Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2015

01-09-2015 | Clinical

Synovial sarcoma is a gateway to the role of chromatin remodeling in cancer

Authors: Stefan K. Zöllner, Claudia Rössig, Jeffrey A. Toretsky

Published in: Cancer and Metastasis Reviews | Issue 3/2015

Login to get access

Abstract

Patients afflicted with synovial sarcoma share the fate of other translocation positive sarcomas; the driver mutation for this cancer is known, yet no means to target the fusion protein SS18-SSX directly exist. Current chemotherapeutic regimens are minimally beneficial, particularly in patients with metastatic disease. SS18-SSX putatively promotes its oncogenic activity through protein-protein interactions that alter genetic programs through chromatin remodeling. This review discusses the functional protein network of SS18-SSX, both wild-type and fusion protein, considers its intrinsically disordered nature, and provides insights into potential therapeutic strategies. A comprehensive overview of the clinical characteristics reveals the need for newly targeted therapeutics based upon oncogenic transformation by the fusion protein SS18-SSX. The wild-type, non-fused proteins SS18 and SSX are presented including their molecular structure and biological function with regard to protein-protein interactions. The interactions of the wild-type proteins inform the oncogenic changes of the fusion protein. The SS18-SSX fusion protein and its protein interactions are described and evaluated for their biological consequences that lead to oncogenesis. This review illustrates the key protein interactions of SS18-SSX that may qualify as primary targets for small molecule-based disruption leading to the development of SS18-SSX-specific drugs. These novel targeted therapeutics may provide a specificity that ultimately improves survival while reducing morbidity of patients with synovial sarcoma.
Literature
1.
go back to reference Dillon, P., et al. (1992). A prospective study of nonrhabdomyosarcoma soft tissue sarcomas in the pediatric age group. Journal of Pediatric Surgery, 27(2), 241–244. Dillon, P., et al. (1992). A prospective study of nonrhabdomyosarcoma soft tissue sarcomas in the pediatric age group. Journal of Pediatric Surgery, 27(2), 241–244.
2.
go back to reference McGrory, J. E., et al. (2000). Nonrhabdomyosarcoma soft tissue sarcomas in children. The Mayo Clinic experience. Clinical Orthopaedics and Related Research, 374, 247–258.PubMedCrossRef McGrory, J. E., et al. (2000). Nonrhabdomyosarcoma soft tissue sarcomas in children. The Mayo Clinic experience. Clinical Orthopaedics and Related Research, 374, 247–258.PubMedCrossRef
3.
go back to reference Herzog, C. E. (2005). Overview of sarcomas in the adolescent and young adult population. Journal of Pediatric Hematology/Oncology, 27(4), 215–218.PubMedCrossRef Herzog, C. E. (2005). Overview of sarcomas in the adolescent and young adult population. Journal of Pediatric Hematology/Oncology, 27(4), 215–218.PubMedCrossRef
4.
go back to reference Raney, R. B. (2005). Synovial sarcoma in young people: background, prognostic factors, and therapeutic questions. Journal of Pediatric Hematology/Oncology, 27(4), 207–211.PubMedCrossRef Raney, R. B. (2005). Synovial sarcoma in young people: background, prognostic factors, and therapeutic questions. Journal of Pediatric Hematology/Oncology, 27(4), 207–211.PubMedCrossRef
5.
go back to reference Weiss, S. (2008). Enzinger and Weiss’s soft tissue tumors (pp. 1161–1182). St. Louis: Mosby Inc. Weiss, S. (2008). Enzinger and Weiss’s soft tissue tumors (pp. 1161–1182). St. Louis: Mosby Inc.
6.
go back to reference Simon, G. (1865). Exstirpation einer sehr grossen, mit dicken Stiele angewachsenen Kneigelenkmaus mit gluklichem Erfolge. Arch Klin Chir, 6, 573–576. Simon, G. (1865). Exstirpation einer sehr grossen, mit dicken Stiele angewachsenen Kneigelenkmaus mit gluklichem Erfolge. Arch Klin Chir, 6, 573–576.
7.
go back to reference Sabrazes, J., Loubat, E., de Grailly, R., & Magendie, J. (1934). Synovial sarcomes. Gaz Hebd Sc Med Bordeaux, 55, 754–762. Sabrazes, J., Loubat, E., de Grailly, R., & Magendie, J. (1934). Synovial sarcomes. Gaz Hebd Sc Med Bordeaux, 55, 754–762.
8.
go back to reference Ghadially, F. N. (1987). Is synovial sarcoma a carcinosarcoma of connective tissue? Ultrastructural Pathology, 11(2–3), 147–151.PubMedCrossRef Ghadially, F. N. (1987). Is synovial sarcoma a carcinosarcoma of connective tissue? Ultrastructural Pathology, 11(2–3), 147–151.PubMedCrossRef
9.
go back to reference Smith, M. E., et al. (1995). Synovial sarcoma lack synovial differentiation. Histopathology, 26(3), 279–281.PubMedCrossRef Smith, M. E., et al. (1995). Synovial sarcoma lack synovial differentiation. Histopathology, 26(3), 279–281.PubMedCrossRef
10.
go back to reference Garcia, C. B., et al. (2012). Reprogramming of mesenchymal stem cells by the synovial sarcoma-associated oncogene SYT-SSX2. Oncogene, 31(18), 2323–2334.PubMedCentralPubMedCrossRef Garcia, C. B., et al. (2012). Reprogramming of mesenchymal stem cells by the synovial sarcoma-associated oncogene SYT-SSX2. Oncogene, 31(18), 2323–2334.PubMedCentralPubMedCrossRef
11.
go back to reference Hayakawa, K., et al. (2013). Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells. Biochemical and Biophysical Research Communications, 432(4), 713–719.PubMedCrossRef Hayakawa, K., et al. (2013). Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells. Biochemical and Biophysical Research Communications, 432(4), 713–719.PubMedCrossRef
12.
go back to reference Naka, N., et al. (2010). Synovial sarcoma is a stem cell malignancy. Stem Cells, 28(7), 1119–1131.PubMed Naka, N., et al. (2010). Synovial sarcoma is a stem cell malignancy. Stem Cells, 28(7), 1119–1131.PubMed
13.
go back to reference Falkenstern-Ge, R.F., et al. (2013) Primary pulmonary synovial sarcoma: a rare primary pulmonary tumor. Lung, 192(1), 211–4. Falkenstern-Ge, R.F., et al. (2013) Primary pulmonary synovial sarcoma: a rare primary pulmonary tumor. Lung, 192(1), 211–4.
14.
go back to reference Wang, J. G., & Li, N. N. (2013). Primary cardiac synovial sarcoma. Annals of Thoracic Surgery, 95(6), 2202–2209.PubMedCrossRef Wang, J. G., & Li, N. N. (2013). Primary cardiac synovial sarcoma. Annals of Thoracic Surgery, 95(6), 2202–2209.PubMedCrossRef
15.
go back to reference Schoolmeester, J. K., Cheville, J. C., & Folpe, A. L. (2014). Synovial sarcoma of the kidney: a clinicopathologic, immunohistochemical, and molecular genetic study of 16 cases. American Journal of Surgical Pathology, 38(1), 60–65.PubMedCrossRef Schoolmeester, J. K., Cheville, J. C., & Folpe, A. L. (2014). Synovial sarcoma of the kidney: a clinicopathologic, immunohistochemical, and molecular genetic study of 16 cases. American Journal of Surgical Pathology, 38(1), 60–65.PubMedCrossRef
16.
go back to reference Billings, S. D., et al. (2000). Synovial sarcoma of the upper digestive tract: a report of two cases with demonstration of the X;18 translocation by fluorescence in situ hybridization. Modern Pathology, 13(1), 68–76.PubMedCrossRef Billings, S. D., et al. (2000). Synovial sarcoma of the upper digestive tract: a report of two cases with demonstration of the X;18 translocation by fluorescence in situ hybridization. Modern Pathology, 13(1), 68–76.PubMedCrossRef
17.
go back to reference Hiraga, H., et al. (1999). Histological and molecular evidence of synovial sarcoma of bone. A case report. Journal of Bone and Joint Surgery (American), 81(4), 558–563. Hiraga, H., et al. (1999). Histological and molecular evidence of synovial sarcoma of bone. A case report. Journal of Bone and Joint Surgery (American), 81(4), 558–563.
18.
go back to reference Haldar, M., et al. (2007). A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell, 11(4), 375–388.PubMedCrossRef Haldar, M., et al. (2007). A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell, 11(4), 375–388.PubMedCrossRef
19.
go back to reference Haldar, M., et al. (2009). A CreER-based random induction strategy for modeling translocation-associated sarcomas in mice. Cancer Research, 69(8), 3657–3664.PubMedCentralPubMedCrossRef Haldar, M., et al. (2009). A CreER-based random induction strategy for modeling translocation-associated sarcomas in mice. Cancer Research, 69(8), 3657–3664.PubMedCentralPubMedCrossRef
20.
go back to reference Bakri, A., et al. (2012). Synovial sarcoma: imaging features of common and uncommon primary sites, metastatic patterns, and treatment response. AJR. American Journal of Roentgenology, 199(2), W208–W215.PubMedCrossRef Bakri, A., et al. (2012). Synovial sarcoma: imaging features of common and uncommon primary sites, metastatic patterns, and treatment response. AJR. American Journal of Roentgenology, 199(2), W208–W215.PubMedCrossRef
21.
go back to reference Jaganathan, S., et al. (2012). Spectrum of synovial pathologies: a pictorial assay. Current Problems in Diagnostic Radiology, 41(1), 30–42.PubMedCrossRef Jaganathan, S., et al. (2012). Spectrum of synovial pathologies: a pictorial assay. Current Problems in Diagnostic Radiology, 41(1), 30–42.PubMedCrossRef
22.
go back to reference Spillane, A. J., et al. (2000). Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. Journal of Clinical Oncology, 18(22), 3794–3803.PubMed Spillane, A. J., et al. (2000). Synovial sarcoma: a clinicopathologic, staging, and prognostic assessment. Journal of Clinical Oncology, 18(22), 3794–3803.PubMed
23.
go back to reference Siegel, H. J., et al. (2007). Synovial sarcoma: clinicopathologic features, treatment, and prognosis. Orthopedics, 30(12), 1020–1025. Siegel, H. J., et al. (2007). Synovial sarcoma: clinicopathologic features, treatment, and prognosis. Orthopedics, 30(12), 1020–1025.
24.
go back to reference Saito, T., Nagai, M., & Ladanyi, M. (2006). SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Research, 66(14), 6919–6927.PubMedCrossRef Saito, T., Nagai, M., & Ladanyi, M. (2006). SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug: a potential mechanism for aberrant mesenchymal to epithelial transition in human synovial sarcoma. Cancer Research, 66(14), 6919–6927.PubMedCrossRef
25.
go back to reference Su, L., et al. (2012). Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell, 21(3), 333–347.PubMedCentralPubMedCrossRef Su, L., et al. (2012). Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell, 21(3), 333–347.PubMedCentralPubMedCrossRef
26.
go back to reference Waterfall, J. J., & Meltzer, P. S. (2012). Targeting epigenetic misregulation in synovial sarcoma. Cancer Cell, 21(3), 323–324.PubMedCrossRef Waterfall, J. J., & Meltzer, P. S. (2012). Targeting epigenetic misregulation in synovial sarcoma. Cancer Cell, 21(3), 323–324.PubMedCrossRef
27.
go back to reference Miettinen, M., et al. (1999). Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Human Pathology, 30(8), 934–942.PubMedCrossRef Miettinen, M., et al. (1999). Epithelioid sarcoma: an immunohistochemical analysis of 112 classical and variant cases and a discussion of the differential diagnosis. Human Pathology, 30(8), 934–942.PubMedCrossRef
28.
go back to reference van de Rijn, M., et al. (1999). Poorly differentiated synovial sarcoma: an analysis of clinical, pathologic, and molecular genetic features. American Journal of Surgical Pathology, 23(1), 106–112.PubMedCrossRef van de Rijn, M., et al. (1999). Poorly differentiated synovial sarcoma: an analysis of clinical, pathologic, and molecular genetic features. American Journal of Surgical Pathology, 23(1), 106–112.PubMedCrossRef
29.
go back to reference Folpe, A. L., et al. (1998). Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. American Journal of Surgical Pathology, 22(6), 673–682.PubMedCrossRef Folpe, A. L., et al. (1998). Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. American Journal of Surgical Pathology, 22(6), 673–682.PubMedCrossRef
30.
go back to reference Sato, O., et al. (2005). Expression of epidermal growth factor receptor, ERBB2 and KIT in adult soft tissue sarcomas: a clinicopathologic study of 281 cases. Cancer, 103(9), 1881–1890.PubMedCrossRef Sato, O., et al. (2005). Expression of epidermal growth factor receptor, ERBB2 and KIT in adult soft tissue sarcomas: a clinicopathologic study of 281 cases. Cancer, 103(9), 1881–1890.PubMedCrossRef
31.
go back to reference Teng, H. W., et al. (2011). Prevalence and prognostic influence of genomic changes of EGFR pathway markers in synovial sarcoma. Journal of Surgical Oncology, 103(8), 773–781.PubMedCrossRef Teng, H. W., et al. (2011). Prevalence and prognostic influence of genomic changes of EGFR pathway markers in synovial sarcoma. Journal of Surgical Oncology, 103(8), 773–781.PubMedCrossRef
32.
go back to reference Ray, A., & Huh, W. W. (2012). Current state-of-the-art systemic therapy for pediatric soft tissue sarcomas. Current Oncology Reports, 14(4), 311–319.PubMedCrossRef Ray, A., & Huh, W. W. (2012). Current state-of-the-art systemic therapy for pediatric soft tissue sarcomas. Current Oncology Reports, 14(4), 311–319.PubMedCrossRef
33.
go back to reference Shi, W., et al. (2013). Long-term treatment outcomes for patients with synovial sarcoma: a 40-year experience at the University of Florida. American Journal of Clinical Oncology, 36(1), 83–88.PubMedCrossRef Shi, W., et al. (2013). Long-term treatment outcomes for patients with synovial sarcoma: a 40-year experience at the University of Florida. American Journal of Clinical Oncology, 36(1), 83–88.PubMedCrossRef
34.
go back to reference Ferrari, A., et al. (2012). Synovial sarcoma in children and adolescents: a critical reappraisal of staging investigations in relation to the rate of metastatic involvement at diagnosis. European Journal of Cancer, 48(9), 1370–1375.PubMedCrossRef Ferrari, A., et al. (2012). Synovial sarcoma in children and adolescents: a critical reappraisal of staging investigations in relation to the rate of metastatic involvement at diagnosis. European Journal of Cancer, 48(9), 1370–1375.PubMedCrossRef
35.
go back to reference Tunn, P. U., et al. (2008). Sentinel node biopsy in synovial sarcoma. European Journal of Surgical Oncology, 34(6), 704–707.PubMedCrossRef Tunn, P. U., et al. (2008). Sentinel node biopsy in synovial sarcoma. European Journal of Surgical Oncology, 34(6), 704–707.PubMedCrossRef
36.
go back to reference Sultan, I., et al. (2009). Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer, 115(15), 3537–3547.PubMedCrossRef Sultan, I., et al. (2009). Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer, 115(15), 3537–3547.PubMedCrossRef
37.
go back to reference Lagarde, P., et al. (2013). Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. Journal of Clinical Oncology, 31(5), 608–615.PubMedCrossRef Lagarde, P., et al. (2013). Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. Journal of Clinical Oncology, 31(5), 608–615.PubMedCrossRef
38.
go back to reference Dantonello, T. M., et al. (2009). Cooperative trial CWS-91 for localized soft tissue sarcoma in children, adolescents, and young adults. Journal of Clinical Oncology, 27(9), 1446–1455.PubMedCrossRef Dantonello, T. M., et al. (2009). Cooperative trial CWS-91 for localized soft tissue sarcoma in children, adolescents, and young adults. Journal of Clinical Oncology, 27(9), 1446–1455.PubMedCrossRef
39.
go back to reference Palmerini, E., et al. (2009). Synovial sarcoma: retrospective analysis of 250 patients treated at a single institution. Cancer, 115(13), 2988–2998.PubMedCrossRef Palmerini, E., et al. (2009). Synovial sarcoma: retrospective analysis of 250 patients treated at a single institution. Cancer, 115(13), 2988–2998.PubMedCrossRef
40.
go back to reference Andrassy, R. J., et al. (2001). Synovial sarcoma in children: surgical lessons from a single institution and review of the literature. Journal of the American College of Surgeons, 192(3), 305–313.PubMedCrossRef Andrassy, R. J., et al. (2001). Synovial sarcoma in children: surgical lessons from a single institution and review of the literature. Journal of the American College of Surgeons, 192(3), 305–313.PubMedCrossRef
41.
go back to reference Brecht, I. B., et al. (2006). Grossly-resected synovial sarcoma treated by the German and Italian Pediatric Soft Tissue Sarcoma Cooperative Groups: discussion on the role of adjuvant therapies. Pediatric Blood & Cancer, 46(1), 11–17.CrossRef Brecht, I. B., et al. (2006). Grossly-resected synovial sarcoma treated by the German and Italian Pediatric Soft Tissue Sarcoma Cooperative Groups: discussion on the role of adjuvant therapies. Pediatric Blood & Cancer, 46(1), 11–17.CrossRef
42.
go back to reference Chen, L., et al. (2012). Cancer/testis antigen SSX2 enhances invasiveness in MCF-7 cells by repressing ERalpha signaling. International Journal of Oncology, 40(6), 1986–1994.PubMed Chen, L., et al. (2012). Cancer/testis antigen SSX2 enhances invasiveness in MCF-7 cells by repressing ERalpha signaling. International Journal of Oncology, 40(6), 1986–1994.PubMed
43.
go back to reference Guillou, L., et al. (2004). Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. Journal of Clinical Oncology, 22(20), 4040–4050.PubMedCrossRef Guillou, L., et al. (2004). Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. Journal of Clinical Oncology, 22(20), 4040–4050.PubMedCrossRef
44.
go back to reference Ladenstein, R., et al. (1993). Synovial sarcoma of childhood and adolescence. Report of the German CWS-81 study. Cancer, 71(11), 3647–3655.PubMedCrossRef Ladenstein, R., et al. (1993). Synovial sarcoma of childhood and adolescence. Report of the German CWS-81 study. Cancer, 71(11), 3647–3655.PubMedCrossRef
45.
go back to reference Okcu, M. F., et al. (2003). Synovial sarcoma of childhood and adolescence: a multicenter, multivariate analysis of outcome. Journal of Clinical Oncology, 21(8), 1602–1611.PubMedCrossRef Okcu, M. F., et al. (2003). Synovial sarcoma of childhood and adolescence: a multicenter, multivariate analysis of outcome. Journal of Clinical Oncology, 21(8), 1602–1611.PubMedCrossRef
46.
go back to reference Pappo, A. S., et al. (1994). Synovial sarcoma in children and adolescents: the St Jude Children’s Research Hospital experience. Journal of Clinical Oncology, 12(11), 2360–2366.PubMed Pappo, A. S., et al. (1994). Synovial sarcoma in children and adolescents: the St Jude Children’s Research Hospital experience. Journal of Clinical Oncology, 12(11), 2360–2366.PubMed
47.
go back to reference Guadagnolo, B. A., et al. (2007). Long-term outcomes for synovial sarcoma treated with conservation surgery and radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 69(4), 1173–1180.PubMedCrossRef Guadagnolo, B. A., et al. (2007). Long-term outcomes for synovial sarcoma treated with conservation surgery and radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 69(4), 1173–1180.PubMedCrossRef
48.
go back to reference Krieg, A. H., et al. (2011). Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Annals of Oncology, 22(2), 458–467.PubMedCrossRef Krieg, A. H., et al. (2011). Synovial sarcomas usually metastasize after >5 years: a multicenter retrospective analysis with minimum follow-up of 10 years for survivors. Annals of Oncology, 22(2), 458–467.PubMedCrossRef
49.
go back to reference Bergh, P., et al. (1999). Synovial sarcoma: identification of low and high risk groups. Cancer, 85(12), 2596–2607.PubMedCrossRef Bergh, P., et al. (1999). Synovial sarcoma: identification of low and high risk groups. Cancer, 85(12), 2596–2607.PubMedCrossRef
50.
go back to reference Ferrari, A., et al. (2012). Salvage rates and prognostic factors after relapse in children and adolescents with initially localised synovial sarcoma. European Journal of Cancer, 48(18), 3448–3455.PubMedCrossRef Ferrari, A., et al. (2012). Salvage rates and prognostic factors after relapse in children and adolescents with initially localised synovial sarcoma. European Journal of Cancer, 48(18), 3448–3455.PubMedCrossRef
51.
go back to reference Amary, M. F., Diss, T. C., & Flanagan, A. M. (2007). Molecular characterization of a novel variant of a SYT-SSX1 fusion transcript in synovial sarcoma. Histopathology, 51(4), 559–561.PubMedCrossRef Amary, M. F., Diss, T. C., & Flanagan, A. M. (2007). Molecular characterization of a novel variant of a SYT-SSX1 fusion transcript in synovial sarcoma. Histopathology, 51(4), 559–561.PubMedCrossRef
52.
go back to reference Jagdis, A., et al. (2009). Prospective evaluation of TLE1 as a diagnostic immunohistochemical marker in synovial sarcoma. American Journal of Surgical Pathology, 33(12), 1743–1751.PubMedCrossRef Jagdis, A., et al. (2009). Prospective evaluation of TLE1 as a diagnostic immunohistochemical marker in synovial sarcoma. American Journal of Surgical Pathology, 33(12), 1743–1751.PubMedCrossRef
53.
go back to reference Ladanyi, M., et al. (2002). Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Research, 62(1), 135–140.PubMed Ladanyi, M., et al. (2002). Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Research, 62(1), 135–140.PubMed
54.
go back to reference Przybyl, J., et al. (2012). Recurrent and novel SS18-SSX fusion transcripts in synovial sarcoma: description of three new cases. Tumour Biology, 33(6), 2245–2253.PubMedCentralPubMedCrossRef Przybyl, J., et al. (2012). Recurrent and novel SS18-SSX fusion transcripts in synovial sarcoma: description of three new cases. Tumour Biology, 33(6), 2245–2253.PubMedCentralPubMedCrossRef
55.
go back to reference Smith, H. A., & McNeel, D. G. (2010). The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clinical and Developmental Immunology, 2010, 150591.PubMedCentralPubMedCrossRef Smith, H. A., & McNeel, D. G. (2010). The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clinical and Developmental Immunology, 2010, 150591.PubMedCentralPubMedCrossRef
56.
go back to reference Brodin, B., et al. (2001). Cloning and characterization of spliced fusion transcript variants of synovial sarcoma: SYT/SSX4, SYT/SSX4v, and SYT/SSX2v. Possible regulatory role of the fusion gene product in wild type SYT expression. Gene, 268(1–2), 173–182.PubMedCrossRef Brodin, B., et al. (2001). Cloning and characterization of spliced fusion transcript variants of synovial sarcoma: SYT/SSX4, SYT/SSX4v, and SYT/SSX2v. Possible regulatory role of the fusion gene product in wild type SYT expression. Gene, 268(1–2), 173–182.PubMedCrossRef
57.
go back to reference Skytting, B., et al. (1999). A novel fusion gene, SYT-SSX4, in synovial sarcoma. Journal of the National Cancer Institute, 91(11), 974–975.PubMedCrossRef Skytting, B., et al. (1999). A novel fusion gene, SYT-SSX4, in synovial sarcoma. Journal of the National Cancer Institute, 91(11), 974–975.PubMedCrossRef
58.
go back to reference Kadoch, C., & Crabtree, G. R. (2013). Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell, 153(1), 71–85.PubMedCentralPubMedCrossRef Kadoch, C., & Crabtree, G. R. (2013). Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell, 153(1), 71–85.PubMedCentralPubMedCrossRef
59.
go back to reference Wei, Y., et al. (2003). Characteristic sequence motifs located at the genomic breakpoints of the translocation t(X;18) in synovial sarcomas. Oncogene, 22(14), 2215–2222.PubMedCrossRef Wei, Y., et al. (2003). Characteristic sequence motifs located at the genomic breakpoints of the translocation t(X;18) in synovial sarcomas. Oncogene, 22(14), 2215–2222.PubMedCrossRef
60.
go back to reference Kanoe, H., et al. (1999). Characteristics of genomic breakpoints in TLS-CHOP translocations in liposarcomas suggest the involvement of Translin and topoisomerase II in the process of translocation. Oncogene, 18(3), 721–729.PubMedCrossRef Kanoe, H., et al. (1999). Characteristics of genomic breakpoints in TLS-CHOP translocations in liposarcomas suggest the involvement of Translin and topoisomerase II in the process of translocation. Oncogene, 18(3), 721–729.PubMedCrossRef
61.
go back to reference Zucman-Rossi, J., et al. (1998). Chromosome translocation based on illegitimate recombination in human tumors. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 11786–11791.PubMedCentralPubMedCrossRef Zucman-Rossi, J., et al. (1998). Chromosome translocation based on illegitimate recombination in human tumors. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 11786–11791.PubMedCentralPubMedCrossRef
62.
go back to reference Sandberg, A. A., & Bridge, J. A. (2002). Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Synovial sarcoma. Cancer Genetics and Cytogenetics, 133(1), 1–23.PubMedCrossRef Sandberg, A. A., & Bridge, J. A. (2002). Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Synovial sarcoma. Cancer Genetics and Cytogenetics, 133(1), 1–23.PubMedCrossRef
63.
go back to reference Nagai, M., et al. (2001). Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 3843–3848.PubMedCentralPubMedCrossRef Nagai, M., et al. (2001). Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 3843–3848.PubMedCentralPubMedCrossRef
64.
go back to reference Limon, J., Dal Cin, P., & Sandberg, A. A. (1986). Translocations involving the X chromosome in solid tumors: presentation of two sarcomas with t(X;18)(q13;p11). Cancer Genetics and Cytogenetics, 23(1), 87–91.PubMedCrossRef Limon, J., Dal Cin, P., & Sandberg, A. A. (1986). Translocations involving the X chromosome in solid tumors: presentation of two sarcomas with t(X;18)(q13;p11). Cancer Genetics and Cytogenetics, 23(1), 87–91.PubMedCrossRef
65.
go back to reference Turc-Carel, C., et al. (1986). Translocation X;18 in synovial sarcoma. Cancer Genetics and Cytogenetics, 23(1), 93.PubMedCrossRef Turc-Carel, C., et al. (1986). Translocation X;18 in synovial sarcoma. Cancer Genetics and Cytogenetics, 23(1), 93.PubMedCrossRef
66.
go back to reference Sun, B., et al. (2006). Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. European Journal of Cancer Prevention, 15(3), 258–265.PubMedCrossRef Sun, B., et al. (2006). Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. European Journal of Cancer Prevention, 15(3), 258–265.PubMedCrossRef
67.
go back to reference Bozzi, F., et al. (2008). Molecular characterization of synovial sarcoma in children and adolescents: evidence of akt activation. Translational Oncology, 1(2), 95–101.PubMedCentralPubMedCrossRef Bozzi, F., et al. (2008). Molecular characterization of synovial sarcoma in children and adolescents: evidence of akt activation. Translational Oncology, 1(2), 95–101.PubMedCentralPubMedCrossRef
68.
go back to reference Horvai, A. E., Kramer, M. J., & O’Donnell, R. (2006). Beta-catenin nuclear expression correlates with cyclin D1 expression in primary and metastatic synovial sarcoma: a tissue microarray study. Archives of Pathology and Laboratory Medicine, 130(6), 792–798.PubMed Horvai, A. E., Kramer, M. J., & O’Donnell, R. (2006). Beta-catenin nuclear expression correlates with cyclin D1 expression in primary and metastatic synovial sarcoma: a tissue microarray study. Archives of Pathology and Laboratory Medicine, 130(6), 792–798.PubMed
69.
go back to reference Pretto, D., et al. (2006). The synovial sarcoma translocation protein SYT-SSX2 recruits beta-catenin to the nucleus and associates with it in an active complex. Oncogene, 25(26), 3661–3669.PubMedCrossRef Pretto, D., et al. (2006). The synovial sarcoma translocation protein SYT-SSX2 recruits beta-catenin to the nucleus and associates with it in an active complex. Oncogene, 25(26), 3661–3669.PubMedCrossRef
70.
go back to reference Ishibe, T., et al. (2005). Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clinical Cancer Research, 11(7), 2702–2712.PubMedCrossRef Ishibe, T., et al. (2005). Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clinical Cancer Research, 11(7), 2702–2712.PubMedCrossRef
71.
go back to reference Barco, R., et al. (2007). The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Molecular Biology of the Cell, 18(10), 4003–4012.PubMedCentralPubMedCrossRef Barco, R., et al. (2007). The synovial sarcoma SYT-SSX2 oncogene remodels the cytoskeleton through activation of the ephrin pathway. Molecular Biology of the Cell, 18(10), 4003–4012.PubMedCentralPubMedCrossRef
72.
go back to reference Jones, K. B., et al. (2013). SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene, 32(18), 2365–2371. Jones, K. B., et al. (2013). SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene, 32(18), 2365–2371.
73.
go back to reference Mancuso, T., et al. (2000). Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Laboratory Investigation, 80(6), 805–813.PubMedCrossRef Mancuso, T., et al. (2000). Analysis of SYT-SSX fusion transcripts and bcl-2 expression and phosphorylation status in synovial sarcoma. Laboratory Investigation, 80(6), 805–813.PubMedCrossRef
74.
go back to reference de Bruijn, D. R., et al. (1996). Isolation and characterization of the mouse homolog of SYT, a gene implicated in the development of human synovial sarcomas. Oncogene, 13(3), 643–648.PubMed de Bruijn, D. R., et al. (1996). Isolation and characterization of the mouse homolog of SYT, a gene implicated in the development of human synovial sarcomas. Oncogene, 13(3), 643–648.PubMed
75.
go back to reference Clark, J., et al. (1994). Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nature Genetics, 7(4), 502–508.PubMedCrossRef Clark, J., et al. (1994). Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nature Genetics, 7(4), 502–508.PubMedCrossRef
76.
go back to reference Thaete, C., et al. (1999). Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Human Molecular Genetics, 8(4), 585–591.PubMedCrossRef Thaete, C., et al. (1999). Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Human Molecular Genetics, 8(4), 585–591.PubMedCrossRef
77.
go back to reference Brett, D., et al. (1997). The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Human Molecular Genetics, 6(9), 1559–1564.PubMedCrossRef Brett, D., et al. (1997). The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Human Molecular Genetics, 6(9), 1559–1564.PubMedCrossRef
78.
go back to reference dos Santos, N. R., et al. (1997). Nuclear localization of SYT, SSX and the synovial sarcoma-associated SYT-SSX fusion proteins. Human Molecular Genetics, 6(9), 1549–1558.PubMedCrossRef dos Santos, N. R., et al. (1997). Nuclear localization of SYT, SSX and the synovial sarcoma-associated SYT-SSX fusion proteins. Human Molecular Genetics, 6(9), 1549–1558.PubMedCrossRef
79.
go back to reference Toretsky, J. A., & Wright, P. E. (2014). Assemblages: functional units formed by cellular phase separation. Journal of Cell Biology, 206(5), 579–588.PubMedCentralPubMedCrossRef Toretsky, J. A., & Wright, P. E. (2014). Assemblages: functional units formed by cellular phase separation. Journal of Cell Biology, 206(5), 579–588.PubMedCentralPubMedCrossRef
80.
go back to reference de Bruijn, D. R., et al. (2001). The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene, 20(25), 3281–3289.PubMedCrossRef de Bruijn, D. R., et al. (2001). The synovial sarcoma associated protein SYT interacts with the acute leukemia associated protein AF10. Oncogene, 20(25), 3281–3289.PubMedCrossRef
81.
go back to reference Eid, J. E., et al. (2000). p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell, 102(6), 839–848.PubMedCrossRef Eid, J. E., et al. (2000). p300 interacts with the nuclear proto-oncoprotein SYT as part of the active control of cell adhesion. Cell, 102(6), 839–848.PubMedCrossRef
82.
go back to reference Ito, T., et al. (2004). SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Laboratory Investigation, 84(11), 1484–1490.PubMedCrossRef Ito, T., et al. (2004). SYT, a partner of SYT-SSX oncoprotein in synovial sarcomas, interacts with mSin3A, a component of histone deacetylase complex. Laboratory Investigation, 84(11), 1484–1490.PubMedCrossRef
83.
84.
go back to reference Wang, X., Haswell, J. R., & Roberts, C. W. (2014). Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer—mechanisms and potential therapeutic insights. Clinical Cancer Research, 20(1), 21–27.PubMedCentralPubMedCrossRef Wang, X., Haswell, J. R., & Roberts, C. W. (2014). Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer—mechanisms and potential therapeutic insights. Clinical Cancer Research, 20(1), 21–27.PubMedCentralPubMedCrossRef
85.
go back to reference Wang, F., Marshall, C. B., & Ikura, M. (2013). Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cellular and Molecular Life Sciences, 70(21), 3989–4008.PubMedCrossRef Wang, F., Marshall, C. B., & Ikura, M. (2013). Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cellular and Molecular Life Sciences, 70(21), 3989–4008.PubMedCrossRef
86.
go back to reference Wang, W., et al. (1996). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO Journal, 15(19), 5370–5382.PubMedCentralPubMed Wang, W., et al. (1996). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO Journal, 15(19), 5370–5382.PubMedCentralPubMed
87.
go back to reference Wang, W., et al. (1996). Diversity and specialization of mammalian SWI/SNF complexes. Genes and Development, 10(17), 2117–2130.PubMedCrossRef Wang, W., et al. (1996). Diversity and specialization of mammalian SWI/SNF complexes. Genes and Development, 10(17), 2117–2130.PubMedCrossRef
88.
go back to reference Perani, M., et al. (2003). Conserved SNH domain of the proto-oncoprotein SYT interacts with components of the human chromatin remodelling complexes, while the QPGY repeat domain forms homo-oligomers. Oncogene, 22(50), 8156–8167.PubMedCrossRef Perani, M., et al. (2003). Conserved SNH domain of the proto-oncoprotein SYT interacts with components of the human chromatin remodelling complexes, while the QPGY repeat domain forms homo-oligomers. Oncogene, 22(50), 8156–8167.PubMedCrossRef
89.
go back to reference Debernardi, S., et al. (2002). The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood, 99(1), 275–281.PubMedCrossRef Debernardi, S., et al. (2002). The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood, 99(1), 275–281.PubMedCrossRef
90.
go back to reference Okada, Y., et al. (2005). hDOT1L links histone methylation to leukemogenesis. Cell, 121(2), 167–178.PubMedCrossRef Okada, Y., et al. (2005). hDOT1L links histone methylation to leukemogenesis. Cell, 121(2), 167–178.PubMedCrossRef
91.
go back to reference Bannister, A. J., & Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610), 641–643.PubMedCrossRef Bannister, A. J., & Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610), 641–643.PubMedCrossRef
92.
go back to reference Ogryzko, V. V., et al. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5), 953–959.PubMedCrossRef Ogryzko, V. V., et al. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5), 953–959.PubMedCrossRef
93.
go back to reference Shiama, N. (1997). The p300/CBP family: integrating signals with transcription factors and chromatin. Trends in Cell Biology, 7(6), 230–236.PubMedCrossRef Shiama, N. (1997). The p300/CBP family: integrating signals with transcription factors and chromatin. Trends in Cell Biology, 7(6), 230–236.PubMedCrossRef
94.
go back to reference Huang, Z. Q., et al. (2003). A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO Journal, 22(9), 2146–2155.PubMedCentralPubMedCrossRef Huang, Z. Q., et al. (2003). A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO Journal, 22(9), 2146–2155.PubMedCentralPubMedCrossRef
95.
go back to reference Leo, C., & Chen, J. D. (2000). The SRC family of nuclear receptor coactivators. Gene, 245(1), 1–11.PubMedCrossRef Leo, C., & Chen, J. D. (2000). The SRC family of nuclear receptor coactivators. Gene, 245(1), 1–11.PubMedCrossRef
96.
go back to reference Xu, J., & Li, Q. (2003). Review of the in vivo functions of the p160 steroid receptor coactivator family. Molecular Endocrinology, 17(9), 1681–1692.PubMedCrossRef Xu, J., & Li, Q. (2003). Review of the in vivo functions of the p160 steroid receptor coactivator family. Molecular Endocrinology, 17(9), 1681–1692.PubMedCrossRef
97.
go back to reference McKenna, N. J., Lanz, R. B., & O’Malley, B. W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocrine Reviews, 20(3), 321–344.PubMed McKenna, N. J., Lanz, R. B., & O’Malley, B. W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocrine Reviews, 20(3), 321–344.PubMed
98.
go back to reference Nan, X., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683), 386–389.PubMedCrossRef Nan, X., et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683), 386–389.PubMedCrossRef
99.
go back to reference Nakamura, T., et al. (2002). ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Molecular Cell, 10(5), 1119–1128.PubMedCrossRef Nakamura, T., et al. (2002). ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Molecular Cell, 10(5), 1119–1128.PubMedCrossRef
100.
go back to reference Silverstein, R. A., & Ekwall, K. (2005). Sin3: a flexible regulator of global gene expression and genome stability. Current Genetics, 47(1), 1–17.PubMedCrossRef Silverstein, R. A., & Ekwall, K. (2005). Sin3: a flexible regulator of global gene expression and genome stability. Current Genetics, 47(1), 1–17.PubMedCrossRef
101.
go back to reference Kato, H., et al. (2002). SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones. Journal of Biological Chemistry, 277(7), 5498–5505.PubMedCrossRef Kato, H., et al. (2002). SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones. Journal of Biological Chemistry, 277(7), 5498–5505.PubMedCrossRef
102.
go back to reference Kato, M., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 149(4), 753–767.PubMedCrossRef Kato, M., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 149(4), 753–767.PubMedCrossRef
103.
go back to reference Perani, M., et al. (2005). The proto-oncoprotein SYT interacts with SYT-interacting protein/co-activator activator (SIP/CoAA), a human nuclear receptor co-activator with similarity to EWS and TLS/FUS family of proteins. Journal of Biological Chemistry, 280(52), 42863–42876.PubMedCrossRef Perani, M., et al. (2005). The proto-oncoprotein SYT interacts with SYT-interacting protein/co-activator activator (SIP/CoAA), a human nuclear receptor co-activator with similarity to EWS and TLS/FUS family of proteins. Journal of Biological Chemistry, 280(52), 42863–42876.PubMedCrossRef
104.
go back to reference Iwasaki, T., Chin, W. W., & Ko, L. (2001). Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein, and its splice variant as a coactivator modulator (CoAM). Journal of Biological Chemistry, 276(36), 33375–33383.PubMedCrossRef Iwasaki, T., Chin, W. W., & Ko, L. (2001). Identification and characterization of RRM-containing coactivator activator (CoAA) as TRBP-interacting protein, and its splice variant as a coactivator modulator (CoAM). Journal of Biological Chemistry, 276(36), 33375–33383.PubMedCrossRef
105.
go back to reference Auboeuf, D., et al. (2004). CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Molecular and Cellular Biology, 24(1), 442–453.PubMedCentralPubMedCrossRef Auboeuf, D., et al. (2004). CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Molecular and Cellular Biology, 24(1), 442–453.PubMedCentralPubMedCrossRef
106.
go back to reference Auboeuf, D., et al. (2002). Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science, 298(5592), 416–419.PubMedCrossRef Auboeuf, D., et al. (2002). Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science, 298(5592), 416–419.PubMedCrossRef
107.
go back to reference Tamborini, E., et al. (2001). Identification of a novel spliced variant of the SYT gene expressed in normal tissues and in synovial sarcoma. British Journal of Cancer, 84(8), 1087–1094.PubMedCentralPubMedCrossRef Tamborini, E., et al. (2001). Identification of a novel spliced variant of the SYT gene expressed in normal tissues and in synovial sarcoma. British Journal of Cancer, 84(8), 1087–1094.PubMedCentralPubMedCrossRef
108.
go back to reference de Leeuw, B., Balemans, M., & Geurts van Kessel, A. (1996). A novel Kruppel-associated box containing the SSX gene (SSX3) on the human X chromosome is not implicated in t(X;18)-positive synovial sarcomas. Cytogenetics and Cell Genetics, 73(3), 179–183.PubMedCrossRef de Leeuw, B., Balemans, M., & Geurts van Kessel, A. (1996). A novel Kruppel-associated box containing the SSX gene (SSX3) on the human X chromosome is not implicated in t(X;18)-positive synovial sarcomas. Cytogenetics and Cell Genetics, 73(3), 179–183.PubMedCrossRef
109.
go back to reference dos Santos, N. R., et al. (2000). Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Research, 60(6), 1654–1662.PubMed dos Santos, N. R., et al. (2000). Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Research, 60(6), 1654–1662.PubMed
110.
go back to reference Gure, A. O., et al. (1997). SSX: a multigene family with several members transcribed in normal testis and human cancer. International Journal of Cancer, 72(6), 965–971.CrossRef Gure, A. O., et al. (1997). SSX: a multigene family with several members transcribed in normal testis and human cancer. International Journal of Cancer, 72(6), 965–971.CrossRef
111.
go back to reference de Bruijn, D. R., et al. (2008). The C terminus of the synovial sarcoma-associated SSX proteins interacts with the LIM homeobox protein LHX4. Oncogene, 27(5), 653–662.PubMedCrossRef de Bruijn, D. R., et al. (2008). The C terminus of the synovial sarcoma-associated SSX proteins interacts with the LIM homeobox protein LHX4. Oncogene, 27(5), 653–662.PubMedCrossRef
112.
go back to reference Crew, A. J., et al. (1995). Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO Journal, 14(10), 2333–2340.PubMedCentralPubMed Crew, A. J., et al. (1995). Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO Journal, 14(10), 2333–2340.PubMedCentralPubMed
113.
go back to reference Gure, A. O., et al. (2002). The SSX gene family: characterization of 9 complete genes. International Journal of Cancer, 101(5), 448–453.CrossRef Gure, A. O., et al. (2002). The SSX gene family: characterization of 9 complete genes. International Journal of Cancer, 101(5), 448–453.CrossRef
114.
go back to reference dos Santos, N. R., de Bruijn, D. R., & van Kessel, A. G. (2001). Molecular mechanisms underlying human synovial sarcoma development. Genes, Chromosomes & Cancer, 30(1), 1–14.CrossRef dos Santos, N. R., de Bruijn, D. R., & van Kessel, A. G. (2001). Molecular mechanisms underlying human synovial sarcoma development. Genes, Chromosomes & Cancer, 30(1), 1–14.CrossRef
115.
go back to reference Naka, N., et al. (2002). Expression of SSX genes in human osteosarcomas. International Journal of Cancer, 98(4), 640–642.CrossRef Naka, N., et al. (2002). Expression of SSX genes in human osteosarcomas. International Journal of Cancer, 98(4), 640–642.CrossRef
116.
go back to reference Mischo, A., et al. (2006). Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. International Journal of Cancer, 118(3), 696–703.CrossRef Mischo, A., et al. (2006). Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. International Journal of Cancer, 118(3), 696–703.CrossRef
117.
go back to reference Taylor, B. J., et al. (2005). SSX cancer testis antigens are expressed in most multiple myeloma patients: co-expression of SSX1, 2, 4, and 5 correlates with adverse prognosis and high frequencies of SSX-positive PCs. Journal of Immunotherapy, 28(6), 564–575.PubMedCrossRef Taylor, B. J., et al. (2005). SSX cancer testis antigens are expressed in most multiple myeloma patients: co-expression of SSX1, 2, 4, and 5 correlates with adverse prognosis and high frequencies of SSX-positive PCs. Journal of Immunotherapy, 28(6), 564–575.PubMedCrossRef
118.
go back to reference Cronwright, G., et al. (2005). Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Research, 65(6), 2207–2215.PubMedCrossRef Cronwright, G., et al. (2005). Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Research, 65(6), 2207–2215.PubMedCrossRef
119.
go back to reference dos Santos, N. R., et al. (2000). Delineation of the protein domains responsible for SYT, SSX, and SYT-SSX nuclear localization. Experimental Cell Research, 256(1), 192–202.PubMedCrossRef dos Santos, N. R., et al. (2000). Delineation of the protein domains responsible for SYT, SSX, and SYT-SSX nuclear localization. Experimental Cell Research, 256(1), 192–202.PubMedCrossRef
120.
go back to reference Soulez, M., et al. (1999). SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex. Oncogene, 18(17), 2739–2746.PubMedCrossRef Soulez, M., et al. (1999). SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex. Oncogene, 18(17), 2739–2746.PubMedCrossRef
121.
go back to reference Huntley, S., et al. (2006). A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Research, 16(5), 669–677.PubMedCentralPubMedCrossRef Huntley, S., et al. (2006). A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Research, 16(5), 669–677.PubMedCentralPubMedCrossRef
122.
123.
go back to reference de Bruijn, D. R., et al. (2002). The cancer-related protein SSX2 interacts with the human homologue of a Ras-like GTPase interactor, RAB3IP, and a novel nuclear protein, SSX2IP. Genes, Chromosomes & Cancer, 34(3), 285–298.CrossRef de Bruijn, D. R., et al. (2002). The cancer-related protein SSX2 interacts with the human homologue of a Ras-like GTPase interactor, RAB3IP, and a novel nuclear protein, SSX2IP. Genes, Chromosomes & Cancer, 34(3), 285–298.CrossRef
124.
go back to reference Lim, F. L., et al. (1998). A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene, 17(15), 2013–2018.PubMedCrossRef Lim, F. L., et al. (1998). A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene, 17(15), 2013–2018.PubMedCrossRef
125.
go back to reference Schuettengruber, B., et al. (2007). Genome regulation by polycomb and trithorax proteins. Cell, 128(4), 735–745.PubMedCrossRef Schuettengruber, B., et al. (2007). Genome regulation by polycomb and trithorax proteins. Cell, 128(4), 735–745.PubMedCrossRef
126.
go back to reference Schwartz, Y. B., & Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews Genetics, 8(1), 9–22.PubMedCrossRef Schwartz, Y. B., & Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nature Reviews Genetics, 8(1), 9–22.PubMedCrossRef
127.
go back to reference Di Croce, L., & Helin, K. (2013). Transcriptional regulation by Polycomb group proteins. Nature Structural and Molecular Biology, 20(10), 1147–1155.PubMedCrossRef Di Croce, L., & Helin, K. (2013). Transcriptional regulation by Polycomb group proteins. Nature Structural and Molecular Biology, 20(10), 1147–1155.PubMedCrossRef
128.
go back to reference Wang, J., et al. (2013). Subnuclear distribution of SSX regulates its function. Molecular and Cellular Biochemistry, 381(1–2), 17–29.PubMedCrossRef Wang, J., et al. (2013). Subnuclear distribution of SSX regulates its function. Molecular and Cellular Biochemistry, 381(1–2), 17–29.PubMedCrossRef
129.
go back to reference Dong, W. F., et al. (1997). Cloning, expression, and chromosomal localization to 11p12-13 of a human LIM/HOMEOBOX gene, hLim-1. DNA and Cell Biology, 16(6), 671–678.PubMed Dong, W. F., et al. (1997). Cloning, expression, and chromosomal localization to 11p12-13 of a human LIM/HOMEOBOX gene, hLim-1. DNA and Cell Biology, 16(6), 671–678.PubMed
130.
go back to reference Kawamata, N., et al. (2002). A novel chromosomal translocation t(1;14)(q25;q32) in pre-B acute lymphoblastic leukemia involves the LIM homeodomain protein gene, Lhx4. Oncogene, 21(32), 4983–4991.PubMedCrossRef Kawamata, N., et al. (2002). A novel chromosomal translocation t(1;14)(q25;q32) in pre-B acute lymphoblastic leukemia involves the LIM homeodomain protein gene, Lhx4. Oncogene, 21(32), 4983–4991.PubMedCrossRef
131.
go back to reference Wu, H. K., & Minden, M. D. (1997). Transcriptional activation of human LIM-HOX gene, hLH-2, in chronic myelogenous leukemia is due to a cis-acting effect of Bcr-Abl. Biochemical and Biophysical Research Communications, 233(3), 806–812.PubMedCrossRef Wu, H. K., & Minden, M. D. (1997). Transcriptional activation of human LIM-HOX gene, hLH-2, in chronic myelogenous leukemia is due to a cis-acting effect of Bcr-Abl. Biochemical and Biophysical Research Communications, 233(3), 806–812.PubMedCrossRef
132.
go back to reference Yamaguchi, M., Yamamoto, K., & Miura, O. (2003). Aberrant expression of the LHX4 LIM-homeobox gene caused by t(1;14)(q25;q32) in chronic myelogenous leukemia in biphenotypic blast crisis. Genes, Chromosomes & Cancer, 38(3), 269–273.CrossRef Yamaguchi, M., Yamamoto, K., & Miura, O. (2003). Aberrant expression of the LHX4 LIM-homeobox gene caused by t(1;14)(q25;q32) in chronic myelogenous leukemia in biphenotypic blast crisis. Genes, Chromosomes & Cancer, 38(3), 269–273.CrossRef
133.
go back to reference Cironi, L., et al. (2009). Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One, 4(11), e7904.PubMedCentralPubMedCrossRef Cironi, L., et al. (2009). Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One, 4(11), e7904.PubMedCentralPubMedCrossRef
134.
go back to reference Kia, S. K., et al. (2008). SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Molecular and Cellular Biology, 28(10), 3457–3464.PubMedCentralPubMedCrossRef Kia, S. K., et al. (2008). SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Molecular and Cellular Biology, 28(10), 3457–3464.PubMedCentralPubMedCrossRef
135.
go back to reference Wilson, W. H., et al. (2010). Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. The Lancet Oncology, 11(12), 1149–1159.PubMedCentralPubMedCrossRef Wilson, W. H., et al. (2010). Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. The Lancet Oncology, 11(12), 1149–1159.PubMedCentralPubMedCrossRef
136.
go back to reference Francis, N. J., Kingston, R. E., & Woodcock, C. L. (2004). Chromatin compaction by a polycomb group protein complex. Science, 306(5701), 1574–1577.PubMedCrossRef Francis, N. J., Kingston, R. E., & Woodcock, C. L. (2004). Chromatin compaction by a polycomb group protein complex. Science, 306(5701), 1574–1577.PubMedCrossRef
137.
go back to reference Bantignies, F., & Cavalli, G. (2011). Polycomb group proteins: repression in 3D. Trends in Genetics, 27(11), 454–464.PubMedCrossRef Bantignies, F., & Cavalli, G. (2011). Polycomb group proteins: repression in 3D. Trends in Genetics, 27(11), 454–464.PubMedCrossRef
138.
go back to reference Mousavi, K., et al. (2012). Polycomb protein Ezh1 promotes RNA polymerase II elongation. Molecular Cell, 45(2), 255–262.PubMedCrossRef Mousavi, K., et al. (2012). Polycomb protein Ezh1 promotes RNA polymerase II elongation. Molecular Cell, 45(2), 255–262.PubMedCrossRef
139.
go back to reference Wilson, B. G., et al. (2010). Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell, 18(4), 316–328.PubMedCentralPubMedCrossRef Wilson, B. G., et al. (2010). Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell, 18(4), 316–328.PubMedCentralPubMedCrossRef
140.
go back to reference Chen, Y., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. Journal of Biological Chemistry, 283(26), 17969–17978.PubMedCrossRef Chen, Y., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. Journal of Biological Chemistry, 283(26), 17969–17978.PubMedCrossRef
143.
go back to reference Changchien, Y. C., et al. (2012). Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). Journal of Translational Medicine, 10, 216.PubMedCentralPubMedCrossRef Changchien, Y. C., et al. (2012). Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). Journal of Translational Medicine, 10, 216.PubMedCentralPubMedCrossRef
144.
go back to reference Lubieniecka, J. M., et al. (2008). Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Research, 68(11), 4303–4310.PubMedCrossRef Lubieniecka, J. M., et al. (2008). Histone deacetylase inhibitors reverse SS18-SSX-mediated polycomb silencing of the tumor suppressor early growth response 1 in synovial sarcoma. Cancer Research, 68(11), 4303–4310.PubMedCrossRef
145.
go back to reference Garcia, C. B., Shaffer, C. M., & Eid, J. E. (2012). Genome-wide recruitment to Polycomb-modified chromatin and activity regulation of the synovial sarcoma oncogene SYT-SSX2. BMC Genomics, 13(1), 189.PubMedCentralPubMedCrossRef Garcia, C. B., Shaffer, C. M., & Eid, J. E. (2012). Genome-wide recruitment to Polycomb-modified chromatin and activity regulation of the synovial sarcoma oncogene SYT-SSX2. BMC Genomics, 13(1), 189.PubMedCentralPubMedCrossRef
146.
go back to reference Howard, P. W., & Maurer, R. A. (2000). Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. Journal of Biological Chemistry, 275(18), 13336–13342.PubMedCrossRef Howard, P. W., & Maurer, R. A. (2000). Identification of a conserved protein that interacts with specific LIM homeodomain transcription factors. Journal of Biological Chemistry, 275(18), 13336–13342.PubMedCrossRef
147.
go back to reference Ali, S. A., et al. (2010). Transcriptional corepressor TLE1 functions with Runx2 in epigenetic repression of ribosomal RNA genes. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4165–4169.PubMedCentralPubMedCrossRef Ali, S. A., et al. (2010). Transcriptional corepressor TLE1 functions with Runx2 in epigenetic repression of ribosomal RNA genes. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4165–4169.PubMedCentralPubMedCrossRef
148.
go back to reference Kawasaki, H., et al. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature, 405(6783), 195–200.PubMedCrossRef Kawasaki, H., et al. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature, 405(6783), 195–200.PubMedCrossRef
149.
go back to reference Bhoumik, A., & Ronai, Z. (2008). ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle, 7(15), 2341–2345.PubMedCrossRef Bhoumik, A., & Ronai, Z. (2008). ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle, 7(15), 2341–2345.PubMedCrossRef
150.
151.
go back to reference Erkizan, H. V., et al. (2009). A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nature Medicine, 15(7), 750–756.PubMedCentralPubMedCrossRef Erkizan, H. V., et al. (2009). A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nature Medicine, 15(7), 750–756.PubMedCentralPubMedCrossRef
Metadata
Title
Synovial sarcoma is a gateway to the role of chromatin remodeling in cancer
Authors
Stefan K. Zöllner
Claudia Rössig
Jeffrey A. Toretsky
Publication date
01-09-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9575-z

Other articles of this Issue 3/2015

Cancer and Metastasis Reviews 3/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine