł, R., Terlecka, M., & Jabłoński, S. (2017). Serum metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in lung carcinoma patients. Journal of Thoracic Disease, 9(12), 5306–5313.PubMedPubMedCentralCrossRef Drzewiecka-Jędrzejczyk, M., Wlazeł, R., Terlecka, M., & Jabłoński, S. (2017). Serum metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in lung carcinoma patients. Journal of Thoracic Disease, 9(12), 5306–5313.PubMedPubMedCentralCrossRef
49.
go back to reference Suemitsu, R., Yoshino, I., Tomiyasu, M., Fukuyama, S., Okamoto, T., & Maehara, Y. (2004). Serum tissue inhibitors of metalloproteinase-1 and -2 in patients with non-small cell lung cancer. Surgery Today, 34(11), 896–901.PubMedCrossRef Suemitsu, R., Yoshino, I., Tomiyasu, M., Fukuyama, S., Okamoto, T., & Maehara, Y. (2004). Serum tissue inhibitors of metalloproteinase-1 and -2 in patients with non-small cell lung cancer. Surgery Today, 34(11), 896–901.PubMedCrossRef
50.
go back to reference Giannelli, G., Bergamini, C., Marinosci, F., Fransvea, E., Quaranta, M., Lupo, L., Schiraldi, O., & Antonaci, S. (2002). Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. International Journal of Cancer, 97(4), 425–431.PubMedCrossRef Giannelli, G., Bergamini, C., Marinosci, F., Fransvea, E., Quaranta, M., Lupo, L., Schiraldi, O., & Antonaci, S. (2002). Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. International Journal of Cancer, 97(4), 425–431.PubMedCrossRef
51.
go back to reference Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., Baylin, S. B., & Graff, J. R. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Research, 59(4), 798–802.PubMed Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., Baylin, S. B., & Graff, J. R. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Research, 59(4), 798–802.PubMed
52.
go back to reference Cymbaluk-Płoska, A., Chudecka-Głaz, A., Pius-Sadowska, E., Machaliński, B., Menkiszak, J., & Sompolska-Rzechuła, A. (2018). Suitability assessment of baseline concentration of MMP3, TIMP3, HE4 and CA125 in the serum of patients with ovarian cancer. Journal of Ovarian Research, 11(1), 1.PubMedPubMedCentralCrossRef Cymbaluk-Płoska, A., Chudecka-Głaz, A., Pius-Sadowska, E., Machaliński, B., Menkiszak, J., & Sompolska-Rzechuła, A. (2018). Suitability assessment of baseline concentration of MMP3, TIMP3, HE4 and CA125 in the serum of patients with ovarian cancer. Journal of Ovarian Research, 11(1), 1.PubMedPubMedCentralCrossRef
53.
go back to reference Gu, X., Fu, M., Ding, Y., Ni, H., Zhang, W., Zhu, Y., Tang, X., Xiong, L., Li, J., Qiu, L., Xu, J., & Zhu, J. (2014). TIMP-3 expression associates with malignant behaviors and predicts favorable survival in HCC. PLoS One, 9(8), e106161.PubMedPubMedCentralCrossRef Gu, X., Fu, M., Ding, Y., Ni, H., Zhang, W., Zhu, Y., Tang, X., Xiong, L., Li, J., Qiu, L., Xu, J., & Zhu, J. (2014). TIMP-3 expression associates with malignant behaviors and predicts favorable survival in HCC. PLoS One, 9(8), e106161.PubMedPubMedCentralCrossRef
54.
go back to reference Sounni, N. E., Rozanov, D. V., Remacle, A. G., Golubkov, V. S., Noel, A., & Strongin, A. Y. (2010). Timp-2 binding with cellular MT1-MMP stimulates invasion-promoting MEK/ERK signaling in cancer cells. International Journal of Cancer, 126(5), 1067–1078.PubMedPubMedCentral Sounni, N. E., Rozanov, D. V., Remacle, A. G., Golubkov, V. S., Noel, A., & Strongin, A. Y. (2010). Timp-2 binding with cellular MT1-MMP stimulates invasion-promoting MEK/ERK signaling in cancer cells. International Journal of Cancer, 126(5), 1067–1078.PubMedPubMedCentral
55.
go back to reference Valacca, C., Tassone, E., & Mignatti, P. (2015). TIMP-2 interaction with MT1-MMP activates the AKT pathway and protects tumor cells from apoptosis. PLoS One, 10(9), e0136797.PubMedPubMedCentralCrossRef Valacca, C., Tassone, E., & Mignatti, P. (2015). TIMP-2 interaction with MT1-MMP activates the AKT pathway and protects tumor cells from apoptosis. PLoS One, 10(9), e0136797.PubMedPubMedCentralCrossRef
56.
go back to reference Valente, P., Fassina, G., Melchiori, A., Masiello, L., Cilli, M., Vacca, A., Onisto, M., Santi, L., Stetler-Stevenson, W. G., & Albini, A. (1998). TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. International Journal of Cancer, 75(2), 246–253.PubMedCrossRef Valente, P., Fassina, G., Melchiori, A., Masiello, L., Cilli, M., Vacca, A., Onisto, M., Santi, L., Stetler-Stevenson, W. G., & Albini, A. (1998). TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. International Journal of Cancer, 75(2), 246–253.PubMedCrossRef
57.
go back to reference Forte, D., Salvestrini, V., Corradi, G., Rossi, L., Catani, L., Lemoli, R. M., Cavo, M., & Curti, A. (2017). The tissue inhibitor of metalloproteinases-1 (TIMP-1) promotes survival and migration of acute myeloid leukemia cells through CD63/PI3K/Akt/p21 signaling. Oncotarget, 8(2), 2261.PubMedCrossRef Forte, D., Salvestrini, V., Corradi, G., Rossi, L., Catani, L., Lemoli, R. M., Cavo, M., & Curti, A. (2017). The tissue inhibitor of metalloproteinases-1 (TIMP-1) promotes survival and migration of acute myeloid leukemia cells through CD63/PI3K/Akt/p21 signaling. Oncotarget, 8(2), 2261.PubMedCrossRef
58.
go back to reference Jiang, Y., Wang, M., Celiker, M. Y., Liu, Y. E., Sang, Q. X., Goldberg, I. D., & Shi, Y. E. (2001). Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Research, 61(6), 2365–2370.PubMed Jiang, Y., Wang, M., Celiker, M. Y., Liu, Y. E., Sang, Q. X., Goldberg, I. D., & Shi, Y. E. (2001). Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Research, 61(6), 2365–2370.PubMed
59.
go back to reference Scilabra, S. D., Troeberg, L., Yamamoto, K., Emonard, H., Thøgersen, I., Enghild, J. J., Strickland, D. K., & Nagase, H. (2013). Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1. The Journal of Biological Chemistry, 288(1), 332–342.PubMedCrossRef Scilabra, S. D., Troeberg, L., Yamamoto, K., Emonard, H., Thøgersen, I., Enghild, J. J., Strickland, D. K., & Nagase, H. (2013). Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1. The Journal of Biological Chemistry, 288(1), 332–342.PubMedCrossRef
60.
go back to reference Emonard, H., Bellon, G., Troeberg, L., Berton, A., Robinet, A., Henriet, P., Marbaix, E., Kirkegaard, K., Patthy, L., Eeckhout, Y., Nagase, H., Hornebeck, W., & Courtoy, P. J. (2004). Low density lipoprotein receptor-related protein mediates endocytic clearance of pro-MMP-2. TIMP-2 complex through a thrombospondin-independent mechanism. The Journal of Biological Chemistry, 279(52), 54944–54951.PubMedCrossRef Emonard, H., Bellon, G., Troeberg, L., Berton, A., Robinet, A., Henriet, P., Marbaix, E., Kirkegaard, K., Patthy, L., Eeckhout, Y., Nagase, H., Hornebeck, W., & Courtoy, P. J. (2004). Low density lipoprotein receptor-related protein mediates endocytic clearance of pro-MMP-2. TIMP-2 complex through a thrombospondin-independent mechanism. The Journal of Biological Chemistry, 279(52), 54944–54951.PubMedCrossRef
61.
go back to reference Hahn-Dantona, E., Ruiz, J. F., Bornstein, P., & Strickland, D. K. (2001). The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. The Journal of Biological Chemistry, 276(18), 15498–15503.PubMedCrossRef Hahn-Dantona, E., Ruiz, J. F., Bornstein, P., & Strickland, D. K. (2001). The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. The Journal of Biological Chemistry, 276(18), 15498–15503.PubMedCrossRef
62.
go back to reference Jackson, H. W., Defamie, V., Waterhouse, P., & Khokha, R. (2017). TIMPs: versatile extracellular regulators in cancer. Nature Reviews Cancer, 17(1), 38–53.PubMedCrossRef Jackson, H. W., Defamie, V., Waterhouse, P., & Khokha, R. (2017). TIMPs: versatile extracellular regulators in cancer. Nature Reviews Cancer, 17(1), 38–53.PubMedCrossRef
64.
go back to reference Brew, K., & Nagase, H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta, 1803(1), 55–71.PubMedPubMedCentralCrossRef Brew, K., & Nagase, H. (2010). The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta, 1803(1), 55–71.PubMedPubMedCentralCrossRef
65.
go back to reference Lambert, E., Bridoux, L., Devy, J., Dassé, E., Sowa, M.-L., Duca, L., Hornebeck, W., Martiny, L., & Petitfrère-Charpentier, E. (2009). TIMP-1 binding to proMMP-9/CD44 complex localized at the cell surface promotes erythroid cell survival. The International Journal of Biochemistry & Cell Biology, 41(5), 1102–1115.CrossRef Lambert, E., Bridoux, L., Devy, J., Dassé, E., Sowa, M.-L., Duca, L., Hornebeck, W., Martiny, L., & Petitfrère-Charpentier, E. (2009). TIMP-1 binding to proMMP-9/CD44 complex localized at the cell surface promotes erythroid cell survival. The International Journal of Biochemistry & Cell Biology, 41(5), 1102–1115.CrossRef
66.
go back to reference Tsagaraki, I., Tsilibary, E. C., & Tzinia, A. K. (2010). TIMP-1 interaction with αvβ3 integrin confers resistance to human osteosarcoma cell line MG-63 against TNF-α-induced apoptosis. Cell and Tissue Research, 342(1), 87–96.PubMedCrossRef Tsagaraki, I., Tsilibary, E. C., & Tzinia, A. K. (2010). TIMP-1 interaction with αvβ3 integrin confers resistance to human osteosarcoma cell line MG-63 against TNF-α-induced apoptosis. Cell and Tissue Research, 342(1), 87–96.PubMedCrossRef
67.
go back to reference Zhang, J., Wu, T., Zhan, S., Qiao, N., Zhang, X., Zhu, Y., Yang, N., Sun, Y., Zhang, X. A., Bleich, D., & Han, X. (2017). TIMP-1 and CD82, a promising combined evaluation marker for PDAC. Oncotarget, 8(4), 6496–6512.PubMed Zhang, J., Wu, T., Zhan, S., Qiao, N., Zhang, X., Zhu, Y., Yang, N., Sun, Y., Zhang, X. A., Bleich, D., & Han, X. (2017). TIMP-1 and CD82, a promising combined evaluation marker for PDAC. Oncotarget, 8(4), 6496–6512.PubMed
68.
go back to reference Jung, K.-K., Liu, X.-W., Chirco, R., Fridman, R., & Kim, H.-R. C. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal, 25(17), 3934–3942.PubMedPubMedCentralCrossRef Jung, K.-K., Liu, X.-W., Chirco, R., Fridman, R., & Kim, H.-R. C. (2006). Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. The EMBO Journal, 25(17), 3934–3942.PubMedPubMedCentralCrossRef
69.
go back to reference Pols, M. S., & Klumperman, J. (2009). Trafficking and function of the tetraspanin CD63. Experimental Cell Research, 315(9), 1584–1592.PubMedCrossRef Pols, M. S., & Klumperman, J. (2009). Trafficking and function of the tetraspanin CD63. Experimental Cell Research, 315(9), 1584–1592.PubMedCrossRef
70.
go back to reference Groft, L. L., Muzik, H., Rewcastle, N. B., Johnston, R. N., Knäuper, V., Lafleur, M. A., Forsyth, P. A., & Edwards, D. R. (2001). Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. British Journal of Cancer, 85(1), 55–63.PubMedPubMedCentralCrossRef Groft, L. L., Muzik, H., Rewcastle, N. B., Johnston, R. N., Knäuper, V., Lafleur, M. A., Forsyth, P. A., & Edwards, D. R. (2001). Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas. British Journal of Cancer, 85(1), 55–63.PubMedPubMedCentralCrossRef
71.
go back to reference Rorive, S., Lopez, X. M., Maris, C., Trepant, A.-L., Sauvage, S., Sadeghi, N., Roland, I., Decaestecker, C., & Salmon, I. (2010). TIMP-4 and CD63: new prognostic biomarkers in human astrocytomas. Modern Pathology, 23(10), 1418–1428.PubMedCrossRef Rorive, S., Lopez, X. M., Maris, C., Trepant, A.-L., Sauvage, S., Sadeghi, N., Roland, I., Decaestecker, C., & Salmon, I. (2010). TIMP-4 and CD63: new prognostic biomarkers in human astrocytomas. Modern Pathology, 23(10), 1418–1428.PubMedCrossRef
72.
go back to reference Ahonen, M., Baker, A. H., & Kähäri, V.-M. (1998). Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Research, 58(11), 2310–2315.PubMed Ahonen, M., Baker, A. H., & Kähäri, V.-M. (1998). Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Research, 58(11), 2310–2315.PubMed
73.
go back to reference Zhang, H., Wang, Y.-S., Han, G., & Shi, Y. (2007). TIMP-3 gene transfection suppresses invasive and metastatic capacity of human hepatocarcinoma cell line HCC-7721. Hepatobiliary & Pancreatic Diseases International: HBPD INT, 6(5), 487–491.CrossRef Zhang, H., Wang, Y.-S., Han, G., & Shi, Y. (2007). TIMP-3 gene transfection suppresses invasive and metastatic capacity of human hepatocarcinoma cell line HCC-7721. Hepatobiliary & Pancreatic Diseases International: HBPD INT, 6(5), 487–491.CrossRef
74.
go back to reference Amour, A., Knight, C. G., Webster, A., Slocombe, P. M., Stephens, P. E., Knäuper, V., Docherty, A. J. P., & Murphy, G. (2000). The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Letters, 473(3), 275–279.PubMedCrossRef Amour, A., Knight, C. G., Webster, A., Slocombe, P. M., Stephens, P. E., Knäuper, V., Docherty, A. J. P., & Murphy, G. (2000). The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Letters, 473(3), 275–279.PubMedCrossRef
75.
go back to reference Kashiwagi, M., Tortorella, M., Nagase, H., & Brew, K. (2001). TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). The Journal of Biological Chemistry, 276(16), 12501–12504.PubMedCrossRef Kashiwagi, M., Tortorella, M., Nagase, H., & Brew, K. (2001). TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). The Journal of Biological Chemistry, 276(16), 12501–12504.PubMedCrossRef
76.
go back to reference Wang, W.-M., Ge, G., Lim, N. H., Nagase, H., & Greenspan, D. S. (2006). TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. The Biochemical Journal, 398(3), 515–519.PubMedPubMedCentralCrossRef Wang, W.-M., Ge, G., Lim, N. H., Nagase, H., & Greenspan, D. S. (2006). TIMP-3 inhibits the procollagen N-proteinase ADAMTS-2. The Biochemical Journal, 398(3), 515–519.PubMedPubMedCentralCrossRef
77.
go back to reference Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., Baker, A., & Anand-Apte, B. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9(4), 407–415.PubMedCrossRef Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., Baker, A., & Anand-Apte, B. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9(4), 407–415.PubMedCrossRef
78.
go back to reference Kang, K.-H., Park, S.-Y., Rho, S. B., & Lee, J.-H. (2008). Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis. Cardiovascular Research, 79(1), 150–160.PubMedCrossRef Kang, K.-H., Park, S.-Y., Rho, S. B., & Lee, J.-H. (2008). Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis. Cardiovascular Research, 79(1), 150–160.PubMedCrossRef
79.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef
80.
go back to reference Klenotic, P. A., Munier, F. L., Marmorstein, L. Y., & Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. The Journal of Biological Chemistry, 279(29), 30469–30473.PubMedCrossRef Klenotic, P. A., Munier, F. L., Marmorstein, L. Y., & Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. The Journal of Biological Chemistry, 279(29), 30469–30473.PubMedCrossRef
81.
go back to reference Yu, W.-H., Shuan-su, C. Y., Meng, Q., Brew, K., & Woessner, J. F. (2000). TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. The Journal of Biological Chemistry, 275(40), 31226–31232.PubMedCrossRef Yu, W.-H., Shuan-su, C. Y., Meng, Q., Brew, K., & Woessner, J. F. (2000). TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. The Journal of Biological Chemistry, 275(40), 31226–31232.PubMedCrossRef
82.
go back to reference Hayakawa, T., Yamashita, K., Ohuchi, E., & Shinagawa, A. (1994). Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). Journal of Cell Science, 107(Pt 9), 2373–2379.PubMed Hayakawa, T., Yamashita, K., Ohuchi, E., & Shinagawa, A. (1994). Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). Journal of Cell Science, 107(Pt 9), 2373–2379.PubMed
83.
go back to reference Hoegy, S. E., Oh, H.-R., Corcoran, M. L., & Stetler-Stevenson, W. G. (2001). Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. The Journal of Biological Chemistry, 276(5), 3203–3214.PubMedCrossRef Hoegy, S. E., Oh, H.-R., Corcoran, M. L., & Stetler-Stevenson, W. G. (2001). Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. The Journal of Biological Chemistry, 276(5), 3203–3214.PubMedCrossRef
84.
go back to reference Oh, J., Diaz, T., Wei, B., Chang, H., Noda, M., & Stetler-Stevenson, W. G. (2006). TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene, 25(30), 4230–4234.PubMedPubMedCentralCrossRef Oh, J., Diaz, T., Wei, B., Chang, H., Noda, M., & Stetler-Stevenson, W. G. (2006). TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene, 25(30), 4230–4234.PubMedPubMedCentralCrossRef
85.
go back to reference Seo, D.-W., Li, H., Qu, C.-K., Oh, J., Kim, Y.-S., Diaz, T., Wei, B., Han, J.-W., & Stetler-Stevenson, W. G. (2006). Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. The Journal of Biological Chemistry, 281(6), 3711–3721.PubMedCrossRef Seo, D.-W., Li, H., Qu, C.-K., Oh, J., Kim, Y.-S., Diaz, T., Wei, B., Han, J.-W., & Stetler-Stevenson, W. G. (2006). Shp-1 mediates the antiproliferative activity of tissue inhibitor of metalloproteinase-2 in human microvascular endothelial cells. The Journal of Biological Chemistry, 281(6), 3711–3721.PubMedCrossRef
86.
go back to reference Fernandez, C. A., Roy, R., Lee, S., Yang, J., Panigrahy, D., van Vliet, K. J., & Moses, M. A. (2010). The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. The Journal of Biological Chemistry, 285(53), 41886–41895.PubMedPubMedCentralCrossRef Fernandez, C. A., Roy, R., Lee, S., Yang, J., Panigrahy, D., van Vliet, K. J., & Moses, M. A. (2010). The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. The Journal of Biological Chemistry, 285(53), 41886–41895.PubMedPubMedCentralCrossRef
87.
go back to reference D’Alessio, S., Ferrari, G., Cinnante, K., Scheerer, W., Galloway, A. C., Roses, D. F., Rozanov, D. V., Remacle, A. G., Oh, E.-S., & Shiryaev, S. A. (2008). Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism. The Journal of Biological Chemistry, 283(1), 87–99.PubMedCrossRef D’Alessio, S., Ferrari, G., Cinnante, K., Scheerer, W., Galloway, A. C., Roses, D. F., Rozanov, D. V., Remacle, A. G., Oh, E.-S., & Shiryaev, S. A. (2008). Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism. The Journal of Biological Chemistry, 283(1), 87–99.PubMedCrossRef
88.
go back to reference López-Otín, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3(7), 509–519.PubMedCrossRef López-Otín, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3(7), 509–519.PubMedCrossRef
89.
go back to reference Gomez, D. E., Alonso, D. F., Yoshiji, H., & Thorgeirsson, U. P. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. European Journal of Cell Biology, 74(2), 111–122.PubMed Gomez, D. E., Alonso, D. F., Yoshiji, H., & Thorgeirsson, U. P. (1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. European Journal of Cell Biology, 74(2), 111–122.PubMed
90.
go back to reference Bode, W., & Maskos, K. (2003). Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biological Chemistry, 384(6), 863–872.PubMedCrossRef Bode, W., & Maskos, K. (2003). Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biological Chemistry, 384(6), 863–872.PubMedCrossRef
91.
go back to reference Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.PubMedCrossRef Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69(3), 562–573.PubMedCrossRef
92.
go back to reference Maskos, K., & Bode, W. (2003). Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Molecular Biotechnology, 25(3), 241–266.PubMedCrossRef Maskos, K., & Bode, W. (2003). Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Molecular Biotechnology, 25(3), 241–266.PubMedCrossRef
93.
go back to reference Tuuttila, A., Morgunova, E., Bergmann, U., Lindqvist, Y., Maskos, K., Fernandez-Catalan, C., Bode, W., Tryggvason, K., & Schneider, G. (1998). Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 Å resolution. Journal of Molecular Biology, 284(4), 1133–1140.PubMedCrossRef Tuuttila, A., Morgunova, E., Bergmann, U., Lindqvist, Y., Maskos, K., Fernandez-Catalan, C., Bode, W., Tryggvason, K., & Schneider, G. (1998). Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 Å resolution. Journal of Molecular Biology, 284(4), 1133–1140.PubMedCrossRef
94.
go back to reference Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.PubMedCrossRef Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.PubMedCrossRef
95.
go back to reference Gomis-R, F.-X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., & Bourenkov, G. P. (1997). Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature, 389(6646), 77–81.CrossRef Gomis-R, F.-X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., & Bourenkov, G. P. (1997). Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature, 389(6646), 77–81.CrossRef
96.
go back to reference Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.PubMedCrossRefPubMedCentral Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.PubMedCrossRefPubMedCentral
97.
go back to reference Wisniewska, M., Goettig, P., Maskos, K., Belouski, E., Winters, D., Hecht, R., Black, R., & Bode, W. (2008). Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. Journal of Molecular Biology, 381(5), 1307–1319.PubMedCrossRef Wisniewska, M., Goettig, P., Maskos, K., Belouski, E., Winters, D., Hecht, R., Black, R., & Bode, W. (2008). Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. Journal of Molecular Biology, 381(5), 1307–1319.PubMedCrossRef
98.
go back to reference Meng, Q., Malinovskii, V., Huang, W., Hu, Y., Chung, L., Nagase, H., Bode, W., Maskos, K., & Brew, K. (1999). Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. The Journal of Biological Chemistry, 274(15), 10184–10189.PubMedCrossRef Meng, Q., Malinovskii, V., Huang, W., Hu, Y., Chung, L., Nagase, H., Bode, W., Maskos, K., & Brew, K. (1999). Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1′ residue of substrate. The Journal of Biological Chemistry, 274(15), 10184–10189.PubMedCrossRef
99.
go back to reference Wei, S., Chen, Y., Chung, L., Nagase, H., & Brew, K. (2003). Protein engineering of the tissue inhibitor of metalloproteinase 1 (TIMP-1) inhibitory domain. In search of selective matrix metalloproteinase inhibitors. The Journal of Biological Chemistry, 278(11), 9831–9834.PubMedCrossRef Wei, S., Chen, Y., Chung, L., Nagase, H., & Brew, K. (2003). Protein engineering of the tissue inhibitor of metalloproteinase 1 (TIMP-1) inhibitory domain. In search of selective matrix metalloproteinase inhibitors. The Journal of Biological Chemistry, 278(11), 9831–9834.PubMedCrossRef
100.
go back to reference Lee, M.-H., Rapti, M., Knäuper, V., & Murphy, G. (2004). Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. The Journal of Biological Chemistry, 279(17), 17562–17569.PubMedCrossRef Lee, M.-H., Rapti, M., Knäuper, V., & Murphy, G. (2004). Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. The Journal of Biological Chemistry, 279(17), 17562–17569.PubMedCrossRef
101.
go back to reference Rapti, M., Knäuper, V., Murphy, G., & Williamson, R. A. (2006). Characterization of the AB loop region of TIMP-2 involvement in pro-MMP-2 activation. The Journal of Biological Chemistry, 281(33), 23386–23394.PubMedCrossRef Rapti, M., Knäuper, V., Murphy, G., & Williamson, R. A. (2006). Characterization of the AB loop region of TIMP-2 involvement in pro-MMP-2 activation. The Journal of Biological Chemistry, 281(33), 23386–23394.PubMedCrossRef
102.
go back to reference Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J. J., Lichte, A., Tschesche, H., & Maskos, K. (1998). Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. The EMBO Journal, 17(17), 5238–5248.PubMedPubMedCentralCrossRef Fernandez-Catalan, C., Bode, W., Huber, R., Turk, D., Calvete, J. J., Lichte, A., Tschesche, H., & Maskos, K. (1998). Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. The EMBO Journal, 17(17), 5238–5248.PubMedPubMedCentralCrossRef
103.
go back to reference Nagase, H., & Brew, K. (2003). Designing TIMP (tissue inhibitor of metalloproteinases) variants that are selective metalloproteinase inhibitors. Biochemical Society Symposium, 70, 201–212. Nagase, H., & Brew, K. (2003). Designing TIMP (tissue inhibitor of metalloproteinases) variants that are selective metalloproteinase inhibitors. Biochemical Society Symposium, 70, 201–212.
104.
go back to reference Batra, J., Soares, A. S., Mehner, C., & Radisky, E. S. (2013). Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. PLoS One, 8(9), e75836.PubMedPubMedCentralCrossRef Batra, J., Soares, A. S., Mehner, C., & Radisky, E. S. (2013). Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. PLoS One, 8(9), e75836.PubMedPubMedCentralCrossRef
105.
go back to reference Lee, M.-H., Rapti, M., & Murphy, G. (2005). Total conversion of tissue inhibitor of metalloproteinase (TIMP) for specific metalloproteinase targeting: fine-tuning TIMP-4 for optimal inhibition of tumor necrosis factor-{alpha}-converting enzyme. The Journal of Biological Chemistry, 280(16), 15967–15975.PubMedCrossRef Lee, M.-H., Rapti, M., & Murphy, G. (2005). Total conversion of tissue inhibitor of metalloproteinase (TIMP) for specific metalloproteinase targeting: fine-tuning TIMP-4 for optimal inhibition of tumor necrosis factor-{alpha}-converting enzyme. The Journal of Biological Chemistry, 280(16), 15967–15975.PubMedCrossRef
106.
go back to reference Nagase, H., & Murphy, G. (2008). Tailoring TIMPs for selective metalloproteinase inhibition. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The Cancer Degradome (pp. 787–810). Springer. Nagase, H., & Murphy, G. (2008). Tailoring TIMPs for selective metalloproteinase inhibition. In D. Edwards, G. Hoyer-Hansen, F. Blasi, & B. F. Sloane (Eds.), The Cancer Degradome (pp. 787–810). Springer.
107.
go back to reference Rapti, M., Atkinson, S. J., Lee, M.-H., Trim, A., Moss, M., & Murphy, G. (2008). The isolated N-terminal domains of TIMP-1 and TIMP-3 are insufficient for ADAM10 inhibition. The Biochemical Journal, 411(2), 433–439.PubMedCrossRef Rapti, M., Atkinson, S. J., Lee, M.-H., Trim, A., Moss, M., & Murphy, G. (2008). The isolated N-terminal domains of TIMP-1 and TIMP-3 are insufficient for ADAM10 inhibition. The Biochemical Journal, 411(2), 433–439.PubMedCrossRef
108.
go back to reference Morgunova, E., Tuuttila, A., Bergmann, U., & Tryggvason, K. (2002). Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7414–7419.PubMedPubMedCentralCrossRef Morgunova, E., Tuuttila, A., Bergmann, U., & Tryggvason, K. (2002). Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proceedings of the National Academy of Sciences of the United States of America, 99(11), 7414–7419.PubMedPubMedCentralCrossRef
109.
go back to reference Kobuch, J., Cui, H., Grünwald, B., Saftig, P., Knolle, P. A., & Krüger, A. (2015). TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica, 100(8), 1005–1013.PubMedPubMedCentral Kobuch, J., Cui, H., Grünwald, B., Saftig, P., Knolle, P. A., & Krüger, A. (2015). TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice. Haematologica, 100(8), 1005–1013.PubMedPubMedCentral
110.
go back to reference Cui, H., Grosso, S., Schelter, F., Mari, B., & Krüger, A. (2012). On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation between TIMP-1, HIF-1α, and miR-210. Frontiers in Pharmacology, 3, 134.PubMedPubMedCentralCrossRef Cui, H., Grosso, S., Schelter, F., Mari, B., & Krüger, A. (2012). On the pro-metastatic stress response to cancer therapies: evidence for a positive co-operation between TIMP-1, HIF-1α, and miR-210. Frontiers in Pharmacology, 3, 134.PubMedPubMedCentralCrossRef
112.
go back to reference Mittal, S., & Saluja, D. (2015). Protein post-translational modifications: role in protein structure, function and stability. In Proteostasis and Chaperone Surveillance (pp. 25–37). Springer. Mittal, S., & Saluja, D. (2015). Protein post-translational modifications: role in protein structure, function and stability. In Proteostasis and Chaperone Surveillance (pp. 25–37). Springer.
113.
go back to reference Xin, F., & Radivojac, P. (2012). Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics (Oxford, England), 28(22), 2905–2913.CrossRef Xin, F., & Radivojac, P. (2012). Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics (Oxford, England), 28(22), 2905–2913.CrossRef
115.
go back to reference Khoury, G. A., Baliban, R. C., & Floudas, C. A. (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific Reports, 1, 90.PubMedCentralCrossRef Khoury, G. A., Baliban, R. C., & Floudas, C. A. (2011). Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific Reports, 1, 90.PubMedCentralCrossRef
116.
117.
go back to reference Okada, Y., Watanabe, S., Nakanishi, I., Kishi, J.-I., Hayakawa, T., Watorek, W., Travis, J., & Nagase, H. (1988). Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Letters, 229(1), 157–160.PubMedCrossRef Okada, Y., Watanabe, S., Nakanishi, I., Kishi, J.-I., Hayakawa, T., Watorek, W., Travis, J., & Nagase, H. (1988). Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Letters, 229(1), 157–160.PubMedCrossRef
118.
go back to reference Nagase, H., Suzuki, K., Cawston, T. E., & Brew, K. (1997). Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). The Biochemical Journal, 325(1), 163–167.PubMedPubMedCentralCrossRef Nagase, H., Suzuki, K., Cawston, T. E., & Brew, K. (1997). Involvement of a region near valine-69 of tissue inhibitor of metalloproteinases (TIMP)-1 in the interaction with matrix metalloproteinase 3 (stromelysin 1). The Biochemical Journal, 325(1), 163–167.PubMedPubMedCentralCrossRef
119.
go back to reference Jackson, P. L., Xu, X., Wilson, L., Weathington, N. M., Clancy, J. P., Blalock, J. E., & Gaggar, A. (2010). Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Molecular Medicine (Cambridge, Mass.), 16(5-6), 159–166. Jackson, P. L., Xu, X., Wilson, L., Weathington, N. M., Clancy, J. P., Blalock, J. E., & Gaggar, A. (2010). Human neutrophil elastase-mediated cleavage sites of MMP-9 and TIMP-1: implications to cystic fibrosis proteolytic dysfunction. Molecular Medicine (Cambridge, Mass.), 16(5-6), 159–166.
120.
go back to reference Itoh, Y., & Nagase, H. (1995). Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. The Journal of Biological Chemistry, 270(28), 16518–16521.PubMedCrossRef Itoh, Y., & Nagase, H. (1995). Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. The Journal of Biological Chemistry, 270(28), 16518–16521.PubMedCrossRef
Metadata
Title
Functional disparities within the TIMP family in cancer: hints from molecular divergence
Authors
Celina Eckfeld
Daniel Häußler
Benjamin Schoeps
Chris D. Hermann
Achim Krüger
Publication date
01-09-2019
Publisher
Springer US
Keyword
Metastasis
Published in
Cancer and Metastasis Reviews / Issue 3/2019
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09812-6

Other articles of this Issue 3/2019

Cancer and Metastasis Reviews 3/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine