Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2019

Open Access 01-09-2019

Proteolytic chemokine cleavage as a regulator of lymphocytic infiltration in solid tumors

Authors: Holger Bronger, Viktor Magdolen, Peter Goettig, Tobias Dreyer

Published in: Cancer and Metastasis Reviews | Issue 3/2019

Login to get access

Abstract

In the past decade, immune-based therapies such as monoclonal antibodies against tumor epitopes or immune checkpoint inhibitors have become an integral part of contemporary cancer treatment in many entities. However, a fundamental prerequisite for the success of such therapies is a sufficient trafficking of tumor-infiltrating lymphocytes into the tumor microenvironment. This infiltration is facilitated by chemokines, a group of about 50 small proteins capable of chemotactically guiding leukocytes. Proteolytic inactivation of chemokines leading to an impaired infiltration of immune effector cells appears to be an efficient immune escape mechanism of solid cancers.
The CXCR3 and CX3CR1 chemokine receptor ligands CXCL9-11 and CX3CL1, respectively, are mainly responsible for the tumor-suppressive lymphocytic infiltration into the tumor micromilieu. Their structure explains the biochemical basis of their proteolytic cleavage, while in vivo data from mouse models and patient samples shed light on the corresponding processes in cancer. The emerging roles of proteases, e.g., matrix metalloproteinases, cathepsins, and dipeptidyl peptidase 4, in chemokine inactivation define new resistance mechanisms against immunotherapies and identify attractive new targets to enhance immune intervention in cancer.
Literature
1.
go back to reference Tyzzer, E. E. (1916). Tumor immunity. American Journal of Cancer Research, 1(2), 125–156. Tyzzer, E. E. (1916). Tumor immunity. American Journal of Cancer Research, 1(2), 125–156.
2.
go back to reference Decker, W. K., da Silva, R. F., Sanabria, M. H., Angelo, L. S., Guimaraes, F., Burt, B. M., et al. (2017). Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Frontiers in Immunology, 8, 829.PubMedPubMedCentralCrossRef Decker, W. K., da Silva, R. F., Sanabria, M. H., Angelo, L. S., Guimaraes, F., Burt, B. M., et al. (2017). Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Frontiers in Immunology, 8, 829.PubMedPubMedCentralCrossRef
3.
go back to reference Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., Rubin, S. C., & Coukos, G. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New England Journal of Medicine, 348(3), 203–213.PubMedCrossRef Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., Rubin, S. C., & Coukos, G. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New England Journal of Medicine, 348(3), 203–213.PubMedCrossRef
4.
go back to reference Dieci, M. V., Radosevic-Robin, N., Fineberg, S., van den Eynden, G., Ternes, N., Penault-Llorca, F., et al. (2018). Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the international immuno-oncology biomarker working group on Bre. Seminars in Cancer Biology, 52(Pt 2), 16–25.PubMedCrossRef Dieci, M. V., Radosevic-Robin, N., Fineberg, S., van den Eynden, G., Ternes, N., Penault-Llorca, F., et al. (2018). Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the international immuno-oncology biomarker working group on Bre. Seminars in Cancer Biology, 52(Pt 2), 16–25.PubMedCrossRef
5.
go back to reference Pages, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F. S., Bifulco, C., et al. (2018). International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 391(10135), 2128–2139.PubMedCrossRef Pages, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F. S., Bifulco, C., et al. (2018). International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet, 391(10135), 2128–2139.PubMedCrossRef
6.
go back to reference Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews. Cancer, 12(4), 298–306.PubMedCrossRef Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews. Cancer, 12(4), 298–306.PubMedCrossRef
7.
go back to reference Fridman, W. H., Zitvogel, L., Sautes-Fridman, C., & Kroemer, G. (2017). The immune contexture in cancer prognosis and treatment. Nature Reviews. Clinical Oncology, 14(12), 717–734.PubMedCrossRef Fridman, W. H., Zitvogel, L., Sautes-Fridman, C., & Kroemer, G. (2017). The immune contexture in cancer prognosis and treatment. Nature Reviews. Clinical Oncology, 14(12), 717–734.PubMedCrossRef
8.
go back to reference Velcheti, V., & Schalper, K. (2016). Basic overview of current immunotherapy approaches in cancer. American Society of Clinical Oncology Educational Book, 35(36), 298–308.PubMedCrossRef Velcheti, V., & Schalper, K. (2016). Basic overview of current immunotherapy approaches in cancer. American Society of Clinical Oncology Educational Book, 35(36), 298–308.PubMedCrossRef
9.
go back to reference Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. The Lancet, 389(10087), 2415–2429.CrossRef Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. The Lancet, 389(10087), 2415–2429.CrossRef
10.
go back to reference Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune checkpoint blockade in cancer therapy. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 33(17), 1974–1982.CrossRef Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune checkpoint blockade in cancer therapy. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 33(17), 1974–1982.CrossRef
11.
go back to reference Galluzzi, L., Zitvogel, L., & Kroemer, G. (2016). Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunology Research, 4(11), 895–902.PubMedCrossRef Galluzzi, L., Zitvogel, L., & Kroemer, G. (2016). Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunology Research, 4(11), 895–902.PubMedCrossRef
12.
go back to reference Abastado, J.-P. (2012). The next challenge in cancer immunotherapy: controlling T-cell traffic to the tumor. Cancer Research, 72(9), 2159–2161.PubMedCrossRef Abastado, J.-P. (2012). The next challenge in cancer immunotherapy: controlling T-cell traffic to the tumor. Cancer Research, 72(9), 2159–2161.PubMedCrossRef
13.
go back to reference Melero, I., Rouzaut, A., Motz, G. T., & Coukos, G. (2014). T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discovery, 4(5), 522–526.PubMedPubMedCentralCrossRef Melero, I., Rouzaut, A., Motz, G. T., & Coukos, G. (2014). T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discovery, 4(5), 522–526.PubMedPubMedCentralCrossRef
14.
go back to reference de Melo Gagliato, D., Cortes, J., Curigliano, G., Loi, S., Denkert, C., Perez-Garcia, J., & Holgado, E. (2017). Tumor-infiltrating lymphocytes in breast cancer and implications for clinical practice. Biochimica Et Biophysica Acta. Reviews on Cancer, 1868(2), 527–537.PubMedCrossRef de Melo Gagliato, D., Cortes, J., Curigliano, G., Loi, S., Denkert, C., Perez-Garcia, J., & Holgado, E. (2017). Tumor-infiltrating lymphocytes in breast cancer and implications for clinical practice. Biochimica Et Biophysica Acta. Reviews on Cancer, 1868(2), 527–537.PubMedCrossRef
15.
go back to reference Galon, J., & Bruni, D. (2019). Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nature Reviews. Drug Discovery, 18(3), 197–218.PubMedCrossRef Galon, J., & Bruni, D. (2019). Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nature Reviews. Drug Discovery, 18(3), 197–218.PubMedCrossRef
17.
go back to reference Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 17(9), 559–572.PubMedPubMedCentralCrossRef Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 17(9), 559–572.PubMedPubMedCentralCrossRef
18.
go back to reference Wolf, M., Albrecht, S., & Märki, C. (2008). Proteolytic processing of chemokines: implications in physiological and pathological conditions. The International Journal of Biochemistry & Cell Biology, 40(6–7), 1185–1198.CrossRef Wolf, M., Albrecht, S., & Märki, C. (2008). Proteolytic processing of chemokines: implications in physiological and pathological conditions. The International Journal of Biochemistry & Cell Biology, 40(6–7), 1185–1198.CrossRef
19.
go back to reference Barreira da Silva, R., Laird, M. E., Yatim, N., Fiette, L., Molly, A., Ingersoll, M., Albert, L., et al. (2015). Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nature Immunology, 8(16), 850–858.PubMedCrossRef Barreira da Silva, R., Laird, M. E., Yatim, N., Fiette, L., Molly, A., Ingersoll, M., Albert, L., et al. (2015). Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nature Immunology, 8(16), 850–858.PubMedCrossRef
20.
go back to reference Chow, M. T., Ozga, A. J., Servis, R. L., Frederick, D. T., Lo, J. A., Fisher, D. E., Freeman, G. J., Boland, G. M., & Luster, A. D. (2019). Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity, 50(6), 1498–1512 e5.PubMedCrossRef Chow, M. T., Ozga, A. J., Servis, R. L., Frederick, D. T., Lo, J. A., Fisher, D. E., Freeman, G. J., Boland, G. M., & Luster, A. D. (2019). Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity, 50(6), 1498–1512 e5.PubMedCrossRef
21.
go back to reference Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1–10.PubMedCrossRef Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1–10.PubMedCrossRef
22.
go back to reference Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S., & Proost, P. (2017). Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Frontiers in Immunology, 8, 1970.PubMedCrossRef Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S., & Proost, P. (2017). Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Frontiers in Immunology, 8, 1970.PubMedCrossRef
23.
go back to reference Palomino, D. C. T., & Marti, L. C. (2015). Chemokines and immunity. Einstein (São Paulo), 13(3), 469–473.CrossRef Palomino, D. C. T., & Marti, L. C. (2015). Chemokines and immunity. Einstein (São Paulo), 13(3), 469–473.CrossRef
24.
go back to reference Poeta, V. M., Massara, M., Capucetti, A., & Bonecchi, R. (2019). Chemokines and chemokine receptors: new targets for cancer immunotherapy. Frontiers in Immunology, 10, 379.CrossRef Poeta, V. M., Massara, M., Capucetti, A., & Bonecchi, R. (2019). Chemokines and chemokine receptors: new targets for cancer immunotherapy. Frontiers in Immunology, 10, 379.CrossRef
25.
go back to reference Moser, B., & Willimann, K. (2004). Chemokines: role in inflammation and immune surveillance. Annals of the Rheumatic Diseases, 63(Suppl 2), ii84–ii89.PubMedPubMedCentral Moser, B., & Willimann, K. (2004). Chemokines: role in inflammation and immune surveillance. Annals of the Rheumatic Diseases, 63(Suppl 2), ii84–ii89.PubMedPubMedCentral
26.
go back to reference Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta, Molecular Cell Research, 1843(11), 2563–2582.CrossRef Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta, Molecular Cell Research, 1843(11), 2563–2582.CrossRef
27.
go back to reference Esche, C., Stellato, C., & Beck, L. A. (2005). Chemokines: key players in innate and adaptive immunity. The Journal of Investigative Dermatology, 125(4), 615–628.PubMedCrossRef Esche, C., Stellato, C., & Beck, L. A. (2005). Chemokines: key players in innate and adaptive immunity. The Journal of Investigative Dermatology, 125(4), 615–628.PubMedCrossRef
28.
go back to reference Griffith, J. W., Sokol, C. L., & Luster, A. D. (2014). Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annual Review of Immunology, 32(1), 659–702.PubMedCrossRef Griffith, J. W., Sokol, C. L., & Luster, A. D. (2014). Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annual Review of Immunology, 32(1), 659–702.PubMedCrossRef
29.
go back to reference Dimberg, A. (2010). Chemokines in angiogenesis. Current Topics in Microbiology and Immunology, 341, 59–80.PubMed Dimberg, A. (2010). Chemokines in angiogenesis. Current Topics in Microbiology and Immunology, 341, 59–80.PubMed
31.
go back to reference Eberlein, J., Nguyen, T. T., Victorino, F., Golden-Mason, L., Rosen, H. R., & Homann, D. (2010). Comprehensive assessment of chemokine expression profiles by flow cytometry. Journal of Clinical Investigation, 120(3), 907–923.PubMedCrossRef Eberlein, J., Nguyen, T. T., Victorino, F., Golden-Mason, L., Rosen, H. R., & Homann, D. (2010). Comprehensive assessment of chemokine expression profiles by flow cytometry. Journal of Clinical Investigation, 120(3), 907–923.PubMedCrossRef
32.
go back to reference Zlotnik, A., Yoshie, O., & Nomiyama, H. (2006). The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biology, 7(12), 243.PubMedPubMedCentralCrossRef Zlotnik, A., Yoshie, O., & Nomiyama, H. (2006). The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biology, 7(12), 243.PubMedPubMedCentralCrossRef
33.
go back to reference Mortier, A., Van Damme, J., & Proost, P. (2012). Overview of the mechanisms regulating chemokine activity and availability. Immunology Letters, 145(1–2), 2–9.PubMedCrossRef Mortier, A., Van Damme, J., & Proost, P. (2012). Overview of the mechanisms regulating chemokine activity and availability. Immunology Letters, 145(1–2), 2–9.PubMedCrossRef
34.
go back to reference Nibbs, R. J. B., & Graham, G. J. (2013). Immune regulation by atypical chemokine receptors. Nature Reviews Immunology, 13(11), 815–829.PubMedCrossRef Nibbs, R. J. B., & Graham, G. J. (2013). Immune regulation by atypical chemokine receptors. Nature Reviews Immunology, 13(11), 815–829.PubMedCrossRef
35.
go back to reference Hughes, C. E., & Nibbs, R. J. B. (2018). A guide to chemokines and their receptors. FEBS Journal, 285(16), 2944–2971.PubMedCrossRef Hughes, C. E., & Nibbs, R. J. B. (2018). A guide to chemokines and their receptors. FEBS Journal, 285(16), 2944–2971.PubMedCrossRef
37.
go back to reference Steen, A., Larsen, O., Thiele, S., & Rosenkilde, M. M. (2014). Biased and G protein-independent signaling of chemokine receptors. Frontiers in Immunology, 5(JUN), 277.PubMedPubMedCentral Steen, A., Larsen, O., Thiele, S., & Rosenkilde, M. M. (2014). Biased and G protein-independent signaling of chemokine receptors. Frontiers in Immunology, 5(JUN), 277.PubMedPubMedCentral
38.
go back to reference Miller, M. C., & Mayo, K. H. (2017). Chemokines from a structural perspective. International Journal of Molecular Sciences, 18(10), E2088.PubMedCrossRef Miller, M. C., & Mayo, K. H. (2017). Chemokines from a structural perspective. International Journal of Molecular Sciences, 18(10), E2088.PubMedCrossRef
39.
go back to reference Zlotnik, A., & Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity, 12(2), 121–127.PubMedCrossRef Zlotnik, A., & Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity, 12(2), 121–127.PubMedCrossRef
40.
go back to reference Rajagopalan, L., & Rajarathnam, K. (2006). Structural basis of chemokine receptor function–a model for binding affinity and ligand selectivity. Bioscience Reports, 26(5), 325–339.PubMedPubMedCentralCrossRef Rajagopalan, L., & Rajarathnam, K. (2006). Structural basis of chemokine receptor function–a model for binding affinity and ligand selectivity. Bioscience Reports, 26(5), 325–339.PubMedPubMedCentralCrossRef
41.
go back to reference Sanchez, J., Huma e, Z., Lane, J. R., Liu, X., Bridgford, J. L., Payne, R. J., et al. (2019). Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. The Journal of Biological Chemistry, 294(10), 3464–3475.PubMedCrossRef Sanchez, J., Huma e, Z., Lane, J. R., Liu, X., Bridgford, J. L., Payne, R. J., et al. (2019). Evaluation and extension of the two-site, two-step model for binding and activation of the chemokine receptor CCR1. The Journal of Biological Chemistry, 294(10), 3464–3475.PubMedCrossRef
42.
go back to reference Proudfoot, A. E. I., Johnson, Z., Bonvin, P., & Handel, T. M. (2017). Glycosaminoglycan interactions with chemokines add complexity to a complex system. Pharmaceuticals, 10(3), E70.PubMedCrossRef Proudfoot, A. E. I., Johnson, Z., Bonvin, P., & Handel, T. M. (2017). Glycosaminoglycan interactions with chemokines add complexity to a complex system. Pharmaceuticals, 10(3), E70.PubMedCrossRef
43.
go back to reference Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., Dzuiba, J., van Damme, J., Walz, A., Marriott, D., Chan, S. Y., Roczniak, S., & Shanafelt, A. B. (1995). The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. Journal of Biological Chemistry, 270(45), 27348–27357.PubMedCrossRef Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J., Dzuiba, J., van Damme, J., Walz, A., Marriott, D., Chan, S. Y., Roczniak, S., & Shanafelt, A. B. (1995). The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. Journal of Biological Chemistry, 270(45), 27348–27357.PubMedCrossRef
44.
go back to reference Billottet, C., Quemener, C., & Bikfalvi, A. (2013). CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochimica et Biophysica Acta, 1836(2), 287–295.PubMed Billottet, C., Quemener, C., & Bikfalvi, A. (2013). CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochimica et Biophysica Acta, 1836(2), 287–295.PubMed
45.
go back to reference Ehlert, J. E., Addison, C. A., Burdick, M. D., Kunkel, S. L., & Strieter, R. M. (2004). Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. The Journal of Immunology, 173(10), 6234–6240.PubMedCrossRef Ehlert, J. E., Addison, C. A., Burdick, M. D., Kunkel, S. L., & Strieter, R. M. (2004). Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. The Journal of Immunology, 173(10), 6234–6240.PubMedCrossRef
46.
go back to reference Wendel, M., Galani, I. E., Suri-Payer, E., & Cerwenka, A. (2008). Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Research, 68(20), 8437–8445.PubMedCrossRef Wendel, M., Galani, I. E., Suri-Payer, E., & Cerwenka, A. (2008). Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Research, 68(20), 8437–8445.PubMedCrossRef
47.
go back to reference Groom, J. R., & Luster, A. D. (2011). CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunology and Cell Biology, 89(2), 207–215.PubMedCrossRef Groom, J. R., & Luster, A. D. (2011). CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunology and Cell Biology, 89(2), 207–215.PubMedCrossRef
48.
go back to reference Cox, M. A., Jenh, C. H., Gonsiorek, W., Fine, J., Narula, S. K., Zavodny, P. J., & Hipkin, R. W. (2001). Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Molecular Pharmacology, 59(4), 707–715.PubMedCrossRef Cox, M. A., Jenh, C. H., Gonsiorek, W., Fine, J., Narula, S. K., Zavodny, P. J., & Hipkin, R. W. (2001). Human interferon-inducible 10-kDa protein and human interferon-inducible T cell alpha chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Molecular Pharmacology, 59(4), 707–715.PubMedCrossRef
49.
go back to reference Colvin, R. A., Campanella, G. S. V., Sun, J., & Luster, A. D. (2004). Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. Journal of Biological Chemistry, 279(29), 30219–30227.PubMedCrossRef Colvin, R. A., Campanella, G. S. V., Sun, J., & Luster, A. D. (2004). Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. Journal of Biological Chemistry, 279(29), 30219–30227.PubMedCrossRef
50.
go back to reference Zohar, Y., Wildbaum, G., Novak, R., Salzman, A. L., Thelen, M., Alon, R., Barsheshet, Y., Karp, C. L., & Karin, N. (2014). CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. Journal of Clinical Investigation, 124(5), 2009–2022.PubMedCrossRef Zohar, Y., Wildbaum, G., Novak, R., Salzman, A. L., Thelen, M., Alon, R., Barsheshet, Y., Karp, C. L., & Karin, N. (2014). CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. Journal of Clinical Investigation, 124(5), 2009–2022.PubMedCrossRef
51.
go back to reference Groom, J. R., Richmond, J., Murooka, T. T., Sorensen, E. W., Sung, J. H., Bankert, K., von Andrian, U. H., Moon, J. J., Mempel, T. R., & Luster, A. D. (2012). CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity, 37(6), 1091–1103.PubMedPubMedCentralCrossRef Groom, J. R., Richmond, J., Murooka, T. T., Sorensen, E. W., Sung, J. H., Bankert, K., von Andrian, U. H., Moon, J. J., Mempel, T. R., & Luster, A. D. (2012). CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity, 37(6), 1091–1103.PubMedPubMedCentralCrossRef
52.
go back to reference Groom, J. R., & Luster, A. D. (2012). CXCR3 in T cell function. Experimental Cell Research, 317(5), 620–631.CrossRef Groom, J. R., & Luster, A. D. (2012). CXCR3 in T cell function. Experimental Cell Research, 317(5), 620–631.CrossRef
53.
go back to reference Wojdasiewicz, P., Poniatowski, Ł. A., Kotela, A., Deszczyński, J., Kotela, I., & Szukiewicz, D. (2014). The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis, 62, 395–403.PubMedPubMedCentralCrossRef Wojdasiewicz, P., Poniatowski, Ł. A., Kotela, A., Deszczyński, J., Kotela, I., & Szukiewicz, D. (2014). The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis, 62, 395–403.PubMedPubMedCentralCrossRef
54.
go back to reference Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D. R., Zlotnik, A., & Schall, T. J. (1997). A new class of membrane-bound chemokine with a CX3C motif. Nature, 385(6617), 640–644.PubMedCrossRef Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D. R., Zlotnik, A., & Schall, T. J. (1997). A new class of membrane-bound chemokine with a CX3C motif. Nature, 385(6617), 640–644.PubMedCrossRef
55.
go back to reference Kim, K.-W., Vallon-Eberhard, A., Zigmond, E., Farache, J., Shezen, E., Shakhar, G., Ludwig, A., Lira, S. A., & Jung, S. (2011). In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 118(22), e156–e167.PubMedPubMedCentralCrossRef Kim, K.-W., Vallon-Eberhard, A., Zigmond, E., Farache, J., Shezen, E., Shakhar, G., Ludwig, A., Lira, S. A., & Jung, S. (2011). In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 118(22), e156–e167.PubMedPubMedCentralCrossRef
56.
go back to reference Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T. J., & Yoshie, O. (1997). Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 91(4), 521–530.PubMedCrossRef Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T. J., & Yoshie, O. (1997). Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 91(4), 521–530.PubMedCrossRef
57.
go back to reference Dean, R. A., & Overall, C. M. (2007). Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Molecular & Cellular Proteomics : MCP, 6(4), 611–623.PubMedCrossRef Dean, R. A., & Overall, C. M. (2007). Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Molecular & Cellular Proteomics : MCP, 6(4), 611–623.PubMedCrossRef
58.
go back to reference Ostuni, M. A., Guellec, J., Hermand, P., Durand, P., Combadiere, C., Pincet, F., & Deterre, P. (2014). CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain. Biology Open, 3, 1173–1182.PubMedPubMedCentralCrossRef Ostuni, M. A., Guellec, J., Hermand, P., Durand, P., Combadiere, C., Pincet, F., & Deterre, P. (2014). CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain. Biology Open, 3, 1173–1182.PubMedPubMedCentralCrossRef
59.
go back to reference Fujita, M., Takada, Y. K., & Takada, Y. (2014). The chemokine fractalkine can activate integrins without CX3CR1 through direct binding to a ligand-binding site distinct from the classical RGD-binding site. PLoS One, 9(5), e96372.PubMedPubMedCentralCrossRef Fujita, M., Takada, Y. K., & Takada, Y. (2014). The chemokine fractalkine can activate integrins without CX3CR1 through direct binding to a ligand-binding site distinct from the classical RGD-binding site. PLoS One, 9(5), e96372.PubMedPubMedCentralCrossRef
60.
go back to reference Haskell, C. A., Cleary, M. D., & Charo, I. F. (2000). Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion. The Journal of Biological Chemistry, 275(44), 34183–34189.PubMedCrossRef Haskell, C. A., Cleary, M. D., & Charo, I. F. (2000). Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion. The Journal of Biological Chemistry, 275(44), 34183–34189.PubMedCrossRef
61.
go back to reference Poniatowski, Ł. A., Wojdasiewicz, P., Krawczyk, M., Szukiewicz, D., Gasik, R., Kubaszewski, Ł., & Kurkowska-Jastrzębska, I. (2017). Analysis of the role of CX3CL1 (Fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: Insight into recent advances in actions of neurochemokine agents. Molecular Neurobiology, 54, 2167–2188.PubMedCrossRef Poniatowski, Ł. A., Wojdasiewicz, P., Krawczyk, M., Szukiewicz, D., Gasik, R., Kubaszewski, Ł., & Kurkowska-Jastrzębska, I. (2017). Analysis of the role of CX3CL1 (Fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: Insight into recent advances in actions of neurochemokine agents. Molecular Neurobiology, 54, 2167–2188.PubMedCrossRef
62.
go back to reference Chheda, Z. S., Sharma, R. K., Jala, V. R., Luster, A. D., & Haribabu, B. (2016). Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors. Journal of Immunology (Baltimore, Md. : 1950), 197(5), 2016–2026.CrossRef Chheda, Z. S., Sharma, R. K., Jala, V. R., Luster, A. D., & Haribabu, B. (2016). Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors. Journal of Immunology (Baltimore, Md. : 1950), 197(5), 2016–2026.CrossRef
63.
go back to reference Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M. D., Soni, S., McSkane, M., Baba, H., & Lenz, H. J. (2018). CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – a target for novel cancer therapy. Cancer Treatment Reviews, 63, 40–47.PubMedCrossRef Tokunaga, R., Zhang, W., Naseem, M., Puccini, A., Berger, M. D., Soni, S., McSkane, M., Baba, H., & Lenz, H. J. (2018). CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – a target for novel cancer therapy. Cancer Treatment Reviews, 63, 40–47.PubMedCrossRef
64.
go back to reference Walser, T. C., Rifat, S., Ma, X., Kundu, N., Ward, C., Goloubeva, O., Johnson, M. G., Medina, J. C., Collins, T. L., & Fulton, A. M. (2006). Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Research, 66(15), 7701–7707.PubMedCrossRef Walser, T. C., Rifat, S., Ma, X., Kundu, N., Ward, C., Goloubeva, O., Johnson, M. G., Medina, J. C., Collins, T. L., & Fulton, A. M. (2006). Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Research, 66(15), 7701–7707.PubMedCrossRef
65.
go back to reference Kawada, K., Hosogi, H., Sonoshita, M., Sakashita, H., Manabe, T., Shimahara, Y., Sakai, Y., Takabayashi, A., Oshima, M., & Taketo, M. M. (2007). Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene, 26(32), 4679–4688.PubMedCrossRef Kawada, K., Hosogi, H., Sonoshita, M., Sakashita, H., Manabe, T., Shimahara, Y., Sakai, Y., Takabayashi, A., Oshima, M., & Taketo, M. M. (2007). Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene, 26(32), 4679–4688.PubMedCrossRef
66.
go back to reference Cambien, B., Karimdjee, B. F., Richard-Fiardo, P., Bziouech, H., Barthel, R., Millet, M. A., Martini, V., Birnbaum, D., Scoazec, J. Y., Abello, J., Saati, T. A., Johnson, M. G., Sullivan, T. J., Medina, J. C., Collins, T. L., Schmid-Alliana, A., & Schmid-Antomarchi, H. (2009). Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. British Journal of Cancer, 100(11), 1755–1764.PubMedPubMedCentralCrossRef Cambien, B., Karimdjee, B. F., Richard-Fiardo, P., Bziouech, H., Barthel, R., Millet, M. A., Martini, V., Birnbaum, D., Scoazec, J. Y., Abello, J., Saati, T. A., Johnson, M. G., Sullivan, T. J., Medina, J. C., Collins, T. L., Schmid-Alliana, A., & Schmid-Antomarchi, H. (2009). Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. British Journal of Cancer, 100(11), 1755–1764.PubMedPubMedCentralCrossRef
67.
go back to reference Ma, X., Norsworthy, K., Kundu, N., Rodgers, W. H., Gimotty, P. A., Goloubeva, O., Lipsky, M., Li, Y., Holt, D., & Fulton, A. (2009). CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Molecular Cancer Therapeutics, 8(3), 490–498.PubMedCrossRef Ma, X., Norsworthy, K., Kundu, N., Rodgers, W. H., Gimotty, P. A., Goloubeva, O., Lipsky, M., Li, Y., Holt, D., & Fulton, A. (2009). CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Molecular Cancer Therapeutics, 8(3), 490–498.PubMedCrossRef
68.
go back to reference Pradelli, E., Karimdjee-Soilihi, B., Michiels, J. F., Ricci, J. E., Millet, M. A., Vandenbos, F., Sullivan, T. J., Collins, T. L., Johnson, M. G., Medina, J. C., Kleinerman, E. S., Schmid-Alliana, A., & Schmid-Antomarchi, H. (2009). Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. International Journal of Cancer, 125(11), 2586–2594.PubMedPubMedCentralCrossRef Pradelli, E., Karimdjee-Soilihi, B., Michiels, J. F., Ricci, J. E., Millet, M. A., Vandenbos, F., Sullivan, T. J., Collins, T. L., Johnson, M. G., Medina, J. C., Kleinerman, E. S., Schmid-Alliana, A., & Schmid-Antomarchi, H. (2009). Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. International Journal of Cancer, 125(11), 2586–2594.PubMedPubMedCentralCrossRef
69.
go back to reference Kawada, K., & Taketo, M. M. (2011). Significance and mechanism of lymph node metastasis in cancer progression. Cancer Research, 71(4), 1214–1218.PubMedCrossRef Kawada, K., & Taketo, M. M. (2011). Significance and mechanism of lymph node metastasis in cancer progression. Cancer Research, 71(4), 1214–1218.PubMedCrossRef
70.
go back to reference Arenberg, D., White, E., Burdick, M., Strom, S., & Strieter, R. (2001). Improved survival in tumor-bearing SCID mice treated with interferon-γ-inducible protein 10 (IP-10/CXCL10). Cancer Immunology, Immunotherapy, 50(10), 533–538.PubMedCrossRef Arenberg, D., White, E., Burdick, M., Strom, S., & Strieter, R. (2001). Improved survival in tumor-bearing SCID mice treated with interferon-γ-inducible protein 10 (IP-10/CXCL10). Cancer Immunology, Immunotherapy, 50(10), 533–538.PubMedCrossRef
71.
go back to reference Pan, J., Burdick, M. D., Belperio, J. A., Xue, Y. Y., Gerard, C., Sharma, S., et al. (2006). CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. Journal of Immunology (Baltimore, Md. : 1950), 176(3), 1456–1464.CrossRef Pan, J., Burdick, M. D., Belperio, J. A., Xue, Y. Y., Gerard, C., Sharma, S., et al. (2006). CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. Journal of Immunology (Baltimore, Md. : 1950), 176(3), 1456–1464.CrossRef
72.
go back to reference Yang, X., Chu, Y., Wang, Y., Zhang, R., & Xiong, S. (2006). Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. Journal of Leukocyte Biology, 80(6), 1434–1444.PubMedCrossRef Yang, X., Chu, Y., Wang, Y., Zhang, R., & Xiong, S. (2006). Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. Journal of Leukocyte Biology, 80(6), 1434–1444.PubMedCrossRef
73.
go back to reference Gorbachev, A. V., Kobayashi, H., Kudo, D., Tannenbaum, C. S., Finke, J. H., Shu, S., et al. (2007). CXC chemokine ligand 9/monokine induced by IFN- production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. The Journal of Immunology, 178(4), 2278–2286.PubMedCrossRef Gorbachev, A. V., Kobayashi, H., Kudo, D., Tannenbaum, C. S., Finke, J. H., Shu, S., et al. (2007). CXC chemokine ligand 9/monokine induced by IFN- production by tumor cells is critical for T cell-mediated suppression of cutaneous tumors. The Journal of Immunology, 178(4), 2278–2286.PubMedCrossRef
74.
go back to reference Zumwalt, T. J., Arnold, M., Goel, A., & Boland, C. R. (2015). Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with granzyme B+ CD8+ T-cell infiltration. Oncotarget, 6(5), 2981–2991.PubMedCrossRef Zumwalt, T. J., Arnold, M., Goel, A., & Boland, C. R. (2015). Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with granzyme B+ CD8+ T-cell infiltration. Oncotarget, 6(5), 2981–2991.PubMedCrossRef
75.
go back to reference Au, K. K., Peterson, N., Truesdell, P., Reid-Schachter, G., Khalaj, K., Ren, R., et al. (2017). CXCL10 alters the tumour immune microenvironment and disease progression in a syngeneic murine model of high-grade serous ovarian cancer. Gynecologic Oncology, 145(3), 436–445.CrossRef Au, K. K., Peterson, N., Truesdell, P., Reid-Schachter, G., Khalaj, K., Ren, R., et al. (2017). CXCL10 alters the tumour immune microenvironment and disease progression in a syngeneic murine model of high-grade serous ovarian cancer. Gynecologic Oncology, 145(3), 436–445.CrossRef
76.
go back to reference Specht, K., Harbeck, N., Smida, J., Annecke, K., Reich, U., Naehrig, J., Langer, R., Mages, J., Busch, R., Kruse, E., Klein-Hitpass, L., Schmitt, M., Kiechle, M., & Hoefler, H. (2009). Expression profiling identifies genes that predict recurrence of breast cancer after adjuvant CMF-based chemotherapy. Breast Cancer Research and Treatment, 118(1), 45–56.PubMedCrossRef Specht, K., Harbeck, N., Smida, J., Annecke, K., Reich, U., Naehrig, J., Langer, R., Mages, J., Busch, R., Kruse, E., Klein-Hitpass, L., Schmitt, M., Kiechle, M., & Hoefler, H. (2009). Expression profiling identifies genes that predict recurrence of breast cancer after adjuvant CMF-based chemotherapy. Breast Cancer Research and Treatment, 118(1), 45–56.PubMedCrossRef
77.
go back to reference Denkert, C., Loibl, S., Noske, A., Roller, M., Müller, B. M., Komor, M., Budczies, J., Darb-Esfahani, S., Kronenwett, R., Hanusch, C., von Törne, C., Weichert, W., Engels, K., Solbach, C., Schrader, I., Dietel, M., & von Minckwitz, G. (2010). Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(1), 105–113.CrossRef Denkert, C., Loibl, S., Noske, A., Roller, M., Müller, B. M., Komor, M., Budczies, J., Darb-Esfahani, S., Kronenwett, R., Hanusch, C., von Törne, C., Weichert, W., Engels, K., Solbach, C., Schrader, I., Dietel, M., & von Minckwitz, G. (2010). Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(1), 105–113.CrossRef
78.
go back to reference Mlecnik, B., Tosolini, M., Charoentong, P., Kirilovsky, A., Bindea, G., Berger, A., Camus, M., Gillard, M., Bruneval, P., Fridman, W.–. H., Pagès, F., Trajanoski, Z., & Galon, J. (2010). Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology, 138(4), 1429–1440.PubMedCrossRef Mlecnik, B., Tosolini, M., Charoentong, P., Kirilovsky, A., Bindea, G., Berger, A., Camus, M., Gillard, M., Bruneval, P., Fridman, W.–. H., Pagès, F., Trajanoski, Z., & Galon, J. (2010). Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology, 138(4), 1429–1440.PubMedCrossRef
79.
go back to reference Denkert, C., von Minckwitz, G., Brase, J. C., Sinn, B. V., Gade, S., Kronenwett, R., et al. (2015). Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33(9), 983–991.CrossRef Denkert, C., von Minckwitz, G., Brase, J. C., Sinn, B. V., Gade, S., Kronenwett, R., et al. (2015). Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33(9), 983–991.CrossRef
80.
go back to reference Bronger, H., Singer, J., Windmüller, C., Reuning, U., Zech, D., Delbridge, C., Dorn, J., Kiechle, M., Schmalfeldt, B., Schmitt, M., & Avril, S. (2016). CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. British Journal of Cancer, 115(5), 553–563.PubMedPubMedCentralCrossRef Bronger, H., Singer, J., Windmüller, C., Reuning, U., Zech, D., Delbridge, C., Dorn, J., Kiechle, M., Schmalfeldt, B., Schmitt, M., & Avril, S. (2016). CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. British Journal of Cancer, 115(5), 553–563.PubMedPubMedCentralCrossRef
81.
go back to reference Sato, Y., Motoyama, S., Nanjo, H., Wakita, A., Yoshino, K., Sasaki, T., Nagaki, Y., Liu, J., Imai, K., Saito, H., & Minamiya, Y. (2016). CXCL10 expression status is prognostic in patients with advanced thoracic esophageal squamous cell carcinoma. Annals of Surgical Oncology, 23(3), 936–942.PubMedCrossRef Sato, Y., Motoyama, S., Nanjo, H., Wakita, A., Yoshino, K., Sasaki, T., Nagaki, Y., Liu, J., Imai, K., Saito, H., & Minamiya, Y. (2016). CXCL10 expression status is prognostic in patients with advanced thoracic esophageal squamous cell carcinoma. Annals of Surgical Oncology, 23(3), 936–942.PubMedCrossRef
82.
go back to reference Wu, Z., Huang, X., Han, X., Li, Z., Zhu, Q., Yan, J., Yu, S., Jin, Z., Wang, Z., Zheng, Q., & Wang, Y. (2016). The chemokine CXCL9 expression is associated with better prognosis for colorectal carcinoma patients. Biomedicine & Pharmacotherapy, 78, 8–13.CrossRef Wu, Z., Huang, X., Han, X., Li, Z., Zhu, Q., Yan, J., Yu, S., Jin, Z., Wang, Z., Zheng, Q., & Wang, Y. (2016). The chemokine CXCL9 expression is associated with better prognosis for colorectal carcinoma patients. Biomedicine & Pharmacotherapy, 78, 8–13.CrossRef
83.
go back to reference Cao, Y., Huang, H., Wang, Z., & Zhang, G. (2017). The inflammatory CXC chemokines, GROalpha(high), IP-10(low), and MIG(low), in tumor microenvironment can be used as new indicators for non-small cell lung cancer progression. Immunological Investigations, 46(4), 361–374.PubMedCrossRef Cao, Y., Huang, H., Wang, Z., & Zhang, G. (2017). The inflammatory CXC chemokines, GROalpha(high), IP-10(low), and MIG(low), in tumor microenvironment can be used as new indicators for non-small cell lung cancer progression. Immunological Investigations, 46(4), 361–374.PubMedCrossRef
84.
go back to reference Bronger, H., Karge, A., Dreyer, T., Zech, D., Kraeft, S., Avril, S., Kiechle, M., & Schmitt, M. (2017). Induction of cathepsin B by the CXCR3 chemokines CXCL9 and CXCL10 in human breast cancer cells. Oncology Letters, 13(6), 4224–4230.PubMedPubMedCentralCrossRef Bronger, H., Karge, A., Dreyer, T., Zech, D., Kraeft, S., Avril, S., Kiechle, M., & Schmitt, M. (2017). Induction of cathepsin B by the CXCR3 chemokines CXCL9 and CXCL10 in human breast cancer cells. Oncology Letters, 13(6), 4224–4230.PubMedPubMedCentralCrossRef
85.
go back to reference Windmüller, C., Zech, D., Avril, S., Boxberg, M., Dawidek, T., Schmalfeldt, B., Schmitt, M., Kiechle, M., & Bronger, H. (2017). CXCR3 mediates ascites-directed tumor cell migration and predicts poor outcome in ovarian cancer patients. Oncogenesis, 6(5), e331.PubMedPubMedCentralCrossRef Windmüller, C., Zech, D., Avril, S., Boxberg, M., Dawidek, T., Schmalfeldt, B., Schmitt, M., Kiechle, M., & Bronger, H. (2017). CXCR3 mediates ascites-directed tumor cell migration and predicts poor outcome in ovarian cancer patients. Oncogenesis, 6(5), e331.PubMedPubMedCentralCrossRef
86.
go back to reference Redjimi, N., Raffin, C., Raimbaud, I., Pignon, P., Matsuzaki, J., Odunsi, K., Valmori, D., & Ayyoub, M. (2012). CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity. Cancer Research, 72(17), 4351–4360.PubMedCrossRef Redjimi, N., Raffin, C., Raimbaud, I., Pignon, P., Matsuzaki, J., Odunsi, K., Valmori, D., & Ayyoub, M. (2012). CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity. Cancer Research, 72(17), 4351–4360.PubMedCrossRef
87.
go back to reference Wang, C., Armasu, S. M., Kalli, K. R., Maurer, M. J., Heinzen, E. P., Keeney, G. L., Cliby, W. A., Oberg, A. L., Kaufmann, S. H., & Goode, E. L. (2017). Pooled clustering of high-grade serous ovarian cancer gene expression leads to novel consensus subtypes associated with survival and surgical outcomes. Clinical Cancer Research, 23(15), 4077–4085.PubMedPubMedCentralCrossRef Wang, C., Armasu, S. M., Kalli, K. R., Maurer, M. J., Heinzen, E. P., Keeney, G. L., Cliby, W. A., Oberg, A. L., Kaufmann, S. H., & Goode, E. L. (2017). Pooled clustering of high-grade serous ovarian cancer gene expression leads to novel consensus subtypes associated with survival and surgical outcomes. Clinical Cancer Research, 23(15), 4077–4085.PubMedPubMedCentralCrossRef
88.
go back to reference Zhang, A. W., McPherson, A., Milne, K., Kroeger, D. R., Hamilton, P. T., Miranda, A., Funnell, T., Little, N., de Souza, C. P. E., Laan, S., LeDoux, S., Cochrane, D. R., Lim, J. L. P., Yang, W., Roth, A., Smith, M. A., Ho, J., Tse, K., Zeng, T., Shlafman, I., Mayo, M. R., Moore, R., Failmezger, H., Heindl, A., Wang, Y. K., Bashashati, A., Grewal, D. S., Brown, S. D., Lai, D., Wan, A. N. C., Nielsen, C. B., Huebner, C., Tessier-Cloutier, B., Anglesio, M. S., Bouchard-Côté, A., Yuan, Y., Wasserman, W. W., Gilks, C. B., Karnezis, A. N., Aparicio, S., McAlpine, J. N., Huntsman, D. G., Holt, R. A., Nelson, B. H., & Shah, S. P. (2018). Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell, 173(7), 1755–1769 e22.PubMedCrossRef Zhang, A. W., McPherson, A., Milne, K., Kroeger, D. R., Hamilton, P. T., Miranda, A., Funnell, T., Little, N., de Souza, C. P. E., Laan, S., LeDoux, S., Cochrane, D. R., Lim, J. L. P., Yang, W., Roth, A., Smith, M. A., Ho, J., Tse, K., Zeng, T., Shlafman, I., Mayo, M. R., Moore, R., Failmezger, H., Heindl, A., Wang, Y. K., Bashashati, A., Grewal, D. S., Brown, S. D., Lai, D., Wan, A. N. C., Nielsen, C. B., Huebner, C., Tessier-Cloutier, B., Anglesio, M. S., Bouchard-Côté, A., Yuan, Y., Wasserman, W. W., Gilks, C. B., Karnezis, A. N., Aparicio, S., McAlpine, J. N., Huntsman, D. G., Holt, R. A., Nelson, B. H., & Shah, S. P. (2018). Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell, 173(7), 1755–1769 e22.PubMedCrossRef
89.
go back to reference Peng, W., Liu, C., Xu, C., Lou, Y., Chen, J., Yang, Y., Yagita, H., Overwijk, W. W., Lizee, G., Radvanyi, L., & Hwu, P. (2012). PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Research, 72(20), 5209–5218.PubMedPubMedCentralCrossRef Peng, W., Liu, C., Xu, C., Lou, Y., Chen, J., Yang, Y., Yagita, H., Overwijk, W. W., Lizee, G., Radvanyi, L., & Hwu, P. (2012). PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Research, 72(20), 5209–5218.PubMedPubMedCentralCrossRef
90.
go back to reference Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., Kotarski, J., Tarkowski, R., Dou, Y., Cho, K., Hensley-Alford, S., Munkarah, A., Liu, R., & Zou, W. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577), 249–253.PubMedPubMedCentralCrossRef Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., Kotarski, J., Tarkowski, R., Dou, Y., Cho, K., Hensley-Alford, S., Munkarah, A., Liu, R., & Zou, W. (2015). Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577), 249–253.PubMedPubMedCentralCrossRef
91.
go back to reference Seo, H., Kim, B. S., Bae, E. A., Min, B. S., Han, Y. D., Shin, S. J., & Kang, C. Y. (2018). IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors. Cancer Immunology Research, 6(6), 685–695.PubMedCrossRef Seo, H., Kim, B. S., Bae, E. A., Min, B. S., Han, Y. D., Shin, S. J., & Kang, C. Y. (2018). IL21 therapy combined with PD-1 and Tim-3 blockade provides enhanced NK cell antitumor activity against MHC class I-deficient tumors. Cancer Immunology Research, 6(6), 685–695.PubMedCrossRef
92.
go back to reference Oyanagi, J., Koh, Y., Sato, K., Mori, K., Teraoka, S., Akamatsu, H., Kanai, K., Hayata, A., Tokudome, N., Akamatsu, K., Nakanishi, M., Ueda, H., & Yamamoto, N. (2019). Predictive value of serum protein levels in patients with advanced non-small cell lung cancer treated with nivolumab. Lung Cancer, 132, 107–113.PubMedCrossRef Oyanagi, J., Koh, Y., Sato, K., Mori, K., Teraoka, S., Akamatsu, H., Kanai, K., Hayata, A., Tokudome, N., Akamatsu, K., Nakanishi, M., Ueda, H., & Yamamoto, N. (2019). Predictive value of serum protein levels in patients with advanced non-small cell lung cancer treated with nivolumab. Lung Cancer, 132, 107–113.PubMedCrossRef
93.
go back to reference Goel, S., DeCristo, M. J., Watt, A. C., BrinJones, H., Sceneay, J., Li, B. B., Khan, N., Ubellacker, J. M., Xie, S., Metzger-Filho, O., Hoog, J., Ellis, M. J., Ma, C. X., Ramm, S., Krop, I. E., Winer, E. P., Roberts, T. M., Kim, H. J., McAllister, S. S., & Zhao, J. J. (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668), 471–475.PubMedPubMedCentralCrossRef Goel, S., DeCristo, M. J., Watt, A. C., BrinJones, H., Sceneay, J., Li, B. B., Khan, N., Ubellacker, J. M., Xie, S., Metzger-Filho, O., Hoog, J., Ellis, M. J., Ma, C. X., Ramm, S., Krop, I. E., Winer, E. P., Roberts, T. M., Kim, H. J., McAllister, S. S., & Zhao, J. J. (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668), 471–475.PubMedPubMedCentralCrossRef
94.
go back to reference Ding, L., Kim, H. J., Wang, Q., Kearns, M., Jiang, T., Ohlson, C. E., Li, B. B., Xie, S., Liu, J. F., Stover, E. H., Howitt, B. E., Bronson, R. T., Lazo, S., Roberts, T. M., Freeman, G. J., Konstantinopoulos, P. A., Matulonis, U. A., & Zhao, J. J. (2018). PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Reports, 25(11), 2972–2980 e5.PubMedPubMedCentralCrossRef Ding, L., Kim, H. J., Wang, Q., Kearns, M., Jiang, T., Ohlson, C. E., Li, B. B., Xie, S., Liu, J. F., Stover, E. H., Howitt, B. E., Bronson, R. T., Lazo, S., Roberts, T. M., Freeman, G. J., Konstantinopoulos, P. A., Matulonis, U. A., & Zhao, J. J. (2018). PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Reports, 25(11), 2972–2980 e5.PubMedPubMedCentralCrossRef
95.
go back to reference Chabanon, R. M., Muirhead, G., Krastev, D. B., Adam, J., Morel, D., Garrido, M., Lamb, A., Hénon, C., Dorvault, N., Rouanne, M., Marlow, R., Bajrami, I., Cardeñosa, M. L., Konde, A., Besse, B., Ashworth, A., Pettitt, S. J., Haider, S., Marabelle, A., Tutt, A. N. J., Soria, J. C., Lord, C. J., & Postel-Vinay, S. (2019). PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. The Journal of Clinical Investigation, 129(3), 1211–1228.PubMedPubMedCentralCrossRef Chabanon, R. M., Muirhead, G., Krastev, D. B., Adam, J., Morel, D., Garrido, M., Lamb, A., Hénon, C., Dorvault, N., Rouanne, M., Marlow, R., Bajrami, I., Cardeñosa, M. L., Konde, A., Besse, B., Ashworth, A., Pettitt, S. J., Haider, S., Marabelle, A., Tutt, A. N. J., Soria, J. C., Lord, C. J., & Postel-Vinay, S. (2019). PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. The Journal of Clinical Investigation, 129(3), 1211–1228.PubMedPubMedCentralCrossRef
96.
go back to reference Pantelidou, C., Sonzogni, O., De Oliveria Taveira, M., Mehta, A. K., Kothari, A., Wang, D., et al. (2019). PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discovery, 9(6), 722–737.PubMedCrossRef Pantelidou, C., Sonzogni, O., De Oliveria Taveira, M., Mehta, A. K., Kothari, A., Wang, D., et al. (2019). PARP inhibitor efficacy depends on CD8(+) T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discovery, 9(6), 722–737.PubMedCrossRef
97.
go back to reference Sen, T., Rodriguez, B. L., Chen, L., Corte, C. M. D., Morikawa, N., Fujimoto, J., Cristea, S., Nguyen, T., Diao, L., Li, L., Fan, Y., Yang, Y., Wang, J., Glisson, B. S., Wistuba, I. I., Sage, J., Heymach, J. V., Gibbons, D. L., & Byers, L. A. (2019). Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discovery, 9(5), 646–661.PubMedCrossRef Sen, T., Rodriguez, B. L., Chen, L., Corte, C. M. D., Morikawa, N., Fujimoto, J., Cristea, S., Nguyen, T., Diao, L., Li, L., Fan, Y., Yang, Y., Wang, J., Glisson, B. S., Wistuba, I. I., Sage, J., Heymach, J. V., Gibbons, D. L., & Byers, L. A. (2019). Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discovery, 9(5), 646–661.PubMedCrossRef
98.
go back to reference Shen, J., Zhao, W., Ju, Z., Wang, L., Peng, Y., Labrie, M., Yap, T. A., Mills, G. B., & Peng, G. (2019). PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Research, 79(2), 311–319.PubMedCrossRef Shen, J., Zhao, W., Ju, Z., Wang, L., Peng, Y., Labrie, M., Yap, T. A., Mills, G. B., & Peng, G. (2019). PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Research, 79(2), 311–319.PubMedCrossRef
99.
go back to reference Wang, Z., Sun, K., Xiao, Y., Feng, B., Mikule, K., Ma, X., Feng, N., Vellano, C. P., Federico, L., Marszalek, J. R., Mills, G. B., Hanke, J., Ramaswamy, S., & Wang, J. (2019). Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Scientific Reports, 9(1), 1853.PubMedPubMedCentralCrossRef Wang, Z., Sun, K., Xiao, Y., Feng, B., Mikule, K., Ma, X., Feng, N., Vellano, C. P., Federico, L., Marszalek, J. R., Mills, G. B., Hanke, J., Ramaswamy, S., & Wang, J. (2019). Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Scientific Reports, 9(1), 1853.PubMedPubMedCentralCrossRef
100.
go back to reference Andre, F., Cabioglu, N., Assi, H., Sabourin, J. C., Delaloge, S., Sahin, A., Broglio, K., Spano, J. P., Combadiere, C., Bucana, C., Soria, J. C., & Cristofanilli, M. (2006). Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Annals of Oncology, 17(6), 945–951.PubMedCrossRef Andre, F., Cabioglu, N., Assi, H., Sabourin, J. C., Delaloge, S., Sahin, A., Broglio, K., Spano, J. P., Combadiere, C., Bucana, C., Soria, J. C., & Cristofanilli, M. (2006). Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Annals of Oncology, 17(6), 945–951.PubMedCrossRef
101.
go back to reference Jamieson-Gladney, W. L., Zhang, Y., Fong, A. M., Meucci, O., & Fatatis, A. (2011). The chemokine receptor CX(3)CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Research, 13(5), R91.PubMedCrossRef Jamieson-Gladney, W. L., Zhang, Y., Fong, A. M., Meucci, O., & Fatatis, A. (2011). The chemokine receptor CX(3)CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Research, 13(5), R91.PubMedCrossRef
102.
go back to reference Shulby, S. A., Dolloff, N. G., Stearns, M. E., Meucci, O., & Fatatis, A. (2004). CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Research, 64(14), 4693–4698.PubMedCrossRef Shulby, S. A., Dolloff, N. G., Stearns, M. E., Meucci, O., & Fatatis, A. (2004). CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Research, 64(14), 4693–4698.PubMedCrossRef
103.
go back to reference Marchesi, F., Piemonti, L., Fedele, G., Destro, A., Roncalli, M., Albarello, L., Doglioni, C., Anselmo, A., Doni, A., Bianchi, P., Laghi, L., Malesci, A., Cervo, L., Malosio, M. L., Reni, M., Zerbi, A., di Carlo, V., Mantovani, A., & Allavena, P. (2008). The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Research, 68(21), 9060–9069.PubMedCrossRef Marchesi, F., Piemonti, L., Fedele, G., Destro, A., Roncalli, M., Albarello, L., Doglioni, C., Anselmo, A., Doni, A., Bianchi, P., Laghi, L., Malesci, A., Cervo, L., Malosio, M. L., Reni, M., Zerbi, A., di Carlo, V., Mantovani, A., & Allavena, P. (2008). The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Research, 68(21), 9060–9069.PubMedCrossRef
104.
go back to reference Marchesi, F., Piemonti, L., Mantovani, A., & Allavena, P. (2010). Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine & Growth Factor Reviews, 21(1), 77–82.CrossRef Marchesi, F., Piemonti, L., Mantovani, A., & Allavena, P. (2010). Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine & Growth Factor Reviews, 21(1), 77–82.CrossRef
105.
go back to reference Kim, M., Rooper, L., Xie, J., Kajdacsy-Balla, A. A., & Barbolina, M. V. (2012). Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells. Molecular Cancer Research, 10(1), 11–24.PubMedCrossRef Kim, M., Rooper, L., Xie, J., Kajdacsy-Balla, A. A., & Barbolina, M. V. (2012). Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells. Molecular Cancer Research, 10(1), 11–24.PubMedCrossRef
106.
go back to reference Gurler Main, H., Xie, J., Muralidhar, G. G., Elfituri, O., Xu, H., Kajdacsy-Balla, A. A., & Barbolina, M. V. (2017). Emergent role of the fractalkine axis in dissemination of peritoneal metastasis from epithelial ovarian carcinoma. Oncogene, 36(21), 3025–3036.PubMedCrossRef Gurler Main, H., Xie, J., Muralidhar, G. G., Elfituri, O., Xu, H., Kajdacsy-Balla, A. A., & Barbolina, M. V. (2017). Emergent role of the fractalkine axis in dissemination of peritoneal metastasis from epithelial ovarian carcinoma. Oncogene, 36(21), 3025–3036.PubMedCrossRef
107.
go back to reference Kanagawa, N., Niwa, M., Hatanaka, Y., Tani, Y., Nakagawa, S., Fujita, T., Yamamoto, A., & Okada, N. (2007). CC-chemokine ligand 17 gene therapy induces tumor regression through augmentation of tumor-infiltrating immune cells in a murine model of preexisting CT26 colon carcinoma. International Journal of Cancer, 121(9), 2013–2022.PubMedCrossRef Kanagawa, N., Niwa, M., Hatanaka, Y., Tani, Y., Nakagawa, S., Fujita, T., Yamamoto, A., & Okada, N. (2007). CC-chemokine ligand 17 gene therapy induces tumor regression through augmentation of tumor-infiltrating immune cells in a murine model of preexisting CT26 colon carcinoma. International Journal of Cancer, 121(9), 2013–2022.PubMedCrossRef
108.
go back to reference Ren, T., Chen, Q., Tian, Z., & Wei, H. (2007). Down-regulation of surface fractalkine by RNA interference in B16 melanoma reduced tumor growth in mice. Biochemical and Biophysical Research Communications, 364(4), 978–984.PubMedCrossRef Ren, T., Chen, Q., Tian, Z., & Wei, H. (2007). Down-regulation of surface fractalkine by RNA interference in B16 melanoma reduced tumor growth in mice. Biochemical and Biophysical Research Communications, 364(4), 978–984.PubMedCrossRef
109.
go back to reference Tang, L., Hu, H., Hu, P., Lan, Y., Peng, M., Chen, M., et al. (2007). Gene therapy with CX3CL1/fractalkine induces antitumor immunity to regress effectively mouse hepatocellular carcinoma. Gene Therapy, 14(16), 1226–1234.PubMedCrossRef Tang, L., Hu, H., Hu, P., Lan, Y., Peng, M., Chen, M., et al. (2007). Gene therapy with CX3CL1/fractalkine induces antitumor immunity to regress effectively mouse hepatocellular carcinoma. Gene Therapy, 14(16), 1226–1234.PubMedCrossRef
110.
go back to reference Vitale, S., Cambien, B., Karimdjee, B. F., Barthel, R., Staccini, P., Luci, C., Breittmayer, V., Anjuere, F., Schmid-Alliana, A., & Schmid-Antomarchi, H. (2007). Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut, 56(3), 365–372.PubMedCrossRef Vitale, S., Cambien, B., Karimdjee, B. F., Barthel, R., Staccini, P., Luci, C., Breittmayer, V., Anjuere, F., Schmid-Alliana, A., & Schmid-Antomarchi, H. (2007). Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut, 56(3), 365–372.PubMedCrossRef
111.
go back to reference Yu, Y. R. A., Fong, A. M., Combadiere, C., Gao, J. L., Murphy, P. M., & Patel, D. D. (2007). Defective antitumor responses in CX3CR1-deficient mice. International Journal of Cancer, 121(2), 316–322.PubMedCrossRef Yu, Y. R. A., Fong, A. M., Combadiere, C., Gao, J. L., Murphy, P. M., & Patel, D. D. (2007). Defective antitumor responses in CX3CR1-deficient mice. International Journal of Cancer, 121(2), 316–322.PubMedCrossRef
112.
go back to reference Richard-Fiardo, P., Cambien, B., Pradelli, E., Beilvert, F., Pitard, B., Schmid-Antomarchi, H., & Schmid-Alliana, A. (2011). Effect of fractalkine-Fc delivery in experimental lung metastasis using DNA/704 nanospheres. Cancer Gene Therapy, 18(11), 761–772.PubMedCrossRef Richard-Fiardo, P., Cambien, B., Pradelli, E., Beilvert, F., Pitard, B., Schmid-Antomarchi, H., & Schmid-Alliana, A. (2011). Effect of fractalkine-Fc delivery in experimental lung metastasis using DNA/704 nanospheres. Cancer Gene Therapy, 18(11), 761–772.PubMedCrossRef
113.
go back to reference Tardáguila, M., & Mañes, S. (2013). CX3CL1 at the crossroad of EGF signals: Relevance for the progression of ERBB2(+) breast carcinoma. Oncoimmunology, 2(9), e25669.PubMedPubMedCentralCrossRef Tardáguila, M., & Mañes, S. (2013). CX3CL1 at the crossroad of EGF signals: Relevance for the progression of ERBB2(+) breast carcinoma. Oncoimmunology, 2(9), e25669.PubMedPubMedCentralCrossRef
114.
go back to reference Lee, Y., Chittezhath, M., André, V., Zhao, H., Poidinger, M., Biondi, A., et al. (2012). Protumoral role of monocytes in human B-cell precursor acute lymphoblastic leukemia: Involvement of the chemokine CXCL10. Blood, 119(1), 227–237.PubMedCrossRef Lee, Y., Chittezhath, M., André, V., Zhao, H., Poidinger, M., Biondi, A., et al. (2012). Protumoral role of monocytes in human B-cell precursor acute lymphoblastic leukemia: Involvement of the chemokine CXCL10. Blood, 119(1), 227–237.PubMedCrossRef
115.
go back to reference Shin, S. Y., Nam, J. S., Lim, Y., & Lee, Y. H. (2010). TNFα-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. Journal of Biological Chemistry, 285(40), 30731–30740.PubMedCrossRef Shin, S. Y., Nam, J. S., Lim, Y., & Lee, Y. H. (2010). TNFα-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. Journal of Biological Chemistry, 285(40), 30731–30740.PubMedCrossRef
116.
go back to reference Zipin-Roitman, A., Meshel, T., Sagi-Assif, O., Shalmon, B., Avivi, C., Pfeffer, R. M., Witz, I. P., & Ben-Baruch, A. (2007). CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Research, 67(7), 3396–3405.PubMedCrossRef Zipin-Roitman, A., Meshel, T., Sagi-Assif, O., Shalmon, B., Avivi, C., Pfeffer, R. M., Witz, I. P., & Ben-Baruch, A. (2007). CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Research, 67(7), 3396–3405.PubMedCrossRef
117.
go back to reference Pellegrino, A., Antonaci, F., Russo, F., Merchionne, F., Ribatti, D., Vacca, A., et al. (2004). CXCR3-binding chemokines in multiple myeloma. Cancer Letters, 207(2), 221–227.PubMedCrossRef Pellegrino, A., Antonaci, F., Russo, F., Merchionne, F., Ribatti, D., Vacca, A., et al. (2004). CXCR3-binding chemokines in multiple myeloma. Cancer Letters, 207(2), 221–227.PubMedCrossRef
118.
go back to reference Zhou, H., Wu, J., Wang, T., Zhang, X., & Liu, D. (2016). CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 82, 479–488.CrossRef Zhou, H., Wu, J., Wang, T., Zhang, X., & Liu, D. (2016). CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 82, 479–488.CrossRef
119.
go back to reference Van den Steen, P. E., Husson, S. J., Proost, P., Van Damme, J., & Opdenakker, G. (2003). Carboxyterminal cleavage of the chemokines MIG and IP-10 by gelatinase B and neutrophil collagenase. Biochemical and Biophysical Research Communications, 310(3), 889–896.PubMedCrossRef Van den Steen, P. E., Husson, S. J., Proost, P., Van Damme, J., & Opdenakker, G. (2003). Carboxyterminal cleavage of the chemokines MIG and IP-10 by gelatinase B and neutrophil collagenase. Biochemical and Biophysical Research Communications, 310(3), 889–896.PubMedCrossRef
120.
go back to reference Cox, J. H., Dean, R. A., Roberts, C. R., & Overall, C. M. (2008). Matrix metalloproteinase processing of CXCL11/I-TAC results in loss of chemoattractant activity and altered glycosaminoglycan binding. The Journal of Biological Chemistry, 283(28), 19389–19399.PubMedCrossRef Cox, J. H., Dean, R. A., Roberts, C. R., & Overall, C. M. (2008). Matrix metalloproteinase processing of CXCL11/I-TAC results in loss of chemoattractant activity and altered glycosaminoglycan binding. The Journal of Biological Chemistry, 283(28), 19389–19399.PubMedCrossRef
121.
go back to reference Robinson, L. A., Nataraj, C., Thomas, D. W., Cosby, J. M., Griffiths, R., Bautch, V. L., Patel, D. D., & Coffman, T. M. (2003). The chemokine CX3CL1 regulates NK cell activity in vivo. Cellular Immunology, 225(2), 122–130.PubMedCrossRef Robinson, L. A., Nataraj, C., Thomas, D. W., Cosby, J. M., Griffiths, R., Bautch, V. L., Patel, D. D., & Coffman, T. M. (2003). The chemokine CX3CL1 regulates NK cell activity in vivo. Cellular Immunology, 225(2), 122–130.PubMedCrossRef
122.
go back to reference Repnik, U., Starr, A. E., Overall, C. M., & Turk, B. (2015). Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines. The Journal of Biological Chemistry, 290(22), 13800–13811.PubMedPubMedCentralCrossRef Repnik, U., Starr, A. E., Overall, C. M., & Turk, B. (2015). Cysteine cathepsins activate ELR chemokines and inactivate non-ELR chemokines. The Journal of Biological Chemistry, 290(22), 13800–13811.PubMedPubMedCentralCrossRef
123.
go back to reference Proost, P., Schutyser, E., Menten, P., Struyf, S., Wuyts, A., Opdenakker, G., et al. (2001). Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood, 98(13), 3554–3561.PubMedCrossRef Proost, P., Schutyser, E., Menten, P., Struyf, S., Wuyts, A., Opdenakker, G., et al. (2001). Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood, 98(13), 3554–3561.PubMedCrossRef
124.
go back to reference Liao, F. (1995). Human Mig chemokine: biochemical and functional characterization. Journal of Experimental Medicine, 182(5), 1301–1314.PubMedCrossRef Liao, F. (1995). Human Mig chemokine: biochemical and functional characterization. Journal of Experimental Medicine, 182(5), 1301–1314.PubMedCrossRef
125.
go back to reference Hensbergen, P. J., Verzijl, D., Balog, C. I. A., Dijkman, R., van der Schors, R. C., van der Raaij-Helmer, E. M. H., van der Plas, M. J. A., Leurs, R., Deelder, A. M., Smit, M. J., & Tensen, C. P. (2004). Furin is a chemokine-modifying enzyme. Journal of Biological Chemistry, 279, 13402–13411.PubMedCrossRef Hensbergen, P. J., Verzijl, D., Balog, C. I. A., Dijkman, R., van der Schors, R. C., van der Raaij-Helmer, E. M. H., van der Plas, M. J. A., Leurs, R., Deelder, A. M., Smit, M. J., & Tensen, C. P. (2004). Furin is a chemokine-modifying enzyme. Journal of Biological Chemistry, 279, 13402–13411.PubMedCrossRef
126.
go back to reference Ludwig, A., Schiemann, F., Mentlein, R., Lindner, B., & Brandt, E. (2002). Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. Journal of Leukocyte Biology, 72(1), 183–191.PubMed Ludwig, A., Schiemann, F., Mentlein, R., Lindner, B., & Brandt, E. (2002). Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. Journal of Leukocyte Biology, 72(1), 183–191.PubMed
127.
go back to reference Inoue, A., Hasegawa, H., Kohno, M., Ito, M. R., Terada, M., Imai, T., Yoshie, O., Nose, M., & Fujita, S. (2005). Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis and Rheumatism, 52(5), 1522–1533.PubMedCrossRef Inoue, A., Hasegawa, H., Kohno, M., Ito, M. R., Terada, M., Imai, T., Yoshie, O., Nose, M., & Fujita, S. (2005). Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis and Rheumatism, 52(5), 1522–1533.PubMedCrossRef
128.
go back to reference Hensbergen, P. J., Verzijl, D., Balog, C. I. A., Dijkman, R., van der Schors, R. C., van der Raaij-Helmer, E. M. H., van der Plas, M. J. A., Leurs, R., Deelder, A. M., Smit, M. J., & Tensen, C. P. (2004). Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity. The Journal of Biological Chemistry, 279(14), 13402–13411.PubMedCrossRef Hensbergen, P. J., Verzijl, D., Balog, C. I. A., Dijkman, R., van der Schors, R. C., van der Raaij-Helmer, E. M. H., van der Plas, M. J. A., Leurs, R., Deelder, A. M., Smit, M. J., & Tensen, C. P. (2004). Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity. The Journal of Biological Chemistry, 279(14), 13402–13411.PubMedCrossRef
129.
go back to reference Decalf, J., Tarbell, K. V., Casrouge, A., Price, J. D., Linder, G., Mottez, E., et al. (2016). Inhibition of DPP4 activity in humans establishes its in vivo role in CXCL10 post-translational modification: Prospective placebo-controlled clinical studies. EMBO Molecular Medicine, 8(6), 679–683.PubMedPubMedCentralCrossRef Decalf, J., Tarbell, K. V., Casrouge, A., Price, J. D., Linder, G., Mottez, E., et al. (2016). Inhibition of DPP4 activity in humans establishes its in vivo role in CXCL10 post-translational modification: Prospective placebo-controlled clinical studies. EMBO Molecular Medicine, 8(6), 679–683.PubMedPubMedCentralCrossRef
130.
go back to reference Ajami, K., Pitman, M. R., Wilson, C. H., Park, J., Menz, R. I., Starr, A. E., Cox, J. H., Abbott, C. A., Overall, C. M., & Gorrell, M. D. (2008). Stromal cell-derived factors 1alpha and 1beta, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8. FEBS Letters, 582(5), 819–825.PubMedCrossRef Ajami, K., Pitman, M. R., Wilson, C. H., Park, J., Menz, R. I., Starr, A. E., Cox, J. H., Abbott, C. A., Overall, C. M., & Gorrell, M. D. (2008). Stromal cell-derived factors 1alpha and 1beta, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8. FEBS Letters, 582(5), 819–825.PubMedCrossRef
131.
go back to reference Zhang, H., Maqsudi, S., Rainczuk, A., Duffield, N., Lawrence, J., Keane, F. M., Justa-Schuch, D., Geiss-Friedlander, R., Gorrell, M. D., & Stephens, A. N. (2015). Identification of novel dipeptidyl peptidase 9 substrates by two-dimensional differential in-gel electrophoresis. FEBS Journal, 282, 3737–3757.PubMedCrossRef Zhang, H., Maqsudi, S., Rainczuk, A., Duffield, N., Lawrence, J., Keane, F. M., Justa-Schuch, D., Geiss-Friedlander, R., Gorrell, M. D., & Stephens, A. N. (2015). Identification of novel dipeptidyl peptidase 9 substrates by two-dimensional differential in-gel electrophoresis. FEBS Journal, 282, 3737–3757.PubMedCrossRef
132.
go back to reference Proost, P., Mortier, A., Loos, T., Vandercappellen, J., Gouwy, M., Ronsse, I., Schutyser, E., Put, W., Parmentier, M., Struyf, S., & van Damme, J. (2007). Proteolytic processing of CXCL11 by CD13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood, 110(1), 37–44.PubMedCrossRef Proost, P., Mortier, A., Loos, T., Vandercappellen, J., Gouwy, M., Ronsse, I., Schutyser, E., Put, W., Parmentier, M., Struyf, S., & van Damme, J. (2007). Proteolytic processing of CXCL11 by CD13/aminopeptidase N impairs CXCR3 and CXCR7 binding and signaling and reduces lymphocyte and endothelial cell migration. Blood, 110(1), 37–44.PubMedCrossRef
133.
go back to reference Hundhausen, C., Schulte, A., Schulz, B., Andrzejewski, M. G., Schwarz, N., von Hundelshausen, P., et al. (2007). Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. Journal of Immunology (Baltimore, Md. : 1950), 178(12), 8064–8072.CrossRef Hundhausen, C., Schulte, A., Schulz, B., Andrzejewski, M. G., Schwarz, N., von Hundelshausen, P., et al. (2007). Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. Journal of Immunology (Baltimore, Md. : 1950), 178(12), 8064–8072.CrossRef
134.
go back to reference Garton, K. J., Gough, P. J., Blobel, C. P., Murphy, G., Greaves, D. R., Dempsey, P. J., et al. (2001). Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). The Journal of Biological Chemistry, 276(41), 37993–38001.PubMed Garton, K. J., Gough, P. J., Blobel, C. P., Murphy, G., Greaves, D. R., Dempsey, P. J., et al. (2001). Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). The Journal of Biological Chemistry, 276(41), 37993–38001.PubMed
135.
go back to reference Ludwig, A., & Weber, C. (2007). Transmembrane chemokines: versatile “special agents” in vascular inflammation. Thrombosis and Haemostasis, 97(5), 694–703.PubMedCrossRef Ludwig, A., & Weber, C. (2007). Transmembrane chemokines: versatile “special agents” in vascular inflammation. Thrombosis and Haemostasis, 97(5), 694–703.PubMedCrossRef
136.
go back to reference Johnson, L. A., & Jackson, D. G. (2013). The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. Journal of Cell Science, 126(Pt 22), 5259–5270.PubMedPubMedCentralCrossRef Johnson, L. A., & Jackson, D. G. (2013). The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. Journal of Cell Science, 126(Pt 22), 5259–5270.PubMedPubMedCentralCrossRef
137.
go back to reference Bourd-Boittin, K., Basset, L., Bonnier, D., L’Helgoualc’h, A., Samson, M., & Théret, N. (2009). CX3CL1/fractalkine shedding by human hepatic stellate cells: Contribution to chronic inflammation in the liver. Journal of Cellular and Molecular Medicine, 13(8a), 1526–1535.PubMedPubMedCentralCrossRef Bourd-Boittin, K., Basset, L., Bonnier, D., L’Helgoualc’h, A., Samson, M., & Théret, N. (2009). CX3CL1/fractalkine shedding by human hepatic stellate cells: Contribution to chronic inflammation in the liver. Journal of Cellular and Molecular Medicine, 13(8a), 1526–1535.PubMedPubMedCentralCrossRef
138.
go back to reference Malcangio, M., & Clark, A. K. (2012). Microglial signalling mechanisms: cathepsin S and fractalkine. Experimental Neurology, 234(2), 283–292.PubMedCrossRef Malcangio, M., & Clark, A. K. (2012). Microglial signalling mechanisms: cathepsin S and fractalkine. Experimental Neurology, 234(2), 283–292.PubMedCrossRef
139.
go back to reference Wildenberg, M. E., van Helden-Meeuwsen, C. G., Drexhage, H. A., & Versnel, M. A. (2008). Altered fractalkine cleavage potentially promotes local inflammation in NOD salivary gland. Arthritis Research and Therapy, 10(3), R69.PubMedCrossRef Wildenberg, M. E., van Helden-Meeuwsen, C. G., Drexhage, H. A., & Versnel, M. A. (2008). Altered fractalkine cleavage potentially promotes local inflammation in NOD salivary gland. Arthritis Research and Therapy, 10(3), R69.PubMedCrossRef
140.
go back to reference Juric, V., O’Sullivan, C., Stefanutti, E., Kovalenko, M., Greenstein, A., Barry-Hamilton, V., et al. (2018). MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors. PLoS One, 13(11), e0207255.PubMedPubMedCentralCrossRef Juric, V., O’Sullivan, C., Stefanutti, E., Kovalenko, M., Greenstein, A., Barry-Hamilton, V., et al. (2018). MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors. PLoS One, 13(11), e0207255.PubMedPubMedCentralCrossRef
141.
go back to reference Nishina, S., Yamauchi, A., Kawaguchi, T., Kaku, K., Goto, M., Sasaki, K., Hara, Y., Tomiyama, Y., Kuribayashi, F., Torimura, T., & Hino, K. (2019). Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cellular and Molecular Gastroenterology and Hepatology, 7(1), 115–134.PubMedCrossRef Nishina, S., Yamauchi, A., Kawaguchi, T., Kaku, K., Goto, M., Sasaki, K., Hara, Y., Tomiyama, Y., Kuribayashi, F., Torimura, T., & Hino, K. (2019). Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cellular and Molecular Gastroenterology and Hepatology, 7(1), 115–134.PubMedCrossRef
142.
go back to reference Hollande, C., Boussier, J., Ziai, J., Nozawa, T., Bondet, V., Phung, W., Lu, B., Duffy, D., Paradis, V., Mallet, V., Eberl, G., Sandoval, W., Schartner, J. M., Pol, S., Barreira da Silva, R., & Albert, M. L. (2019). Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nature Immunology, 20(3), 257–264.PubMedCrossRef Hollande, C., Boussier, J., Ziai, J., Nozawa, T., Bondet, V., Phung, W., Lu, B., Duffy, D., Paradis, V., Mallet, V., Eberl, G., Sandoval, W., Schartner, J. M., Pol, S., Barreira da Silva, R., & Albert, M. L. (2019). Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nature Immunology, 20(3), 257–264.PubMedCrossRef
143.
go back to reference Rainczuk, A., Rao, J. R., Gathercole, J. L., Fairweather, N. J., Chu, S., Masadah, R., Jobling, T. W., Deb-Choudhury, S., Dyer, J., & Stephens, A. N. (2014). Evidence for the antagonistic form of CXC-motif chemokine CXCL10 in serous epithelial ovarian tumours. International Journal of Cancer, 134(3), 530–541.PubMedCrossRef Rainczuk, A., Rao, J. R., Gathercole, J. L., Fairweather, N. J., Chu, S., Masadah, R., Jobling, T. W., Deb-Choudhury, S., Dyer, J., & Stephens, A. N. (2014). Evidence for the antagonistic form of CXC-motif chemokine CXCL10 in serous epithelial ovarian tumours. International Journal of Cancer, 134(3), 530–541.PubMedCrossRef
Metadata
Title
Proteolytic chemokine cleavage as a regulator of lymphocytic infiltration in solid tumors
Authors
Holger Bronger
Viktor Magdolen
Peter Goettig
Tobias Dreyer
Publication date
01-09-2019
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2019
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09807-3

Other articles of this Issue 3/2019

Cancer and Metastasis Reviews 3/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine