Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2017

Open Access 01-12-2017

(Immuno)proteasomes as therapeutic target in acute leukemia

Authors: Jacqueline Cloos, Margot SF Roeten, Niels E Franke, Johan van Meerloo, Sonja Zweegman, Gertjan JL Kaspers, Gerrit Jansen

Published in: Cancer and Metastasis Reviews | Issue 4/2017

Login to get access

Abstract

The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Literature
3.
go back to reference Pui, C.-H., Carroll, W. L., Meshinchi, S., & Arceci, R. J. (2011). Biology, risk stratification, and therapy of pediatric acute leukemias: an update. Journal of Clinical Oncology, 29, 551–565.PubMedCrossRef Pui, C.-H., Carroll, W. L., Meshinchi, S., & Arceci, R. J. (2011). Biology, risk stratification, and therapy of pediatric acute leukemias: an update. Journal of Clinical Oncology, 29, 551–565.PubMedCrossRef
4.
go back to reference Paul, S., Kantarjian, H., & Jabbour, E. J. (2016). Adult acute lymphoblastic leukemia. Mayo Clinic Proceedings, 91, 1645–1666.PubMedCrossRef Paul, S., Kantarjian, H., & Jabbour, E. J. (2016). Adult acute lymphoblastic leukemia. Mayo Clinic Proceedings, 91, 1645–1666.PubMedCrossRef
5.
go back to reference Chaudhury, S. S., Morison, J. K., Gibson, B. E. S., & Keeshan, K. (2015). Insights into cell ontogeny, age, and acute myeloid leukemia. Experimental Hematology, 43, 745–755.PubMedCrossRef Chaudhury, S. S., Morison, J. K., Gibson, B. E. S., & Keeshan, K. (2015). Insights into cell ontogeny, age, and acute myeloid leukemia. Experimental Hematology, 43, 745–755.PubMedCrossRef
6.
go back to reference Micel, L. N., Tentler, J. J., Smith, P. G., & Eckhardt, G. S. (2013). Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. Journal of Clinical Oncology, 31, 1231–1238.PubMedPubMedCentralCrossRef Micel, L. N., Tentler, J. J., Smith, P. G., & Eckhardt, G. S. (2013). Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. Journal of Clinical Oncology, 31, 1231–1238.PubMedPubMedCentralCrossRef
7.
go back to reference Tasian, S. K., & Hunger, S. P. (2017). Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. British Journal of Haematology, 176, 867–882.PubMedCrossRef Tasian, S. K., & Hunger, S. P. (2017). Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine therapeutics. British Journal of Haematology, 176, 867–882.PubMedCrossRef
8.
go back to reference Prada-Arismendy, J., Arroyave, J. C., & Röthlisberger, S. (2017). Molecular biomarkers in acute myeloid leukemia. Blood Reviews, 31, 63–76.PubMedCrossRef Prada-Arismendy, J., Arroyave, J. C., & Röthlisberger, S. (2017). Molecular biomarkers in acute myeloid leukemia. Blood Reviews, 31, 63–76.PubMedCrossRef
9.
go back to reference Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nature Reviews. Cancer, 4, 349–360.PubMedCrossRef Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nature Reviews. Cancer, 4, 349–360.PubMedCrossRef
10.
go back to reference Anderson, K. C. (2012). The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. Journal of Clinical Oncology, 30, 445–452.PubMedPubMedCentralCrossRef Anderson, K. C. (2012). The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. Journal of Clinical Oncology, 30, 445–452.PubMedPubMedCentralCrossRef
11.
12.
go back to reference Wright, J. J. (2010). Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clinical Cancer Research, 16, 4094–4104.PubMedCrossRef Wright, J. J. (2010). Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clinical Cancer Research, 16, 4094–4104.PubMedCrossRef
13.
go back to reference Parlati, F., Lee, S. J., Aujay, M., et al. (2009). Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood, 114, 3439–3447.PubMedCrossRef Parlati, F., Lee, S. J., Aujay, M., et al. (2009). Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood, 114, 3439–3447.PubMedCrossRef
14.
go back to reference Niewerth, D., Kaspers, G. J. L., Jansen, G., et al. (2016). Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. Journal of Hematology & Oncology, 9, 82.CrossRef Niewerth, D., Kaspers, G. J. L., Jansen, G., et al. (2016). Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. Journal of Hematology & Oncology, 9, 82.CrossRef
15.
go back to reference Verbrugge, S. E., Scheper, R. J., Lems, W. F., et al. (2015). Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Research & Therapy, 17, 17.CrossRef Verbrugge, S. E., Scheper, R. J., Lems, W. F., et al. (2015). Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Research & Therapy, 17, 17.CrossRef
16.
go back to reference Niewerth, D., Kaspers, G. J. L., Assaraf, Y. G., et al. (2014). Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. Journal of Hematology & Oncology, 7, 7.CrossRef Niewerth, D., Kaspers, G. J. L., Assaraf, Y. G., et al. (2014). Interferon-γ-induced upregulation of immunoproteasome subunit assembly overcomes bortezomib resistance in human hematological cell lines. Journal of Hematology & Oncology, 7, 7.CrossRef
17.
go back to reference Basler, M., Kirk, C. J., & Groettrup, M. (2012). The immunoproteasome in antigen processing and other immunological functions. Current Opinion in Immunology, 25, 74–80.PubMedCrossRef Basler, M., Kirk, C. J., & Groettrup, M. (2012). The immunoproteasome in antigen processing and other immunological functions. Current Opinion in Immunology, 25, 74–80.PubMedCrossRef
18.
go back to reference Seifert, U., Bialy, L. P., Ebstein, F., et al. (2010). Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell, 142, 613–624.PubMedCrossRef Seifert, U., Bialy, L. P., Ebstein, F., et al. (2010). Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell, 142, 613–624.PubMedCrossRef
19.
go back to reference Miller, Z., Ao, L., Kim, K. B., & Lee, W. (2013). Inhibitors of the immunoproteasome: current status and future directions. Current Pharmaceutical Design, 19, 4140–4151.PubMedPubMedCentralCrossRef Miller, Z., Ao, L., Kim, K. B., & Lee, W. (2013). Inhibitors of the immunoproteasome: current status and future directions. Current Pharmaceutical Design, 19, 4140–4151.PubMedPubMedCentralCrossRef
20.
go back to reference Ho, Y. K., Bargagna-Mohan, P., Wehenkel, M., et al. (2007). LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chemistry & Biology, 14, 419–430.CrossRef Ho, Y. K., Bargagna-Mohan, P., Wehenkel, M., et al. (2007). LMP2-specific inhibitors: chemical genetic tools for proteasome biology. Chemistry & Biology, 14, 419–430.CrossRef
21.
go back to reference Myung, J., Kim, K. B., Lindsten, K., et al. (2001). Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Molecular Cell, 7, 411–420.PubMedCrossRef Myung, J., Kim, K. B., Lindsten, K., et al. (2001). Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Molecular Cell, 7, 411–420.PubMedCrossRef
22.
go back to reference Kuhn, D. J., Hunsucker, S. A., Chen, Q., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef Kuhn, D. J., Hunsucker, S. A., Chen, Q., et al. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 113, 4667–4676.PubMedPubMedCentralCrossRef
23.
go back to reference de Bruin, G., Huber, E. M., Xin, B.-T., et al. (2014). Structure-based design of β1i or β5i specific inhibitors of human immunoproteasomes. Journal of Medicinal Chemistry, 57, 6197–6209.PubMedCrossRef de Bruin, G., Huber, E. M., Xin, B.-T., et al. (2014). Structure-based design of β1i or β5i specific inhibitors of human immunoproteasomes. Journal of Medicinal Chemistry, 57, 6197–6209.PubMedCrossRef
24.
go back to reference Kuhn, D. J., & Orlowski, R. Z. (2012). The immunoproteasome as a target in hematologic malignancies. Seminars in Hematology, 49, 258–262.PubMedCrossRef Kuhn, D. J., & Orlowski, R. Z. (2012). The immunoproteasome as a target in hematologic malignancies. Seminars in Hematology, 49, 258–262.PubMedCrossRef
25.
go back to reference Kisselev, A. F., van der Linden, W. A., & Overkleeft, H. S. (2012). Proteasome inhibitors: an expanding army attacking a unique target. Chemistry & Biology, 19, 99–115.CrossRef Kisselev, A. F., van der Linden, W. A., & Overkleeft, H. S. (2012). Proteasome inhibitors: an expanding army attacking a unique target. Chemistry & Biology, 19, 99–115.CrossRef
26.
go back to reference Huber, E. M., Basler, M., Schwab, R., et al. (2012). Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell, 148, 727–738.PubMedCrossRef Huber, E. M., Basler, M., Schwab, R., et al. (2012). Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell, 148, 727–738.PubMedCrossRef
27.
go back to reference Muchamuel, T., Basler, M., Aujay, M. A., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.PubMedCrossRef Muchamuel, T., Basler, M., Aujay, M. A., et al. (2009). A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 15, 781–787.PubMedCrossRef
28.
go back to reference Zhou, H.-J., Aujay, M. A., Bennett, M. K., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.PubMedCrossRef Zhou, H.-J., Aujay, M. A., Bennett, M. K., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.PubMedCrossRef
29.
go back to reference Niewerth, D., van Meerloo, J., Jansen, G., et al. (2014). Anti-leukemic activity and mechanisms underlying resistance to the novel immunoproteasome inhibitor PR-924. Biochemical Pharmacology, 89, 43–51.PubMedCrossRef Niewerth, D., van Meerloo, J., Jansen, G., et al. (2014). Anti-leukemic activity and mechanisms underlying resistance to the novel immunoproteasome inhibitor PR-924. Biochemical Pharmacology, 89, 43–51.PubMedCrossRef
30.
go back to reference Singh, A. V., Bandi, M., Aujay, M. A., et al. (2011). PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. British Journal of Haematology, 152, 155–163.PubMedCrossRef Singh, A. V., Bandi, M., Aujay, M. A., et al. (2011). PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. British Journal of Haematology, 152, 155–163.PubMedCrossRef
31.
go back to reference Niewerth, D., Jansen, G., Riethoff, L. F., et al. (2014). Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (Marizomib). Molecular Pharmacology, 86, 12–19.PubMedPubMedCentralCrossRef Niewerth, D., Jansen, G., Riethoff, L. F., et al. (2014). Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (Marizomib). Molecular Pharmacology, 86, 12–19.PubMedPubMedCentralCrossRef
32.
go back to reference Adams, J., Palombella, V. J., & Elliott, P. J. (2000). Proteasome inhibition: a new strategy in cancer treatment. Investigational New Drugs, 18, 109–121.PubMedCrossRef Adams, J., Palombella, V. J., & Elliott, P. J. (2000). Proteasome inhibition: a new strategy in cancer treatment. Investigational New Drugs, 18, 109–121.PubMedCrossRef
33.
go back to reference Almond, J. B., & Cohen, G. M. (2002). The proteasome: a novel target for cancer chemotherapy. Leukemia, 16, 433–443.PubMedCrossRef Almond, J. B., & Cohen, G. M. (2002). The proteasome: a novel target for cancer chemotherapy. Leukemia, 16, 433–443.PubMedCrossRef
34.
go back to reference Adams, J., Behnke, M., Chen, S., et al. (1998). Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorganic & Medicinal Chemistry Letters, 8, 333–338.CrossRef Adams, J., Behnke, M., Chen, S., et al. (1998). Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorganic & Medicinal Chemistry Letters, 8, 333–338.CrossRef
35.
go back to reference Lee, D. H., & Goldberg, A. L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 8, 397–403.PubMedCrossRef Lee, D. H., & Goldberg, A. L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 8, 397–403.PubMedCrossRef
36.
go back to reference Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.CrossRef Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8, 739–758.CrossRef
37.
go back to reference Adams, J. (2000). The proteasome: structure, function, and role in the cell. Cancer Treatment Reviews, 29(Suppl 1), 3–9. Adams, J. (2000). The proteasome: structure, function, and role in the cell. Cancer Treatment Reviews, 29(Suppl 1), 3–9.
38.
go back to reference Chauhan, D., Hideshima, T., & Anderson, K. C. (2006). A novel proteasome inhibitor NPI-0052 as an anticancer therapy. British Journal of Cancer, 95, 961–965.PubMedPubMedCentralCrossRef Chauhan, D., Hideshima, T., & Anderson, K. C. (2006). A novel proteasome inhibitor NPI-0052 as an anticancer therapy. British Journal of Cancer, 95, 961–965.PubMedPubMedCentralCrossRef
39.
go back to reference Chauhan, D., Singh, A. V., Aujay, M., et al. (2010). A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood, 116, 4906–4915.PubMedPubMedCentralCrossRef Chauhan, D., Singh, A. V., Aujay, M., et al. (2010). A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood, 116, 4906–4915.PubMedPubMedCentralCrossRef
40.
go back to reference Chauhan, D., Tian, Z., Zhou, B., et al. (2011). In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clinical Cancer Research, 17, 5311–5321.PubMedPubMedCentralCrossRef Chauhan, D., Tian, Z., Zhou, B., et al. (2011). In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clinical Cancer Research, 17, 5311–5321.PubMedPubMedCentralCrossRef
41.
go back to reference Kuhn, D. J., Chen, Q., Voorhees, P. M., et al. (2007). Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood, 110, 3281–3290.PubMedPubMedCentralCrossRef Kuhn, D. J., Chen, Q., Voorhees, P. M., et al. (2007). Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood, 110, 3281–3290.PubMedPubMedCentralCrossRef
42.
go back to reference Piva, R., Ruggeri, B., Williams, M., et al. (2008). CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood, 111, 2765–2775.PubMedCrossRef Piva, R., Ruggeri, B., Williams, M., et al. (2008). CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood, 111, 2765–2775.PubMedCrossRef
43.
go back to reference Dick, L. R., & Fleming, P. E. (2010). Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discovery Today, 15, 243–249.PubMedCrossRef Dick, L. R., & Fleming, P. E. (2010). Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discovery Today, 15, 243–249.PubMedCrossRef
44.
go back to reference Niewerth, D., Jansen, G., Assaraf, Y. G., et al. (2015). Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resistance Updates, 18, 18–35.PubMedCrossRef Niewerth, D., Jansen, G., Assaraf, Y. G., et al. (2015). Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resistance Updates, 18, 18–35.PubMedCrossRef
45.
go back to reference Ruschak, A. M., Slassi, M., Kay, L. E., & Schimmer, A. D. (2011). Novel proteasome inhibitors to overcome bortezomib resistance. Journal of the National Cancer Institute, 103, 1007–1017.PubMedCrossRef Ruschak, A. M., Slassi, M., Kay, L. E., & Schimmer, A. D. (2011). Novel proteasome inhibitors to overcome bortezomib resistance. Journal of the National Cancer Institute, 103, 1007–1017.PubMedCrossRef
46.
go back to reference Kale, A. J., & Moore, B. S. (2012). Molecular mechanisms of acquired proteasome inhibitor resistance. Journal of Medicinal Chemistry, 55, 10317–10327.PubMedPubMedCentralCrossRef Kale, A. J., & Moore, B. S. (2012). Molecular mechanisms of acquired proteasome inhibitor resistance. Journal of Medicinal Chemistry, 55, 10317–10327.PubMedPubMedCentralCrossRef
47.
go back to reference Kirk, C. J. (2012). Discovery and development of second-generation proteasome inhibitors. Seminars in Hematology, 49, 207–214.PubMedCrossRef Kirk, C. J. (2012). Discovery and development of second-generation proteasome inhibitors. Seminars in Hematology, 49, 207–214.PubMedCrossRef
48.
go back to reference Niewerth, D., Franke, N. E., Jansen, G., et al. (2013). Higher ratio immune vs. constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica, 98, 1896–1904.PubMedPubMedCentralCrossRef Niewerth, D., Franke, N. E., Jansen, G., et al. (2013). Higher ratio immune vs. constitutive proteasome level as novel indicator of sensitivity of pediatric acute leukemia cells to proteasome inhibitors. Haematologica, 98, 1896–1904.PubMedPubMedCentralCrossRef
49.
go back to reference Drexler, H. C. (1997). Activation of the cell death program by inhibition of proteasome function. Proceedings of the National Academy of Sciences of the United States of America, 94, 855–860.PubMedPubMedCentralCrossRef Drexler, H. C. (1997). Activation of the cell death program by inhibition of proteasome function. Proceedings of the National Academy of Sciences of the United States of America, 94, 855–860.PubMedPubMedCentralCrossRef
50.
go back to reference Soligo, D., Servida, F., Delia, D., et al. (2001). The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. British Journal of Haematology, 113, 126–135.PubMedCrossRef Soligo, D., Servida, F., Delia, D., et al. (2001). The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. British Journal of Haematology, 113, 126–135.PubMedCrossRef
51.
go back to reference Vrana, J. A., & Grant, S. (2001). Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade. Blood, 97, 2105–2114.PubMedCrossRef Vrana, J. A., & Grant, S. (2001). Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade. Blood, 97, 2105–2114.PubMedCrossRef
52.
go back to reference Chandra, J., Niemer, I., Gilbreath, J., et al. (1998). Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood, 92, 4220–4229.PubMed Chandra, J., Niemer, I., Gilbreath, J., et al. (1998). Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood, 92, 4220–4229.PubMed
53.
go back to reference Dai, Y., Rahmani, M., & Grant, S. (2003). Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene, 22, 7108–7122.PubMedCrossRef Dai, Y., Rahmani, M., & Grant, S. (2003). Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene, 22, 7108–7122.PubMedCrossRef
54.
go back to reference Pahler, J. C., Ruiz, S., Niemer, I., et al. (2003). Effects of the proteasome inhibitor, bortezomib, on apoptosis in isolated lymphocytes obtained from patients with chronic lymphocytic leukemia. Clinical Cancer Research, 9, 4570–4577.PubMed Pahler, J. C., Ruiz, S., Niemer, I., et al. (2003). Effects of the proteasome inhibitor, bortezomib, on apoptosis in isolated lymphocytes obtained from patients with chronic lymphocytic leukemia. Clinical Cancer Research, 9, 4570–4577.PubMed
55.
go back to reference Dai, Y., Rahmani, M., Pei, X. Y., et al. (2004). Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood, 104, 509–518.PubMedCrossRef Dai, Y., Rahmani, M., Pei, X. Y., et al. (2004). Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood, 104, 509–518.PubMedCrossRef
56.
go back to reference Duechler, M., Shehata, M., Schwarzmeier, J. D., et al. (2005). Induction of apoptosis by proteasome inhibitors in B-CLL cells is associated with downregulation of CD23 and inactivation of Notch2. Leukemia, 19, 260–267.PubMedCrossRef Duechler, M., Shehata, M., Schwarzmeier, J. D., et al. (2005). Induction of apoptosis by proteasome inhibitors in B-CLL cells is associated with downregulation of CD23 and inactivation of Notch2. Leukemia, 19, 260–267.PubMedCrossRef
57.
go back to reference Horton, T. M., Gannavarapu, A., Blaney, S. M., et al. (2006). Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemotherapy and Pharmacology, 58, 13–23.PubMedCrossRef Horton, T. M., Gannavarapu, A., Blaney, S. M., et al. (2006). Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemotherapy and Pharmacology, 58, 13–23.PubMedCrossRef
58.
go back to reference Yanamandra, N., Colaco, N. M., Parquet, N. A., et al. (2006). Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clinical Cancer Research, 12, 591–599.PubMedCrossRef Yanamandra, N., Colaco, N. M., Parquet, N. A., et al. (2006). Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clinical Cancer Research, 12, 591–599.PubMedCrossRef
59.
go back to reference Houghton, P. J., Morton, C. L., Kolb, E. A., et al. (2008). Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatric Blood & Cancer, 50, 37–45.CrossRef Houghton, P. J., Morton, C. L., Kolb, E. A., et al. (2008). Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatric Blood & Cancer, 50, 37–45.CrossRef
60.
go back to reference Servida, F., Soligo, D., Delia, D., et al. (2005). Sensitivity of human multiple myelomas and myeloid leukemias to the proteasome inhibitor I. Leukemia, 19, 2324–2331.PubMedCrossRef Servida, F., Soligo, D., Delia, D., et al. (2005). Sensitivity of human multiple myelomas and myeloid leukemias to the proteasome inhibitor I. Leukemia, 19, 2324–2331.PubMedCrossRef
61.
go back to reference Stapnes, C., Doskeland, A. P., Hatfield, K., et al. (2007). The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. British Journal of Haematology, 136, 814–828.PubMedCrossRef Stapnes, C., Doskeland, A. P., Hatfield, K., et al. (2007). The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. British Journal of Haematology, 136, 814–828.PubMedCrossRef
62.
go back to reference Kraus, M., Muller-Ide, H., Ruckrich, T., et al. (2014). Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leukemia Research, 38, 383–392.PubMedCrossRef Kraus, M., Muller-Ide, H., Ruckrich, T., et al. (2014). Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leukemia Research, 38, 383–392.PubMedCrossRef
63.
go back to reference Liu, H., Westergard, T. D., Cashen, A., et al. (2014). Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell, 25, 530–542.PubMedPubMedCentralCrossRef Liu, H., Westergard, T. D., Cashen, A., et al. (2014). Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell, 25, 530–542.PubMedPubMedCentralCrossRef
64.
go back to reference Miller, C. P., Rudra, S., Keating, M. J., et al. (2009). Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood, 113, 4289–4299.PubMedPubMedCentralCrossRef Miller, C. P., Rudra, S., Keating, M. J., et al. (2009). Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood, 113, 4289–4299.PubMedPubMedCentralCrossRef
65.
go back to reference Miller, C. P., Ban, K., Dujka, M. E., et al. (2007). NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood, 110, 267–277.PubMedPubMedCentralCrossRef Miller, C. P., Ban, K., Dujka, M. E., et al. (2007). NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood, 110, 267–277.PubMedPubMedCentralCrossRef
66.
go back to reference Paulus, A., Masood, A., Miller, K. C., et al. (2014). The investigational agent MLN2238 induces apoptosis and is cytotoxic to CLL cells in vitro, as a single agent and in combination with other drugs. British Journal of Haematology, 165, 78–88.PubMedCrossRef Paulus, A., Masood, A., Miller, K. C., et al. (2014). The investigational agent MLN2238 induces apoptosis and is cytotoxic to CLL cells in vitro, as a single agent and in combination with other drugs. British Journal of Haematology, 165, 78–88.PubMedCrossRef
67.
go back to reference Franke, N. E., Vink, J., Cloos, J., & Kaspers, G. J. (2008). Proteasome and protease inhibitors. In G. J. Kaspers, B. Coiffier, M. Heinrich, & E. Estey (Eds.), Innov. Leuk. Lymphoma Ther (pp. 469–489). New York: Informa Healthcare USA, Inc.. Franke, N. E., Vink, J., Cloos, J., & Kaspers, G. J. (2008). Proteasome and protease inhibitors. In G. J. Kaspers, B. Coiffier, M. Heinrich, & E. Estey (Eds.), Innov. Leuk. Lymphoma Ther (pp. 469–489). New York: Informa Healthcare USA, Inc..
68.
go back to reference Oerlemans, R., Franke, N. E., Assaraf, Y. G., et al. (2008). Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood, 112, 2489–2499.PubMedCrossRef Oerlemans, R., Franke, N. E., Assaraf, Y. G., et al. (2008). Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood, 112, 2489–2499.PubMedCrossRef
69.
go back to reference Lu, S., Yang, J., Chen, Z., et al. (2009). Different mutants of PSMB5 confer varying bortezomib resistance in T lymphoblastic lymphoma/leukemia cells derived from the Jurkat cell line. Experimental Hematology, 37, 831–837.PubMedCrossRef Lu, S., Yang, J., Chen, Z., et al. (2009). Different mutants of PSMB5 confer varying bortezomib resistance in T lymphoblastic lymphoma/leukemia cells derived from the Jurkat cell line. Experimental Hematology, 37, 831–837.PubMedCrossRef
70.
go back to reference Ri, M., Iida, S., Nakashima, T., et al. (2010). Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia, 24, 1506–1512.PubMedCrossRef Ri, M., Iida, S., Nakashima, T., et al. (2010). Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia, 24, 1506–1512.PubMedCrossRef
71.
go back to reference Franke, N. E., Niewerth, D., Assaraf, Y. G., et al. (2012). Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia, 26, 757–768.PubMedCrossRef Franke, N. E., Niewerth, D., Assaraf, Y. G., et al. (2012). Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia, 26, 757–768.PubMedCrossRef
72.
go back to reference McConkey, D. J., & Zhu, K. (2008). Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resistance Updates, 11, 164–179.PubMedCrossRef McConkey, D. J., & Zhu, K. (2008). Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resistance Updates, 11, 164–179.PubMedCrossRef
73.
go back to reference Franke, N. E., Kaspers, G. L., Assaraf, Y. G., et al. (2014). Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget, 7, 74779–74796. Franke, N. E., Kaspers, G. L., Assaraf, Y. G., et al. (2014). Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget, 7, 74779–74796.
74.
go back to reference Busse, A., Kraus, M., Na, I. K., et al. (2008). Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer, 112, 659–670.PubMedCrossRef Busse, A., Kraus, M., Na, I. K., et al. (2008). Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer, 112, 659–670.PubMedCrossRef
75.
go back to reference Fuchs, D., Berges, C., Opelz, G., et al. (2008). Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. Journal of Cellular Biochemistry, 103, 270–283.PubMedCrossRef Fuchs, D., Berges, C., Opelz, G., et al. (2008). Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. Journal of Cellular Biochemistry, 103, 270–283.PubMedCrossRef
76.
go back to reference Frisan, T., Levitsky, V., & Masucci, M. G. (2000). Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal B cells. International Journal of Cancer, 88, 881–888.PubMedCrossRef Frisan, T., Levitsky, V., & Masucci, M. G. (2000). Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal B cells. International Journal of Cancer, 88, 881–888.PubMedCrossRef
77.
go back to reference Lu, S., Chen, Z., Yang, J., et al. (2008). Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Experimental Hematology, 36, 1278–1284.PubMedCrossRef Lu, S., Chen, Z., Yang, J., et al. (2008). Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Experimental Hematology, 36, 1278–1284.PubMedCrossRef
78.
go back to reference Verbrugge, S. E., Al, M., Assaraf, Y. G., et al. (2013). Overcoming bortezomib resistance in human B cells by anti-CD20 / rituximab-mediated complement-dependent cytotoxicity and epoxyketone-based irreversible proteasome inhibitors. Experimental Hematology & Oncology, 2, 2–12.CrossRef Verbrugge, S. E., Al, M., Assaraf, Y. G., et al. (2013). Overcoming bortezomib resistance in human B cells by anti-CD20 / rituximab-mediated complement-dependent cytotoxicity and epoxyketone-based irreversible proteasome inhibitors. Experimental Hematology & Oncology, 2, 2–12.CrossRef
79.
go back to reference de Wilt, L. H. A. M., Jansen, G., Assaraf, Y. G., et al. (2012). Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochemical Pharmacology, 83, 207–217.PubMedCrossRef de Wilt, L. H. A. M., Jansen, G., Assaraf, Y. G., et al. (2012). Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochemical Pharmacology, 83, 207–217.PubMedCrossRef
80.
go back to reference Kale, A. J., McGlinchey, R. P., Lechner, A., & Moore, B. S. (2011). Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A. ACS Chemical Biology, 6, 1257–1264.PubMedPubMedCentralCrossRef Kale, A. J., McGlinchey, R. P., Lechner, A., & Moore, B. S. (2011). Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A. ACS Chemical Biology, 6, 1257–1264.PubMedPubMedCentralCrossRef
82.
go back to reference Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.PubMedCrossRef Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.PubMedCrossRef
83.
go back to reference Adler, K. B., Tuvim, M. J., & Dickey, B. F. (2013). Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne), 4, 129. Adler, K. B., Tuvim, M. J., & Dickey, B. F. (2013). Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne), 4, 129.
84.
go back to reference Buschow, S. I., Liefhebber, J. M. P., Wubbolts, R., & Stoorvogel, W. (2005). Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis, 35, 398–403.PubMedCrossRef Buschow, S. I., Liefhebber, J. M. P., Wubbolts, R., & Stoorvogel, W. (2005). Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis, 35, 398–403.PubMedCrossRef
85.
go back to reference David, E., Kaufman, J. L., Flowers, C. R., et al. (2010). Tipifarnib sensitizes cells to proteasome inhibition by blocking degradation of bortezomib-induced aggresomes. Blood, 116, 5285–5288.PubMedPubMedCentralCrossRef David, E., Kaufman, J. L., Flowers, C. R., et al. (2010). Tipifarnib sensitizes cells to proteasome inhibition by blocking degradation of bortezomib-induced aggresomes. Blood, 116, 5285–5288.PubMedPubMedCentralCrossRef
86.
go back to reference Escalante, A. M., McGrath, R. T., Karolak, M. R., et al. (2013). Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 71, 1567–1576.PubMedPubMedCentralCrossRef Escalante, A. M., McGrath, R. T., Karolak, M. R., et al. (2013). Preventing the autophagic survival response by inhibition of calpain enhances the cytotoxic activity of bortezomib in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 71, 1567–1576.PubMedPubMedCentralCrossRef
87.
go back to reference Hamouda, M.-A., Belhacene, N., Puissant, A., et al. (2014). The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget, 5, 6252–6266.PubMedPubMedCentralCrossRef Hamouda, M.-A., Belhacene, N., Puissant, A., et al. (2014). The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget, 5, 6252–6266.PubMedPubMedCentralCrossRef
88.
go back to reference Hoang, B., Benavides, A., Shi, Y., et al. (2009). Effect of autophagy on multiple myeloma cell viability. Molecular Cancer Therapeutics, 8, 1974–1984.PubMedCrossRef Hoang, B., Benavides, A., Shi, Y., et al. (2009). Effect of autophagy on multiple myeloma cell viability. Molecular Cancer Therapeutics, 8, 1974–1984.PubMedCrossRef
89.
go back to reference Milani, M., Rzymski, T., Mellor, H. R., et al. (2009). The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with bortezomib. Cancer Research, 69, 4415–4423.PubMedCrossRef Milani, M., Rzymski, T., Mellor, H. R., et al. (2009). The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with bortezomib. Cancer Research, 69, 4415–4423.PubMedCrossRef
90.
go back to reference Chen, S., Zhang, Y., Zhou, L., et al. (2014). A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood, 124, 2687–2697.PubMedPubMedCentralCrossRef Chen, S., Zhang, Y., Zhou, L., et al. (2014). A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood, 124, 2687–2697.PubMedPubMedCentralCrossRef
91.
go back to reference Milan, E., Perini, T., Resnati, M., et al. (2015). A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy, 11, 1161–1178.PubMedPubMedCentralCrossRef Milan, E., Perini, T., Resnati, M., et al. (2015). A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy, 11, 1161–1178.PubMedPubMedCentralCrossRef
92.
go back to reference Jarauta, V., Jaime, P., Gonzalo, O., et al. (2016). Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Letters, 382, 1–10.PubMedCrossRef Jarauta, V., Jaime, P., Gonzalo, O., et al. (2016). Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Letters, 382, 1–10.PubMedCrossRef
93.
go back to reference Baranowska, K., Misund, K., Starheim, K. K., et al. (2016). Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells. Oncotarget, 7, 70845–70856.PubMedPubMedCentral Baranowska, K., Misund, K., Starheim, K. K., et al. (2016). Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells. Oncotarget, 7, 70845–70856.PubMedPubMedCentral
94.
go back to reference Hideshima, T., Bradner, J. E., Wong, J., et al. (2005). Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proceedings of the National Academy of Sciences, 102, 8567–8572.CrossRef Hideshima, T., Bradner, J. E., Wong, J., et al. (2005). Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proceedings of the National Academy of Sciences, 102, 8567–8572.CrossRef
95.
go back to reference Nawrocki, S. T., Carew, J. S., Pino, M. S., et al. (2006). Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Research, 66, 3773–3781.PubMedCrossRef Nawrocki, S. T., Carew, J. S., Pino, M. S., et al. (2006). Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Research, 66, 3773–3781.PubMedCrossRef
96.
go back to reference Sriram, S. M., Han, D. H., & Kim, S. T. (2011). Partners in crime: ubiquitin-mediated degradation and autophagy. Science Signaling, 4, jc4.PubMedCrossRef Sriram, S. M., Han, D. H., & Kim, S. T. (2011). Partners in crime: ubiquitin-mediated degradation and autophagy. Science Signaling, 4, jc4.PubMedCrossRef
97.
go back to reference Fang, J., Rhyasen, G., Bolanos, L., et al. (2012). Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood, 120, 858–867.PubMedPubMedCentralCrossRef Fang, J., Rhyasen, G., Bolanos, L., et al. (2012). Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood, 120, 858–867.PubMedPubMedCentralCrossRef
98.
go back to reference Zhou, J., Ching, Y. Q., & Chng, W.-J. (2015). Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget, 6, 5490–5500.PubMedPubMedCentralCrossRef Zhou, J., Ching, Y. Q., & Chng, W.-J. (2015). Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget, 6, 5490–5500.PubMedPubMedCentralCrossRef
99.
go back to reference Bosman, M. C. J., Schuringa, J. J., Quax, W. J., & Vellenga, E. (2013). Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-κB and the accumulation of MCL-1. Experimental Hematology, 41, 530–538.e1.PubMedCrossRef Bosman, M. C. J., Schuringa, J. J., Quax, W. J., & Vellenga, E. (2013). Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-κB and the accumulation of MCL-1. Experimental Hematology, 41, 530–538.e1.PubMedCrossRef
100.
go back to reference Markovina, S., Callander, N. S., O’Connor, S. L., et al. (2010). Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells. Molecular Cancer, 9, 176.PubMedPubMedCentralCrossRef Markovina, S., Callander, N. S., O’Connor, S. L., et al. (2010). Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells. Molecular Cancer, 9, 176.PubMedPubMedCentralCrossRef
101.
go back to reference Markovina, S., Callander, N. S., O’Connor, S. L., et al. (2008). Bortezomib-resistant nuclear factor-κB activity in multiple myeloma cells. Molecular Cancer Research, 6, 1356–1364.PubMedPubMedCentralCrossRef Markovina, S., Callander, N. S., O’Connor, S. L., et al. (2008). Bortezomib-resistant nuclear factor-κB activity in multiple myeloma cells. Molecular Cancer Research, 6, 1356–1364.PubMedPubMedCentralCrossRef
102.
go back to reference Hideshima, T., Ikeda, H., Chauhan, D., et al. (2009). Bortezomib induces canonical nuclear factor-κB activation in multiple myeloma cells. Blood, 114, 1046–1052.PubMedPubMedCentralCrossRef Hideshima, T., Ikeda, H., Chauhan, D., et al. (2009). Bortezomib induces canonical nuclear factor-κB activation in multiple myeloma cells. Blood, 114, 1046–1052.PubMedPubMedCentralCrossRef
103.
go back to reference Jung, H. J., Chen, Z., Fayad, L., et al. (2012). Bortezomib-resistant nuclear factor κB expression in stem-like cells in mantle cell lymphoma. Experimental Hematology, 40, 107–118.e2.PubMedCrossRef Jung, H. J., Chen, Z., Fayad, L., et al. (2012). Bortezomib-resistant nuclear factor κB expression in stem-like cells in mantle cell lymphoma. Experimental Hematology, 40, 107–118.e2.PubMedCrossRef
104.
go back to reference Yang, D. T., Young, K. H., Kahl, B. S., et al. (2008). Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Molecular Cancer, 7, 40.PubMedPubMedCentralCrossRef Yang, D. T., Young, K. H., Kahl, B. S., et al. (2008). Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Molecular Cancer, 7, 40.PubMedPubMedCentralCrossRef
105.
go back to reference Kim, A., Park, S., Lee, J.-E., et al. (2012). The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leukemia Research, 36, 912–920.PubMedCrossRef Kim, A., Park, S., Lee, J.-E., et al. (2012). The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leukemia Research, 36, 912–920.PubMedCrossRef
106.
go back to reference Liu, C.-Y., Shiau, C.-W., Kuo, H.-Y., et al. (2013). Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells. Haematologica, 98, 729–738.PubMedPubMedCentralCrossRef Liu, C.-Y., Shiau, C.-W., Kuo, H.-Y., et al. (2013). Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells. Haematologica, 98, 729–738.PubMedPubMedCentralCrossRef
107.
go back to reference Que, W., Chen, J., Chuang, M., & Jiang, D. (2012). Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. APMIS, 120, 195–203.PubMedCrossRef Que, W., Chen, J., Chuang, M., & Jiang, D. (2012). Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. APMIS, 120, 195–203.PubMedCrossRef
108.
go back to reference Kuhn, D. J., Berkova, Z., Jones, R. J., et al. (2012). Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood, 120, 3260–3270.PubMedPubMedCentralCrossRef Kuhn, D. J., Berkova, Z., Jones, R. J., et al. (2012). Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood, 120, 3260–3270.PubMedPubMedCentralCrossRef
109.
go back to reference Maiso, P., Ocio, E. M., Garayoa, M., et al. (2008). The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells. British Journal of Haematology, 141, 470–482.PubMedCrossRef Maiso, P., Ocio, E. M., Garayoa, M., et al. (2008). The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells. British Journal of Haematology, 141, 470–482.PubMedCrossRef
110.
go back to reference Wu, K.-D., Zhou, L., Burtrum, D., et al. (2006). Antibody targeting of the insulin-like growth factor I receptor enhances the anti-tumor response of multiple myeloma to chemotherapy through inhibition of tumor proliferation and angiogenesis. Cancer Immunology, Immunotherapy, 56, 343–357.PubMedCrossRef Wu, K.-D., Zhou, L., Burtrum, D., et al. (2006). Antibody targeting of the insulin-like growth factor I receptor enhances the anti-tumor response of multiple myeloma to chemotherapy through inhibition of tumor proliferation and angiogenesis. Cancer Immunology, Immunotherapy, 56, 343–357.PubMedCrossRef
111.
go back to reference Leung-Hagesteijn, C., Erdmann, N., Cheung, G., et al. (2013). Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell, 24, 289–304.PubMedPubMedCentralCrossRef Leung-Hagesteijn, C., Erdmann, N., Cheung, G., et al. (2013). Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell, 24, 289–304.PubMedPubMedCentralCrossRef
112.
go back to reference Gambella, M., Rocci, A., Passera, R., et al. (2014). High XBP1 expression is a marker of better outcome in multiple myeloma patients treated with bortezomib. Haematologica, 99, e14–e16.PubMedPubMedCentralCrossRef Gambella, M., Rocci, A., Passera, R., et al. (2014). High XBP1 expression is a marker of better outcome in multiple myeloma patients treated with bortezomib. Haematologica, 99, e14–e16.PubMedPubMedCentralCrossRef
113.
go back to reference Minderman, H., Zhou, Y., O’Loughlin, K. L., & Baer, M. R. (2007). Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status. Cancer Chemotherapy and Pharmacology, 60, 245–255.PubMedCrossRef Minderman, H., Zhou, Y., O’Loughlin, K. L., & Baer, M. R. (2007). Bortezomib activity and in vitro interactions with anthracyclines and cytarabine in acute myeloid leukemia cells are independent of multidrug resistance mechanisms and p53 status. Cancer Chemotherapy and Pharmacology, 60, 245–255.PubMedCrossRef
114.
go back to reference Verbrugge, S. E., Assaraf, Y. G., Dijkmans, B. A., et al. (2012). Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with. The Journal of Pharmacology and Experimental Therapeutics, 341, 174–182.PubMedCrossRef Verbrugge, S. E., Assaraf, Y. G., Dijkmans, B. A., et al. (2012). Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with. The Journal of Pharmacology and Experimental Therapeutics, 341, 174–182.PubMedCrossRef
115.
go back to reference Ao, L., Wu, Y., Kim, D., et al. (2012). Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib. Molecular Pharmaceutics, 9, 2197–2205.PubMedPubMedCentralCrossRef Ao, L., Wu, Y., Kim, D., et al. (2012). Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib. Molecular Pharmaceutics, 9, 2197–2205.PubMedPubMedCentralCrossRef
116.
go back to reference O’Connor, R., Ooi, M. G., Meiller, J., et al. (2013). The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemotherapy and Pharmacology, 71, 1357–1368.PubMedPubMedCentralCrossRef O’Connor, R., Ooi, M. G., Meiller, J., et al. (2013). The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemotherapy and Pharmacology, 71, 1357–1368.PubMedPubMedCentralCrossRef
117.
go back to reference Shaughnessy Jr., J. D., Qu, P., Usmani, S., et al. (2011). Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with total therapy 3. Blood, 118, 3512–3524.PubMedPubMedCentralCrossRef Shaughnessy Jr., J. D., Qu, P., Usmani, S., et al. (2011). Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with total therapy 3. Blood, 118, 3512–3524.PubMedPubMedCentralCrossRef
118.
go back to reference Shuqing, L., Jianmin, Y., Chongmei, H., et al. (2011). Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Experimental Hematology, 39, 1117–1118.PubMedCrossRef Shuqing, L., Jianmin, Y., Chongmei, H., et al. (2011). Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Experimental Hematology, 39, 1117–1118.PubMedCrossRef
119.
go back to reference Weniger, M. A., Rizzatti, E. G., Perez-Galan, P., et al. (2011). Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clinical Cancer Research, 17, 5101–5112.PubMedPubMedCentralCrossRef Weniger, M. A., Rizzatti, E. G., Perez-Galan, P., et al. (2011). Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clinical Cancer Research, 17, 5101–5112.PubMedPubMedCentralCrossRef
120.
go back to reference Matondo, M., Bousquet-Dubouch, M. P., Gallay, N., et al. (2010). Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leukemia Research, 34, 498–506.PubMedCrossRef Matondo, M., Bousquet-Dubouch, M. P., Gallay, N., et al. (2010). Proteasome inhibitor-induced apoptosis in acute myeloid leukemia: a correlation with the proteasome status. Leukemia Research, 34, 498–506.PubMedCrossRef
121.
go back to reference Wang, L., Kumar, S., Fridley, B. L., et al. (2008). Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clinical Cancer Research, 14, 3503–3513.PubMedPubMedCentralCrossRef Wang, L., Kumar, S., Fridley, B. L., et al. (2008). Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clinical Cancer Research, 14, 3503–3513.PubMedPubMedCentralCrossRef
122.
go back to reference Lichter, D. I., Danaee, H., Pickard, M. D., et al. (2012). Sequence analysis of β-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood, 120, 4513–4516.PubMedPubMedCentralCrossRef Lichter, D. I., Danaee, H., Pickard, M. D., et al. (2012). Sequence analysis of β-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood, 120, 4513–4516.PubMedPubMedCentralCrossRef
123.
go back to reference Barrio, S., Stühmer, T., Teufel, E., et al. (2016). Parallel evolution of multiple PSMB5 mutations in a myeloma patient treated with bortezomib. Blood, 128, 3282. Barrio, S., Stühmer, T., Teufel, E., et al. (2016). Parallel evolution of multiple PSMB5 mutations in a myeloma patient treated with bortezomib. Blood, 128, 3282.
124.
go back to reference Bachas, C., Schuurhuis, G. J., Reinhardt, D., et al. (2014). Clinical relevance of molecular aberrations in paediatric acute myeloid leukaemia at first relapse. British Journal of Haematology, 166, 902–910.PubMedCrossRef Bachas, C., Schuurhuis, G. J., Reinhardt, D., et al. (2014). Clinical relevance of molecular aberrations in paediatric acute myeloid leukaemia at first relapse. British Journal of Haematology, 166, 902–910.PubMedCrossRef
125.
go back to reference Micallef, J., Dharsee, M., Chen, J., et al. (2010). Applying mass spectrometry based proteomic technology to advance the understanding of multiple myeloma. Journal of Hematology & Oncology, 3, 13.CrossRef Micallef, J., Dharsee, M., Chen, J., et al. (2010). Applying mass spectrometry based proteomic technology to advance the understanding of multiple myeloma. Journal of Hematology & Oncology, 3, 13.CrossRef
126.
go back to reference Yang, Y., Chen, Y., Saha, M. N., et al. (2015). Targeting phospho-MARCKS overcomes drug resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia, 29, 715–726.PubMedCrossRef Yang, Y., Chen, Y., Saha, M. N., et al. (2015). Targeting phospho-MARCKS overcomes drug resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia, 29, 715–726.PubMedCrossRef
127.
go back to reference Scott, K., Hayden, P. J., Will, A., et al. (2016). Bortezomib for the treatment of multiple myeloma. In K. Scott (Ed.), Cochrane Database Syst. Rev (p. CD010816). Chichester: John Wiley & Sons, Ltd. Scott, K., Hayden, P. J., Will, A., et al. (2016). Bortezomib for the treatment of multiple myeloma. In K. Scott (Ed.), Cochrane Database Syst. Rev (p. CD010816). Chichester: John Wiley & Sons, Ltd.
128.
go back to reference Orlowski, R. Z., Stinchcombe, T. E., Mitchell, B. S., et al. (2002). Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. Journal of Clinical Oncology, 20, 4420–4427.PubMedCrossRef Orlowski, R. Z., Stinchcombe, T. E., Mitchell, B. S., et al. (2002). Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. Journal of Clinical Oncology, 20, 4420–4427.PubMedCrossRef
129.
go back to reference Cortes, J., Thomas, D., Koller, C., et al. (2004). Phase I study of bortezomib in refractory or relapsed acute leukemias. Clinical Cancer Research, 10, 3371–3376.PubMedCrossRef Cortes, J., Thomas, D., Koller, C., et al. (2004). Phase I study of bortezomib in refractory or relapsed acute leukemias. Clinical Cancer Research, 10, 3371–3376.PubMedCrossRef
130.
go back to reference Orlowski, R. Z., Voorhees, P. M., Garcia, R. A., et al. (2005). Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood, 105, 3058–3065.PubMedCrossRef Orlowski, R. Z., Voorhees, P. M., Garcia, R. A., et al. (2005). Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood, 105, 3058–3065.PubMedCrossRef
131.
go back to reference Horton, T. M., Pati, D., Plon, S. E., et al. (2007). A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clinical Cancer Research, 13, 1516–1522.PubMedCrossRef Horton, T. M., Pati, D., Plon, S. E., et al. (2007). A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clinical Cancer Research, 13, 1516–1522.PubMedCrossRef
132.
go back to reference Attar, E. C., De Angelo, D. J., Supko, J. G., et al. (2008). Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clinical Cancer Research, 14, 1446–1454.PubMedCrossRef Attar, E. C., De Angelo, D. J., Supko, J. G., et al. (2008). Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clinical Cancer Research, 14, 1446–1454.PubMedCrossRef
133.
go back to reference Messinger, Y., Gaynon, P., Raetz, E., et al. (2010). Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatric Blood & Cancer, 55, 254–259.CrossRef Messinger, Y., Gaynon, P., Raetz, E., et al. (2010). Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatric Blood & Cancer, 55, 254–259.CrossRef
134.
go back to reference Messinger, Y. H., Gaynon, P. S., Sposto, R., et al. (2012). Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood, 120, 285–290.PubMedCrossRef Messinger, Y. H., Gaynon, P. S., Sposto, R., et al. (2012). Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood, 120, 285–290.PubMedCrossRef
135.
go back to reference Lancet, J. E., Duong, V. H., Winton, E. F., et al. (2011). A phase I clinical-pharmacodynamic study of the farnesyltransferase inhibitor tipifarnib in combination with the proteasome inhibitor bortezomib in advanced acute leukemias. Clinical Cancer Research, 17, 1140–1146.PubMedPubMedCentralCrossRef Lancet, J. E., Duong, V. H., Winton, E. F., et al. (2011). A phase I clinical-pharmacodynamic study of the farnesyltransferase inhibitor tipifarnib in combination with the proteasome inhibitor bortezomib in advanced acute leukemias. Clinical Cancer Research, 17, 1140–1146.PubMedPubMedCentralCrossRef
136.
go back to reference Attar, E. C., Johnson, J. L., Amrein, P. C., et al. (2013). Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. Journal of Clinical Oncology, 31, 923–929.PubMedCrossRef Attar, E. C., Johnson, J. L., Amrein, P. C., et al. (2013). Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. Journal of Clinical Oncology, 31, 923–929.PubMedCrossRef
137.
go back to reference Walker, A. R., Klisovic, R., Johnston, J. S., et al. (2013). Pharmacokinetics and dose escalation of the heat shock protein inhibitor 17-allyamino-17-demethoxygeldanamycin in combination with bortezomib in relapsed or refractory acute myeloid leukemia. Leukemia & Lymphoma, 54, 1996–2002.CrossRef Walker, A. R., Klisovic, R., Johnston, J. S., et al. (2013). Pharmacokinetics and dose escalation of the heat shock protein inhibitor 17-allyamino-17-demethoxygeldanamycin in combination with bortezomib in relapsed or refractory acute myeloid leukemia. Leukemia & Lymphoma, 54, 1996–2002.CrossRef
138.
go back to reference Blum, W., Schwind, S., Tarighat, S. S., et al. (2012). Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood, 119, 6025–6031.PubMedPubMedCentralCrossRef Blum, W., Schwind, S., Tarighat, S. S., et al. (2012). Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood, 119, 6025–6031.PubMedPubMedCentralCrossRef
139.
go back to reference Attar, E. C., Amrein, P. C., Fraser, J. W., et al. (2013). Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leukemia Research, 37, 1016–1020.PubMedPubMedCentralCrossRef Attar, E. C., Amrein, P. C., Fraser, J. W., et al. (2013). Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leukemia Research, 37, 1016–1020.PubMedPubMedCentralCrossRef
140.
go back to reference Howard, D. S., Liesveld, J., Phillips, G. L., et al. (2013). A phase I study using bortezomib with weekly idarubicin for treatment of elderly patients with acute myeloid leukemia. Leukemia Research, 37, 1502–1508.PubMedPubMedCentralCrossRef Howard, D. S., Liesveld, J., Phillips, G. L., et al. (2013). A phase I study using bortezomib with weekly idarubicin for treatment of elderly patients with acute myeloid leukemia. Leukemia Research, 37, 1502–1508.PubMedPubMedCentralCrossRef
141.
go back to reference Walker, A. R., Klisovic, R. B., Garzon, R., et al. (2014). Phase I study of azacitidine and bortezomib in adults with relapsed or refractory acute myeloid leukemia. Leukemia & Lymphoma, 55, 1304–1308.CrossRef Walker, A. R., Klisovic, R. B., Garzon, R., et al. (2014). Phase I study of azacitidine and bortezomib in adults with relapsed or refractory acute myeloid leukemia. Leukemia & Lymphoma, 55, 1304–1308.CrossRef
142.
go back to reference Walker, A. R., Wang, H., Walsh, K., et al. (2016). Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leukemia & Lymphoma, 57, 2100–2108.CrossRef Walker, A. R., Wang, H., Walsh, K., et al. (2016). Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leukemia & Lymphoma, 57, 2100–2108.CrossRef
143.
go back to reference Wartman, L. D., Fiala, M. A., Fletcher, T., et al. (2016). A phase I study of carfilzomib for relapsed or refractory acute myeloid and acute lymphoblastic leukemia. Leukemia & Lymphoma, 57, 728–730.CrossRef Wartman, L. D., Fiala, M. A., Fletcher, T., et al. (2016). A phase I study of carfilzomib for relapsed or refractory acute myeloid and acute lymphoblastic leukemia. Leukemia & Lymphoma, 57, 728–730.CrossRef
144.
go back to reference Awan, F. T., Flynn, J. M., Jones, J. A., et al. (2015). Phase I dose escalation trial of the novel proteasome inhibitor carfilzomib in patients with relapsed chronic lymphocytic leukemia and small lymphocytic lymphoma. Leukemia & Lymphoma, 56, 2834–2840.CrossRef Awan, F. T., Flynn, J. M., Jones, J. A., et al. (2015). Phase I dose escalation trial of the novel proteasome inhibitor carfilzomib in patients with relapsed chronic lymphocytic leukemia and small lymphocytic lymphoma. Leukemia & Lymphoma, 56, 2834–2840.CrossRef
145.
go back to reference Horton, T. M., Perentesis, J. P., Gamis, A. S., et al. (2014). A phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatric Blood & Cancer, 61, 1754–1760.CrossRef Horton, T. M., Perentesis, J. P., Gamis, A. S., et al. (2014). A phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatric Blood & Cancer, 61, 1754–1760.CrossRef
146.
go back to reference Ishitsuka, K., Utsunomiya, A., Katsuya, H., et al. (2015). A phase II study of bortezomib in patients with relapsed or refractory aggressive adult T-cell leukemia/lymphoma. Cancer Science, 106, 1219–1223.PubMedPubMedCentralCrossRef Ishitsuka, K., Utsunomiya, A., Katsuya, H., et al. (2015). A phase II study of bortezomib in patients with relapsed or refractory aggressive adult T-cell leukemia/lymphoma. Cancer Science, 106, 1219–1223.PubMedPubMedCentralCrossRef
147.
go back to reference Royer, B., Minvielle, S., Diouf, M., et al. (2016). Bortezomib, doxorubicin, cyclophosphamide, dexamethasone induction followed by stem cell transplantation for primary plasma cell leukemia: a prospective phase II study of the Intergroupe Francophone du Myélome. Journal of Clinical Oncology, 34, 2125–2132.PubMedCrossRef Royer, B., Minvielle, S., Diouf, M., et al. (2016). Bortezomib, doxorubicin, cyclophosphamide, dexamethasone induction followed by stem cell transplantation for primary plasma cell leukemia: a prospective phase II study of the Intergroupe Francophone du Myélome. Journal of Clinical Oncology, 34, 2125–2132.PubMedCrossRef
148.
go back to reference Araujo, K. P. C., Bonuccelli, G., Duarte, C. N., et al. (2013). Bortezomib (PS-341) treatment decreases inflammation and partially rescues the expression of the dystrophin-glycoprotein complex in GRMD dogs. PLoS One, 8, e61367.PubMedPubMedCentralCrossRef Araujo, K. P. C., Bonuccelli, G., Duarte, C. N., et al. (2013). Bortezomib (PS-341) treatment decreases inflammation and partially rescues the expression of the dystrophin-glycoprotein complex in GRMD dogs. PLoS One, 8, e61367.PubMedPubMedCentralCrossRef
149.
go back to reference Penna, F., Bonetto, A., Aversa, Z., et al. (2016). Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 7, 345–354.PubMedCrossRef Penna, F., Bonetto, A., Aversa, Z., et al. (2016). Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 7, 345–354.PubMedCrossRef
150.
go back to reference Turner, J. G., Kashyap, T., Dawson, J. L., et al. (2016). XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget, 7, 78896–78909.PubMedPubMedCentral Turner, J. G., Kashyap, T., Dawson, J. L., et al. (2016). XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget, 7, 78896–78909.PubMedPubMedCentral
151.
go back to reference de Bruin, G., Xin, B. T., Kraus, M., et al. (2016). A set of activity-based probes to visualize human (immuno)proteasome activities. Angewandte Chemie (International Ed. in English), 55, 4199–4203.CrossRef de Bruin, G., Xin, B. T., Kraus, M., et al. (2016). A set of activity-based probes to visualize human (immuno)proteasome activities. Angewandte Chemie (International Ed. in English), 55, 4199–4203.CrossRef
152.
go back to reference Lee, S. J., Levitsky, K., Parlati, F., et al. (2016). Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay. British Journal of Haematology, 173, 884–895.PubMedPubMedCentralCrossRef Lee, S. J., Levitsky, K., Parlati, F., et al. (2016). Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay. British Journal of Haematology, 173, 884–895.PubMedPubMedCentralCrossRef
153.
go back to reference de Groot, K. A., Tsang, A., Sjoe, M., Niewerth, D., et al. (2015). Pharmacodynamic monitoring of (immuno)proteasome inhibition during bortezomib treatment of a critically ill patient with lupus nephritis and myocarditis. Lupus Science & Medicine, 2, e000121.CrossRef de Groot, K. A., Tsang, A., Sjoe, M., Niewerth, D., et al. (2015). Pharmacodynamic monitoring of (immuno)proteasome inhibition during bortezomib treatment of a critically ill patient with lupus nephritis and myocarditis. Lupus Science & Medicine, 2, e000121.CrossRef
Metadata
Title
(Immuno)proteasomes as therapeutic target in acute leukemia
Authors
Jacqueline Cloos
Margot SF Roeten
Niels E Franke
Johan van Meerloo
Sonja Zweegman
Gertjan JL Kaspers
Gerrit Jansen
Publication date
01-12-2017
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2017
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9699-4

Other articles of this Issue 4/2017

Cancer and Metastasis Reviews 4/2017 Go to the issue

OriginalPaper

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine