Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2015

01-03-2015

Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches

Authors: Hyun-Jin Choi, Guillermo N. Armaiz Pena, Sunila Pradeep, Min Soon Cho, Robert L. Coleman, Anil K. Sood

Published in: Cancer and Metastasis Reviews | Issue 1/2015

Login to get access

Abstract

Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Literature
1.
go back to reference Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 3, 502–516.PubMedCrossRef Agarwal, R., & Kaye, S. B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nature Reviews Cancer, 3, 502–516.PubMedCrossRef
2.
go back to reference Balvert-Locht, H. R., Coebergh, J. W., Hop, W. C., et al. (1991). Improved prognosis of ovarian cancer in The Netherlands during the period 1975–1985: a registry-based study. Gynecologic Oncology, 42, 3–8.PubMedCrossRef Balvert-Locht, H. R., Coebergh, J. W., Hop, W. C., et al. (1991). Improved prognosis of ovarian cancer in The Netherlands during the period 1975–1985: a registry-based study. Gynecologic Oncology, 42, 3–8.PubMedCrossRef
3.
go back to reference Ozols, R. F., Bundy, B. N., Greer, B. E., et al. (2003). Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. Journal of Clinical Oncology, 21, 3194–3200.PubMedCrossRef Ozols, R. F., Bundy, B. N., Greer, B. E., et al. (2003). Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a gynecologic oncology group study. Journal of Clinical Oncology, 21, 3194–3200.PubMedCrossRef
4.
go back to reference du Bois, A., Neijt, J. P., & Thigpen, J. T. (1999). First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer—a new standard of care? Annals of Oncology, 10(Suppl 1), 35–41.PubMedCrossRef du Bois, A., Neijt, J. P., & Thigpen, J. T. (1999). First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer—a new standard of care? Annals of Oncology, 10(Suppl 1), 35–41.PubMedCrossRef
5.
go back to reference Biagi, J. J., & Eisenhauer, E. A. (2003). Systemic treatment policies in ovarian cancer: the next 10 years. International Journal of Gynecological Cancer, 13(Suppl 2), 231–240.PubMedCrossRef Biagi, J. J., & Eisenhauer, E. A. (2003). Systemic treatment policies in ovarian cancer: the next 10 years. International Journal of Gynecological Cancer, 13(Suppl 2), 231–240.PubMedCrossRef
6.
go back to reference Neijt, J. P., Engelholm, S. A., Tuxen, M. K., et al. (2000). Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. Journal of Clinical Oncology, 18, 3084–3092.PubMed Neijt, J. P., Engelholm, S. A., Tuxen, M. K., et al. (2000). Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. Journal of Clinical Oncology, 18, 3084–3092.PubMed
7.
go back to reference Greenlee, R. T., Hill-Harmon, M. B., Murray, T., & Thun, M. (2001). Cancer statistics, 2001. CA: A Cancer Journal for Clinicians, 51, 15–36. Greenlee, R. T., Hill-Harmon, M. B., Murray, T., & Thun, M. (2001). Cancer statistics, 2001. CA: A Cancer Journal for Clinicians, 51, 15–36.
8.
go back to reference Gore, M. E., Fryatt, I., Wiltshaw, E., & Dawson, T. (1990). Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecologic Oncology, 36, 207–211.PubMedCrossRef Gore, M. E., Fryatt, I., Wiltshaw, E., & Dawson, T. (1990). Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecologic Oncology, 36, 207–211.PubMedCrossRef
9.
go back to reference Wernert, N., Locherbach, C., Wellmann, A., Behrens, P., & Hugel, A. (2001). Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Research, 21, 2259–2264.PubMed Wernert, N., Locherbach, C., Wellmann, A., Behrens, P., & Hugel, A. (2001). Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Research, 21, 2259–2264.PubMed
10.
go back to reference Allinen, M., Beroukhim, R., Cai, L., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.PubMedCrossRef Allinen, M., Beroukhim, R., Cai, L., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.PubMedCrossRef
11.
go back to reference Fukino, K., Shen, L., Patocs, A., Mutter, G. L., & Eng, C. (2007). Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA, 297, 2103–2111.PubMedCrossRef Fukino, K., Shen, L., Patocs, A., Mutter, G. L., & Eng, C. (2007). Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA, 297, 2103–2111.PubMedCrossRef
12.
go back to reference Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.PubMedCrossRef Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.PubMedCrossRef
13.
14.
15.
go back to reference Konerding, M. A., Fait, E., & Gaumann, A. (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer, 84, 1354–1362.PubMedPubMedCentralCrossRef Konerding, M. A., Fait, E., & Gaumann, A. (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer, 84, 1354–1362.PubMedPubMedCentralCrossRef
16.
18.
go back to reference Holwell, S. E., Cooper, P. A., Thompson, M. J., et al. (2002). Anti-tumor and anti-vascular effects of the novel tubulin-binding agent combretastatin A-1 phosphate. Anticancer Research, 22, 3933–3940.PubMed Holwell, S. E., Cooper, P. A., Thompson, M. J., et al. (2002). Anti-tumor and anti-vascular effects of the novel tubulin-binding agent combretastatin A-1 phosphate. Anticancer Research, 22, 3933–3940.PubMed
19.
go back to reference Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Research, 59, 1626–1634.PubMed Tozer, G. M., Prise, V. E., Wilson, J., et al. (1999). Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Research, 59, 1626–1634.PubMed
20.
go back to reference Marysael, T., Ni, Y., Lerut, E., & de Witte, P. (2011). Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. Journal of Cancer Research and Clinical Oncology, 137, 1619–1627.PubMedCrossRef Marysael, T., Ni, Y., Lerut, E., & de Witte, P. (2011). Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. Journal of Cancer Research and Clinical Oncology, 137, 1619–1627.PubMedCrossRef
21.
go back to reference Nathan, P., Zweifel, M., Padhani, A. R., et al. (2012). Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clinical Cancer Research, 18, 3428–3439.PubMedCrossRef Nathan, P., Zweifel, M., Padhani, A. R., et al. (2012). Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clinical Cancer Research, 18, 3428–3439.PubMedCrossRef
22.
go back to reference Zweifel, M., Jayson, G. C., Reed, N. S., et al. (2011). Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Annals of Oncology, 22, 2036–2041.PubMedCrossRef Zweifel, M., Jayson, G. C., Reed, N. S., et al. (2011). Phase II trial of combretastatin A4 phosphate, carboplatin, and paclitaxel in patients with platinum-resistant ovarian cancer. Annals of Oncology, 22, 2036–2041.PubMedCrossRef
23.
go back to reference Ching, L. M., Cao, Z., Kieda, C., Zwain, S., Jameson, M. B., & Baguley, B. C. (2002). Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. British Journal of Cancer, 86, 1937–1942.PubMedPubMedCentralCrossRef Ching, L. M., Cao, Z., Kieda, C., Zwain, S., Jameson, M. B., & Baguley, B. C. (2002). Induction of endothelial cell apoptosis by the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid. British Journal of Cancer, 86, 1937–1942.PubMedPubMedCentralCrossRef
24.
go back to reference Fredriksson, L., Li, H., Fieber, C., Li, X., & Eriksson, U. (2004). Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO Journal, 23, 3793–3802.PubMedPubMedCentralCrossRef Fredriksson, L., Li, H., Fieber, C., Li, X., & Eriksson, U. (2004). Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO Journal, 23, 3793–3802.PubMedPubMedCentralCrossRef
25.
go back to reference Kazlauskas, A., & Cooper, J. A. (1989). Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell, 58, 1121–1133.PubMedCrossRef Kazlauskas, A., & Cooper, J. A. (1989). Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell, 58, 1121–1133.PubMedCrossRef
26.
go back to reference Antoniades, H. N., & Hunkapiller, M. W. (1983). Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science, 220, 963–965.PubMedCrossRef Antoniades, H. N., & Hunkapiller, M. W. (1983). Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence. Science, 220, 963–965.PubMedCrossRef
27.
go back to reference Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes and Development, 22, 1276–1312.PubMedPubMedCentralCrossRef Andrae, J., Gallini, R., & Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and medicine. Genes and Development, 22, 1276–1312.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Abramsson, A., Kurup, S., Busse, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 21, 316–331.PubMedPubMedCentralCrossRef Abramsson, A., Kurup, S., Busse, M., et al. (2007). Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes and Development, 21, 316–331.PubMedPubMedCentralCrossRef
30.
go back to reference Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.PubMed Benjamin, L. E., Hemo, I., & Keshet, E. (1998). A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125, 1591–1598.PubMed
31.
go back to reference Oikawa, T., Onozawa, C., Sakaguchi, M., Morita, I., & Murota, S. (1994). Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biological and Pharmaceutical Bulletin, 17, 1686–1688.PubMedCrossRef Oikawa, T., Onozawa, C., Sakaguchi, M., Morita, I., & Murota, S. (1994). Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biological and Pharmaceutical Bulletin, 17, 1686–1688.PubMedCrossRef
32.
go back to reference Lu, C., Thaker, P. H., Lin, Y. G., et al. (2008). Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. American Journal of Obstetrics and Gynecology, 198(477), e471–e479. discussion 477 e479–410. Lu, C., Thaker, P. H., Lin, Y. G., et al. (2008). Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. American Journal of Obstetrics and Gynecology, 198(477), e471–e479. discussion 477 e479–410.
33.
go back to reference Valius, M., & Kazlauskas, A. (1993). Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell, 73, 321–334.PubMedCrossRef Valius, M., & Kazlauskas, A. (1993). Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell, 73, 321–334.PubMedCrossRef
34.
go back to reference Coughlin, S. R., Escobedo, J. A., & Williams, L. T. (1989). Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science, 243, 1191–1194.PubMedCrossRef Coughlin, S. R., Escobedo, J. A., & Williams, L. T. (1989). Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science, 243, 1191–1194.PubMedCrossRef
35.
go back to reference Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta, 1378, F79–F113.PubMed Heldin, C. H., Ostman, A., & Ronnstrand, L. (1998). Signal transduction via platelet-derived growth factor receptors. Biochimica et Biophysica Acta, 1378, F79–F113.PubMed
36.
go back to reference Yao, R., & Cooper, G. M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 267, 2003–2006.PubMedCrossRef Yao, R., & Cooper, G. M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science, 267, 2003–2006.PubMedCrossRef
37.
go back to reference Huang, J. S., Huang, S. S., & Deuel, T. F. (1984). Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell, 39, 79–87.PubMedCrossRef Huang, J. S., Huang, S. S., & Deuel, T. F. (1984). Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell, 39, 79–87.PubMedCrossRef
38.
go back to reference Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., & Ross, R. (1990). PDGF and FGF stimulate wound healing in the genetically diabetic mouse. American Journal of Pathology, 136, 1235–1246.PubMedPubMedCentral Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., & Ross, R. (1990). PDGF and FGF stimulate wound healing in the genetically diabetic mouse. American Journal of Pathology, 136, 1235–1246.PubMedPubMedCentral
39.
go back to reference Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.PubMedCrossRef Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.PubMedCrossRef
40.
go back to reference Gaengel, K., Genove, G., Armulik, A., & Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 630–638.PubMedCrossRef Gaengel, K., Genove, G., Armulik, A., & Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 630–638.PubMedCrossRef
41.
go back to reference Quaegebeur, A., Segura, I., & Carmeliet, P. (2010). Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron, 68, 321–323.PubMedCrossRef Quaegebeur, A., Segura, I., & Carmeliet, P. (2010). Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron, 68, 321–323.PubMedCrossRef
42.
go back to reference Ribatti, D., Vacca, A., Roccaro, A. M., Crivellato, E., & Presta, M. (2003). Erythropoietin as an angiogenic factor. European Journal of Clinical Investigation, 33, 891–896.PubMedCrossRef Ribatti, D., Vacca, A., Roccaro, A. M., Crivellato, E., & Presta, M. (2003). Erythropoietin as an angiogenic factor. European Journal of Clinical Investigation, 33, 891–896.PubMedCrossRef
43.
go back to reference Crawford, Y., Kasman, I., Yu, L., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15, 21–34.PubMedCrossRef Crawford, Y., Kasman, I., Yu, L., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15, 21–34.PubMedCrossRef
44.
go back to reference Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., & Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 111, 1287–1295.PubMedPubMedCentralCrossRef Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E., & Hanahan, D. (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. Journal of Clinical Investigation, 111, 1287–1295.PubMedPubMedCentralCrossRef
45.
go back to reference Erber, R., Thurnher, A., Katsen, A. D., et al. (2004). Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB Journal, 18, 338–340.PubMed Erber, R., Thurnher, A., Katsen, A. D., et al. (2004). Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB Journal, 18, 338–340.PubMed
46.
go back to reference Jo, N., Mailhos, C., Ju, M., et al. (2006). Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. American Journal of Pathology, 168, 2036–2053.PubMedPubMedCentralCrossRef Jo, N., Mailhos, C., Ju, M., et al. (2006). Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. American Journal of Pathology, 168, 2036–2053.PubMedPubMedCentralCrossRef
47.
go back to reference Hasumi, Y., Klosowska-Wardega, A., Furuhashi, M., Ostman, A., Heldin, C. H., & Hellberg, C. (2007). Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 121, 2606–2614.PubMedCrossRef Hasumi, Y., Klosowska-Wardega, A., Furuhashi, M., Ostman, A., Heldin, C. H., & Hellberg, C. (2007). Identification of a subset of pericytes that respond to combination therapy targeting PDGF and VEGF signaling. International Journal of Cancer, 121, 2606–2614.PubMedCrossRef
48.
go back to reference Gerhardt, H., & Semb, H. (2008). Pericytes: gatekeepers in tumour cell metastasis? Journal of Molecular Medicine (Berl), 86, 135–144.CrossRef Gerhardt, H., & Semb, H. (2008). Pericytes: gatekeepers in tumour cell metastasis? Journal of Molecular Medicine (Berl), 86, 135–144.CrossRef
49.
go back to reference Alberts, D. S., Liu, P. Y., Wilczynski, S. P., et al. (2007). Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). International Journal of Gynecological Cancer, 17, 784–788.PubMedCrossRef Alberts, D. S., Liu, P. Y., Wilczynski, S. P., et al. (2007). Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). International Journal of Gynecological Cancer, 17, 784–788.PubMedCrossRef
50.
go back to reference Coleman, R. L., Broaddus, R. R., Bodurka, D. C., et al. (2006). Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecologic Oncology, 101, 126–131.PubMedCrossRef Coleman, R. L., Broaddus, R. R., Bodurka, D. C., et al. (2006). Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecologic Oncology, 101, 126–131.PubMedCrossRef
51.
go back to reference Posadas, E. M., Kwitkowski, V., Kotz, H. L., et al. (2007). A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer, 110, 309–317.PubMedCrossRef Posadas, E. M., Kwitkowski, V., Kotz, H. L., et al. (2007). A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer, 110, 309–317.PubMedCrossRef
52.
go back to reference Safra, T., Andreopoulou, E., Levinson, B., et al. (2010). Weekly paclitaxel with intermittent imatinib mesylate (Gleevec): tolerance and activity in recurrent epithelial ovarian cancer. Anticancer Research, 30, 3243–3247.PubMed Safra, T., Andreopoulou, E., Levinson, B., et al. (2010). Weekly paclitaxel with intermittent imatinib mesylate (Gleevec): tolerance and activity in recurrent epithelial ovarian cancer. Anticancer Research, 30, 3243–3247.PubMed
53.
go back to reference Matulonis, U. A., Berlin, S., Ivy, P., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27, 5601–5606.PubMedPubMedCentralCrossRef Matulonis, U. A., Berlin, S., Ivy, P., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27, 5601–5606.PubMedPubMedCentralCrossRef
54.
go back to reference Raja, F. A., Griffin, C. L., Qian, W., et al. (2011). Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. British Journal of Cancer, 105, 884–889.PubMedPubMedCentralCrossRef Raja, F. A., Griffin, C. L., Qian, W., et al. (2011). Initial toxicity assessment of ICON6: a randomised trial of cediranib plus chemotherapy in platinum-sensitive relapsed ovarian cancer. British Journal of Cancer, 105, 884–889.PubMedPubMedCentralCrossRef
55.
go back to reference Wilhelm, S., Carter, C., Lynch, M., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5, 835–844.PubMedCrossRef Wilhelm, S., Carter, C., Lynch, M., et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 5, 835–844.PubMedCrossRef
56.
go back to reference Kane, R. C., Farrell, A. T., Saber, H., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.PubMedCrossRef Kane, R. C., Farrell, A. T., Saber, H., et al. (2006). Sorafenib for the treatment of advanced renal cell carcinoma. Clinical Cancer Research, 12, 7271–7278.PubMedCrossRef
57.
go back to reference Kane, R. C., Farrell, A. T., Madabushi, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.PubMedCrossRef Kane, R. C., Farrell, A. T., Madabushi, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.PubMedCrossRef
58.
go back to reference Matei, D., Sill, M. W., Lankes, H. A., et al. (2011). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29, 69–75.PubMedPubMedCentralCrossRef Matei, D., Sill, M. W., Lankes, H. A., et al. (2011). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29, 69–75.PubMedPubMedCentralCrossRef
59.
go back to reference Welch, S. A., Hirte, H. W., Elit, L., et al. (2010). Sorafenib in combination with gemcitabine in recurrent epithelial ovarian cancer: a study of the Princess Margaret Hospital Phase II Consortium. International Journal of Gynecological Cancer, 20, 787–793.PubMedCrossRef Welch, S. A., Hirte, H. W., Elit, L., et al. (2010). Sorafenib in combination with gemcitabine in recurrent epithelial ovarian cancer: a study of the Princess Margaret Hospital Phase II Consortium. International Journal of Gynecological Cancer, 20, 787–793.PubMedCrossRef
60.
go back to reference Ramasubbaiah, R., Perkins, S. M., Schilder, J., et al. (2011). Sorafenib in combination with weekly topotecan in recurrent ovarian cancer, a phase I/II study of the Hoosier Oncology Group. Gynecologic Oncology, 123, 499–504.PubMedCrossRef Ramasubbaiah, R., Perkins, S. M., Schilder, J., et al. (2011). Sorafenib in combination with weekly topotecan in recurrent ovarian cancer, a phase I/II study of the Hoosier Oncology Group. Gynecologic Oncology, 123, 499–504.PubMedCrossRef
61.
go back to reference Herzog, T. J., Scambia, G., Kim, B. G., et al. (2013). A randomized phase II trial of maintenance therapy with sorafenib in front-line ovarian carcinoma. Gynecologic Oncology, 130, 25–30.PubMedCrossRef Herzog, T. J., Scambia, G., Kim, B. G., et al. (2013). A randomized phase II trial of maintenance therapy with sorafenib in front-line ovarian carcinoma. Gynecologic Oncology, 130, 25–30.PubMedCrossRef
62.
go back to reference Ledermann, J. A., Hackshaw, A., Kaye, S., et al. (2011). Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. Journal of Clinical Oncology, 29, 3798–3804.PubMedCrossRef Ledermann, J. A., Hackshaw, A., Kaye, S., et al. (2011). Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. Journal of Clinical Oncology, 29, 3798–3804.PubMedCrossRef
63.
go back to reference Izzedine, H., Buhaescu, I., Rixe, O., & Deray, G. (2007). Sunitinib malate. Cancer Chemotheraphy and Pharmacology, 60, 357–364.CrossRef Izzedine, H., Buhaescu, I., Rixe, O., & Deray, G. (2007). Sunitinib malate. Cancer Chemotheraphy and Pharmacology, 60, 357–364.CrossRef
64.
go back to reference Biagi, J. J., Oza, A. M., Chalchal, H. I., et al. (2011). A phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Annals of Oncology, 22, 335–340.PubMedCrossRef Biagi, J. J., Oza, A. M., Chalchal, H. I., et al. (2011). A phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Annals of Oncology, 22, 335–340.PubMedCrossRef
65.
go back to reference Friedlander, M., Hancock, K. C., Rischin, D., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119, 32–37.PubMedCrossRef Friedlander, M., Hancock, K. C., Rischin, D., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119, 32–37.PubMedCrossRef
66.
go back to reference Normanno, N., De Luca, A., Bianco, C., et al. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16.PubMedCrossRef Normanno, N., De Luca, A., Bianco, C., et al. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366, 2–16.PubMedCrossRef
67.
go back to reference Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2, 127–137.PubMedCrossRef Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2, 127–137.PubMedCrossRef
68.
go back to reference Cascone, T., Herynk, M. H., Xu, L., et al. (2011). Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. Journal of Clinical Investigation, 121, 1313–1328.PubMedPubMedCentralCrossRef Cascone, T., Herynk, M. H., Xu, L., et al. (2011). Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. Journal of Clinical Investigation, 121, 1313–1328.PubMedPubMedCentralCrossRef
69.
go back to reference Viloria-Petit, A., Crombet, T., Jothy, S., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMed Viloria-Petit, A., Crombet, T., Jothy, S., et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Research, 61, 5090–5101.PubMed
70.
go back to reference Vergote, I. B., Jimeno, A., Joly, F., et al. (2014). Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup Study. Journal of Clinical Oncology, 32, 320–326.PubMedCrossRef Vergote, I. B., Jimeno, A., Joly, F., et al. (2014). Randomized phase III study of erlotinib versus observation in patients with no evidence of disease progression after first-line platin-based chemotherapy for ovarian carcinoma: a European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group, and Gynecologic Cancer Intergroup Study. Journal of Clinical Oncology, 32, 320–326.PubMedCrossRef
71.
go back to reference Pakkala, S., & Ramalingam, S. S. (2009). Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clinical Lung Cancer, 10(Suppl 1), S17–S23.PubMedCrossRef Pakkala, S., & Ramalingam, S. S. (2009). Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clinical Lung Cancer, 10(Suppl 1), S17–S23.PubMedCrossRef
72.
go back to reference Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51, 869–877.PubMedCrossRef Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51, 869–877.PubMedCrossRef
73.
go back to reference De Moerlooze, L., Spencer-Dene, B., Revest, J. M., Hajihosseini, M., Rosewell, I., & Dickson, C. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 127, 483–492.PubMed De Moerlooze, L., Spencer-Dene, B., Revest, J. M., Hajihosseini, M., Rosewell, I., & Dickson, C. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 127, 483–492.PubMed
75.
go back to reference Johnson, D. E., & Williams, L. T. (1993). Structural and functional diversity in the FGF receptor multigene family. Advances in Cancer Research, 60, 1–41.PubMedCrossRef Johnson, D. E., & Williams, L. T. (1993). Structural and functional diversity in the FGF receptor multigene family. Advances in Cancer Research, 60, 1–41.PubMedCrossRef
76.
go back to reference Bae, J. H., & Schlessinger, J. (2010). Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Molecules and Cells, 29, 443–448.PubMedCrossRef Bae, J. H., & Schlessinger, J. (2010). Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Molecules and Cells, 29, 443–448.PubMedCrossRef
77.
go back to reference Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine and Growth Factor Reviews, 16, 139–149.PubMedCrossRef Eswarakumar, V. P., Lax, I., & Schlessinger, J. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine and Growth Factor Reviews, 16, 139–149.PubMedCrossRef
78.
go back to reference Cunningham, D. L., Sweet, S. M., Cooper, H. J., & Heath, J. K. (2010). Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. Journal of Proteome Research, 9, 2317–2328.PubMedPubMedCentralCrossRef Cunningham, D. L., Sweet, S. M., Cooper, H. J., & Heath, J. K. (2010). Differential phosphoproteomics of fibroblast growth factor signaling: identification of Src family kinase-mediated phosphorylation events. Journal of Proteome Research, 9, 2317–2328.PubMedPubMedCentralCrossRef
79.
go back to reference Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in Bioscience, 4, D165–D177.PubMedCrossRef Klint, P., & Claesson-Welsh, L. (1999). Signal transduction by fibroblast growth factor receptors. Frontiers in Bioscience, 4, D165–D177.PubMedCrossRef
80.
go back to reference Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 16, 159–178.PubMedCrossRef Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews, 16, 159–178.PubMedCrossRef
81.
go back to reference Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22, 201–207.PubMedCrossRef Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22, 201–207.PubMedCrossRef
82.
go back to reference Presta, M., Tiberio, L., Rusnati, M., Dell’Era, P., & Ragnotti, G. (1991). Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regulation, 2, 719–726.PubMedPubMedCentral Presta, M., Tiberio, L., Rusnati, M., Dell’Era, P., & Ragnotti, G. (1991). Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regulation, 2, 719–726.PubMedPubMedCentral
83.
go back to reference Shono, T., Kanetake, H., & Kanda, S. (2001). The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research, 264, 275–283.PubMedCrossRef Shono, T., Kanetake, H., & Kanda, S. (2001). The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Experimental Cell Research, 264, 275–283.PubMedCrossRef
84.
go back to reference Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMedCrossRef Casanovas, O., Hicklin, D. J., Bergers, G., & Hanahan, D. (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 8, 299–309.PubMedCrossRef
85.
go back to reference Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M., & Christofori, G. (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Research, 60, 7163–7169.PubMed Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M., & Christofori, G. (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Research, 60, 7163–7169.PubMed
86.
go back to reference Giavazzi, R., Sennino, B., Coltrini, D., et al. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. American Journal of Pathology, 162, 1913–1926.PubMedPubMedCentralCrossRef Giavazzi, R., Sennino, B., Coltrini, D., et al. (2003). Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. American Journal of Pathology, 162, 1913–1926.PubMedPubMedCentralCrossRef
87.
go back to reference Nissen, L. J., Cao, R., Hedlund, E. M., et al. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. Journal of Clinical Investigation, 117, 2766–2777.PubMedPubMedCentralCrossRef Nissen, L. J., Cao, R., Hedlund, E. M., et al. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. Journal of Clinical Investigation, 117, 2766–2777.PubMedPubMedCentralCrossRef
88.
go back to reference Lieu, C., Heymach, J., Overman, M., Tran, H., & Kopetz, S. (2011). Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research, 17, 6130–6139.PubMedCrossRef Lieu, C., Heymach, J., Overman, M., Tran, H., & Kopetz, S. (2011). Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clinical Cancer Research, 17, 6130–6139.PubMedCrossRef
89.
go back to reference Fujii, T., & Kuwano, H. (2010). Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cellular and Developmental Biology - Animal, 46, 487–491.PubMedCrossRef Fujii, T., & Kuwano, H. (2010). Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cellular and Developmental Biology - Animal, 46, 487–491.PubMedCrossRef
90.
go back to reference Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189, 824–831.PubMedCrossRef Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189, 824–831.PubMedCrossRef
91.
go back to reference Kopetz, S., Hoff, P. M., Morris, J. S., et al. (2010). Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. Journal of Clinical Oncology, 28, 453–459.PubMedPubMedCentralCrossRef Kopetz, S., Hoff, P. M., Morris, J. S., et al. (2010). Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. Journal of Clinical Oncology, 28, 453–459.PubMedPubMedCentralCrossRef
92.
go back to reference Batchelor, T. T., Sorensen, A. G., di Tomaso, E., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.PubMedPubMedCentralCrossRef Batchelor, T. T., Sorensen, A. G., di Tomaso, E., et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11, 83–95.PubMedPubMedCentralCrossRef
94.
go back to reference Augustin, H. G., Koh, G. Y., Thurston, G., & Alitalo, K. (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 10, 165–177.PubMedCrossRef Augustin, H. G., Koh, G. Y., Thurston, G., & Alitalo, K. (2009). Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Reviews Molecular Cell Biology, 10, 165–177.PubMedCrossRef
95.
go back to reference Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., & Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Laboratory Investigation, 82, 387–401.PubMedCrossRef Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., & Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Laboratory Investigation, 82, 387–401.PubMedCrossRef
96.
go back to reference Winkler, F., Kozin, S. V., Tong, R. T., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6, 553–563.PubMed Winkler, F., Kozin, S. V., Tong, R. T., et al. (2004). Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell, 6, 553–563.PubMed
97.
go back to reference Maisonpierre, P. C., Suri, C., Jones, P. F., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–60.PubMedCrossRef Maisonpierre, P. C., Suri, C., Jones, P. F., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–60.PubMedCrossRef
98.
go back to reference Scharpfenecker, M., Fiedler, U., Reiss, Y., & Augustin, H. G. (2005). The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. Journal of Cell Science, 118, 771–780.PubMedCrossRef Scharpfenecker, M., Fiedler, U., Reiss, Y., & Augustin, H. G. (2005). The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. Journal of Cell Science, 118, 771–780.PubMedCrossRef
99.
go back to reference Bach, F., Uddin, F. J., & Burke, D. (2007). Angiopoietins in malignancy. European Journal of Surgical Oncology, 33, 7–15.PubMedCrossRef Bach, F., Uddin, F. J., & Burke, D. (2007). Angiopoietins in malignancy. European Journal of Surgical Oncology, 33, 7–15.PubMedCrossRef
100.
go back to reference Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery, 10, 417–427.PubMedCrossRef Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery, 10, 417–427.PubMedCrossRef
101.
go back to reference Falcon, B. L., Hashizume, H., Koumoutsakos, P., et al. (2009). Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. American Journal of Pathology, 175, 2159–2170.PubMedPubMedCentralCrossRef Falcon, B. L., Hashizume, H., Koumoutsakos, P., et al. (2009). Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. American Journal of Pathology, 175, 2159–2170.PubMedPubMedCentralCrossRef
102.
go back to reference Koh, Y. J., Kim, H. Z., Hwang, S. I., et al. (2010). Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell, 18, 171–184.PubMedCrossRef Koh, Y. J., Kim, H. Z., Hwang, S. I., et al. (2010). Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell, 18, 171–184.PubMedCrossRef
103.
go back to reference Herbst, R. S., Hong, D., Chap, L., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. Journal of Clinical Oncology, 27, 3557–3565.PubMedCrossRef Herbst, R. S., Hong, D., Chap, L., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. Journal of Clinical Oncology, 27, 3557–3565.PubMedCrossRef
104.
go back to reference Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 4, 915–925.PubMedCrossRef Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 4, 915–925.PubMedCrossRef
105.
go back to reference Funakoshi, H., & Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clinica Chimica Acta, 327, 1–23.CrossRef Funakoshi, H., & Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clinica Chimica Acta, 327, 1–23.CrossRef
106.
go back to reference Bottaro, D. P., Rubin, J. S., Faletto, D. L., et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804.PubMedCrossRef Bottaro, D. P., Rubin, J. S., Faletto, D. L., et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804.PubMedCrossRef
107.
go back to reference Bolanos-Garcia, V. M. (2005). MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Molecular and Cellular Biochemistry, 276, 149–157.PubMedCrossRef Bolanos-Garcia, V. M. (2005). MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Molecular and Cellular Biochemistry, 276, 149–157.PubMedCrossRef
108.
go back to reference Yu, J., Miehlke, S., Ebert, M. P., et al. (2000). Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer, 88, 1801–1806.PubMedCrossRef Yu, J., Miehlke, S., Ebert, M. P., et al. (2000). Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer, 88, 1801–1806.PubMedCrossRef
109.
go back to reference Dharmawardana, P. G., Giubellino, A., & Bottaro, D. P. (2004). Hereditary papillary renal carcinoma type I. Current Molecular Medicine, 4, 855–868.PubMedCrossRef Dharmawardana, P. G., Giubellino, A., & Bottaro, D. P. (2004). Hereditary papillary renal carcinoma type I. Current Molecular Medicine, 4, 855–868.PubMedCrossRef
110.
go back to reference Bussolino, F., Di Renzo, M. F., Ziche, M., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.PubMedCrossRef Bussolino, F., Di Renzo, M. F., Ziche, M., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.PubMedCrossRef
111.
go back to reference Kitajima, Y., Ide, T., Ohtsuka, T., & Miyazaki, K. (2008). Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Science, 99, 1341–1347.PubMedCrossRef Kitajima, Y., Ide, T., Ohtsuka, T., & Miyazaki, K. (2008). Induction of hepatocyte growth factor activator gene expression under hypoxia activates the hepatocyte growth factor/c-Met system via hypoxia inducible factor-1 in pancreatic cancer. Cancer Science, 99, 1341–1347.PubMedCrossRef
112.
go back to reference Kubota, T., Taiyoh, H., Matsumura, A., et al. (2009). NK4, an HGF antagonist, prevents hematogenous pulmonary metastasis by inhibiting adhesion of CT26 cells to endothelial cells. Clinical and Experimental Metastasis, 26, 447–456.PubMedCrossRef Kubota, T., Taiyoh, H., Matsumura, A., et al. (2009). NK4, an HGF antagonist, prevents hematogenous pulmonary metastasis by inhibiting adhesion of CT26 cells to endothelial cells. Clinical and Experimental Metastasis, 26, 447–456.PubMedCrossRef
113.
go back to reference Sulpice, E., Ding, S., Muscatelli-Groux, B., et al. (2009). Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell, 101, 525–539.PubMedCrossRef Sulpice, E., Ding, S., Muscatelli-Groux, B., et al. (2009). Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biology of the Cell, 101, 525–539.PubMedCrossRef
114.
go back to reference Puri, N., Khramtsov, A., Ahmed, S., et al. (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Research, 67, 3529–3534.PubMedCrossRef Puri, N., Khramtsov, A., Ahmed, S., et al. (2007). A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Research, 67, 3529–3534.PubMedCrossRef
115.
go back to reference Cantelmo, A. R., Cammarota, R., Noonan, D. M., et al. (2010). Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene, 29, 5286–5298.PubMedPubMedCentralCrossRef Cantelmo, A. R., Cammarota, R., Noonan, D. M., et al. (2010). Cell delivery of Met docking site peptides inhibit angiogenesis and vascular tumor growth. Oncogene, 29, 5286–5298.PubMedPubMedCentralCrossRef
116.
go back to reference Gherardi, E., Birchmeier, W., Birchmeier, C., & Woude, G. V. (2012). Targeting MET in cancer: rationale and progress. Nature Reviews Cancer, 12, 89–103.PubMedCrossRef Gherardi, E., Birchmeier, W., Birchmeier, C., & Woude, G. V. (2012). Targeting MET in cancer: rationale and progress. Nature Reviews Cancer, 12, 89–103.PubMedCrossRef
117.
go back to reference Hara, S., Nakashiro, K., Klosek, S. K., Ishikawa, T., Shintani, S., & Hamakawa, H. (2006). Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncology, 42, 593–598.PubMedCrossRef Hara, S., Nakashiro, K., Klosek, S. K., Ishikawa, T., Shintani, S., & Hamakawa, H. (2006). Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncology, 42, 593–598.PubMedCrossRef
118.
go back to reference Ide, T., Kitajima, Y., Miyoshi, A., et al. (2006). Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. International Journal of Cancer, 119, 2750–2759.PubMedCrossRef Ide, T., Kitajima, Y., Miyoshi, A., et al. (2006). Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. International Journal of Cancer, 119, 2750–2759.PubMedCrossRef
119.
go back to reference Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.PubMedCrossRef Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.PubMedCrossRef
120.
go back to reference Qian, F., Engst, S., Yamaguchi, K., et al. (2009). Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Research, 69, 8009–8016.PubMedCrossRef Qian, F., Engst, S., Yamaguchi, K., et al. (2009). Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Research, 69, 8009–8016.PubMedCrossRef
121.
go back to reference Nakagawa, T., Tohyama, O., Yamaguchi, A., et al. (2010). E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Science, 101, 210–215.PubMedCrossRef Nakagawa, T., Tohyama, O., Yamaguchi, A., et al. (2010). E7050: a dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models. Cancer Science, 101, 210–215.PubMedCrossRef
122.
go back to reference You, W. K., & McDonald, D. M. (2008). The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Reports, 41, 833–839.PubMedPubMedCentralCrossRef You, W. K., & McDonald, D. M. (2008). The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Reports, 41, 833–839.PubMedPubMedCentralCrossRef
123.
go back to reference Shojaei, F., Lee, J. H., Simmons, B. H., et al. (2010). HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Research, 70, 10090–10100.PubMedCrossRef Shojaei, F., Lee, J. H., Simmons, B. H., et al. (2010). HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Research, 70, 10090–10100.PubMedCrossRef
124.
go back to reference Tomioka, D., Maehara, N., Kuba, K., et al. (2001). Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Research, 61, 7518–7524.PubMed Tomioka, D., Maehara, N., Kuba, K., et al. (2001). Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Research, 61, 7518–7524.PubMed
125.
go back to reference Burgess, T., Coxon, A., Meyer, S., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Research, 66, 1721–1729.PubMedCrossRef Burgess, T., Coxon, A., Meyer, S., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Research, 66, 1721–1729.PubMedCrossRef
126.
go back to reference Martin, L. P., Sill, M., Shahin, M. S., et al. (2014). A phase II evaluation of AMG 102 (rilotumumab) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 132, 526–530.PubMedPubMedCentralCrossRef Martin, L. P., Sill, M., Shahin, M. S., et al. (2014). A phase II evaluation of AMG 102 (rilotumumab) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 132, 526–530.PubMedPubMedCentralCrossRef
127.
go back to reference Buckanovich, R. J., Berger, R., Sella, A., et al. (2011). Results from phase II randomized discontinuation trial. Journal of Clinical Oncology ASCO Annual Meeting. 29, abstract 5008. Buckanovich, R. J., Berger, R., Sella, A., et al. (2011). Results from phase II randomized discontinuation trial. Journal of Clinical Oncology ASCO Annual Meeting. 29, abstract 5008.
128.
go back to reference Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.PubMedCrossRef Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.PubMedCrossRef
129.
go back to reference Walker-Daniels, J., Hess, A. R., Hendrix, M. J., & Kinch, M. S. (2003). Differential regulation of EphA2 in normal and malignant cells. American Journal of Pathology, 162, 1037–1042.PubMedPubMedCentralCrossRef Walker-Daniels, J., Hess, A. R., Hendrix, M. J., & Kinch, M. S. (2003). Differential regulation of EphA2 in normal and malignant cells. American Journal of Pathology, 162, 1037–1042.PubMedPubMedCentralCrossRef
130.
go back to reference Pasquale, E. B. (1997). The Eph family of receptors. Current Opinion in Cell Biology, 9, 608–615.PubMedCrossRef Pasquale, E. B. (1997). The Eph family of receptors. Current Opinion in Cell Biology, 9, 608–615.PubMedCrossRef
131.
go back to reference Thaker, P. H., Deavers, M., Celestino, J., et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145–5150.PubMedCrossRef Thaker, P. H., Deavers, M., Celestino, J., et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clinical Cancer Research, 10, 5145–5150.PubMedCrossRef
132.
go back to reference Cheng, N., Brantley, D. M., Liu, H., et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Molecular Cancer Research, 1, 2–11.PubMedCrossRef Cheng, N., Brantley, D. M., Liu, H., et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Molecular Cancer Research, 1, 2–11.PubMedCrossRef
133.
go back to reference Spannuth, W. A., Sood, A. K., & Coleman, R. L. (2008). Angiogenesis as a strategic target for ovarian cancer therapy. Nature Clinical Practice Oncology, 5, 194–204.PubMedCrossRef Spannuth, W. A., Sood, A. K., & Coleman, R. L. (2008). Angiogenesis as a strategic target for ovarian cancer therapy. Nature Clinical Practice Oncology, 5, 194–204.PubMedCrossRef
134.
go back to reference Lu, X. S., Sun, W., Ge, C. Y., Zhang, W. Z., & Fan, Y. Z. (2013). Contribution of the PI3K/MMPs/Ln-5gamma2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. International Journal of Oncology, 42, 2103–2115.PubMed Lu, X. S., Sun, W., Ge, C. Y., Zhang, W. Z., & Fan, Y. Z. (2013). Contribution of the PI3K/MMPs/Ln-5gamma2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. International Journal of Oncology, 42, 2103–2115.PubMed
135.
go back to reference Hess, A. R., Seftor, E. A., Gardner, L. M., et al. (2001). Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Research, 61, 3250–3255.PubMed Hess, A. R., Seftor, E. A., Gardner, L. M., et al. (2001). Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Research, 61, 3250–3255.PubMed
136.
go back to reference Landen, C. N., Jr., Chavez-Reyes, A., Bucana, C., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65, 6910–6918.PubMedCrossRef Landen, C. N., Jr., Chavez-Reyes, A., Bucana, C., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65, 6910–6918.PubMedCrossRef
137.
go back to reference Adam, M. G., Berger, C., Feldner, A., et al. (2013). Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circulation Research, 113, 1206–1218.PubMedCrossRef Adam, M. G., Berger, C., Feldner, A., et al. (2013). Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circulation Research, 113, 1206–1218.PubMedCrossRef
138.
go back to reference Hu, W., Lu, C., Dong, H. H., et al. (2011). Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Research, 71, 6030–6039.PubMedPubMedCentralCrossRef Hu, W., Lu, C., Dong, H. H., et al. (2011). Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Research, 71, 6030–6039.PubMedPubMedCentralCrossRef
139.
go back to reference Gale, N. W., Dominguez, M. G., Noguera, I., et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 15949–15954.PubMedPubMedCentralCrossRef Gale, N. W., Dominguez, M. G., Noguera, I., et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101, 15949–15954.PubMedPubMedCentralCrossRef
140.
go back to reference Lobov, I. B., Renard, R. A., Papadopoulos, N., et al. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America, 104, 3219–3224.PubMedPubMedCentralCrossRef Lobov, I. B., Renard, R. A., Papadopoulos, N., et al. (2007). Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America, 104, 3219–3224.PubMedPubMedCentralCrossRef
141.
go back to reference Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7, 327–331.PubMedCrossRef Thurston, G., Noguera-Troise, I., & Yancopoulos, G. D. (2007). The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Reviews Cancer, 7, 327–331.PubMedCrossRef
142.
go back to reference Ridgway, J., Zhang, G., Wu, Y., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444, 1083–1087.PubMedCrossRef Ridgway, J., Zhang, G., Wu, Y., et al. (2006). Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 444, 1083–1087.PubMedCrossRef
143.
go back to reference Li, J. L., Sainson, R. C., Shi, W., et al. (2007). Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Research, 67, 11244–11253.PubMedCrossRef Li, J. L., Sainson, R. C., Shi, W., et al. (2007). Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Research, 67, 11244–11253.PubMedCrossRef
144.
go back to reference Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., et al. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30, 2348–2353.PubMedCrossRef Tolcher, A. W., Messersmith, W. A., Mikulski, S. M., et al. (2012). Phase I study of RO4929097, a gamma secretase inhibitor of notch signaling, in patients with refractory metastatic or locally advanced solid tumors. Journal of Clinical Oncology, 30, 2348–2353.PubMedCrossRef
145.
go back to reference Sahebjam, S., Bedard, P. L., Castonguay, V., et al. (2013). A phase i study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). British Journal of Cancer, 109, 943–949.PubMedPubMedCentralCrossRef Sahebjam, S., Bedard, P. L., Castonguay, V., et al. (2013). A phase i study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). British Journal of Cancer, 109, 943–949.PubMedPubMedCentralCrossRef
146.
go back to reference Diaz-Padilla, I., Hirte, H., Oza, A. M., et al. (2013). A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Investigational New Drugs, 31, 1182–1191.PubMedPubMedCentralCrossRef Diaz-Padilla, I., Hirte, H., Oza, A. M., et al. (2013). A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Investigational New Drugs, 31, 1182–1191.PubMedPubMedCentralCrossRef
147.
go back to reference Strosberg, J. R., Yeatman, T., Weber, J., et al. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48, 997–1003.PubMedPubMedCentralCrossRef Strosberg, J. R., Yeatman, T., Weber, J., et al. (2012). A phase II study of RO4929097 in metastatic colorectal cancer. European Journal of Cancer, 48, 997–1003.PubMedPubMedCentralCrossRef
148.
go back to reference Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Reviews, 22, 337–358.PubMedCrossRef Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Reviews, 22, 337–358.PubMedCrossRef
149.
go back to reference Ma, W. W., & Adjei, A. A. (2009). Novel agents on the horizon for cancer therapy. CA: A Cancer Journal for Clinicians, 59, 111–137. Ma, W. W., & Adjei, A. A. (2009). Novel agents on the horizon for cancer therapy. CA: A Cancer Journal for Clinicians, 59, 111–137.
150.
go back to reference Frame, M. C. (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta, 1602, 114–130.PubMed Frame, M. C. (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochimica et Biophysica Acta, 1602, 114–130.PubMed
151.
go back to reference Trevino, J. G., Summy, J. M., Gray, M. J., et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Research, 65, 7214–7222.PubMedCrossRef Trevino, J. G., Summy, J. M., Gray, M. J., et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Research, 65, 7214–7222.PubMedCrossRef
152.
go back to reference Kanda, S., Miyata, Y., Kanetake, H., & Smithgall, T. E. (2007). Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (review). International Journal of Molecular Medicine, 20, 113–121.PubMed Kanda, S., Miyata, Y., Kanetake, H., & Smithgall, T. E. (2007). Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (review). International Journal of Molecular Medicine, 20, 113–121.PubMed
153.
go back to reference Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., & Béliveau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14, 334–347.PubMedPubMedCentralCrossRef Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., & Béliveau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14, 334–347.PubMedPubMedCentralCrossRef
154.
go back to reference Eliceiri, B. P., Puente, X. S., Hood, J. D., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.PubMedPubMedCentralCrossRef Eliceiri, B. P., Puente, X. S., Hood, J. D., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. Journal of Cell Biology, 157, 149–160.PubMedPubMedCentralCrossRef
155.
go back to reference Kim, Y. M., Lee, Y. M., Kim, H. S., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. Journal of Biological Chemistry, 277, 6799–6805.PubMedCrossRef Kim, Y. M., Lee, Y. M., Kim, H. S., et al. (2002). TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. Journal of Biological Chemistry, 277, 6799–6805.PubMedCrossRef
156.
go back to reference Laird, A. D., Li, G., Moss, K. G., et al. (2003). Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and -independent growth of human tumor cells. Molecular Cancer Therapeutics, 2, 461–469.PubMed Laird, A. D., Li, G., Moss, K. G., et al. (2003). Src family kinase activity is required for signal tranducer and activator of transcription 3 and focal adhesion kinase phosphorylation and vascular endothelial growth factor signaling in vivo and for anchorage-dependent and -independent growth of human tumor cells. Molecular Cancer Therapeutics, 2, 461–469.PubMed
157.
go back to reference Bankhead, C. (2010). ESMO: failed trials dominate gyn cancer session. Accessed 14 Oct 2010. Bankhead, C. (2010). ESMO: failed trials dominate gyn cancer session. Accessed 14 Oct 2010.
158.
go back to reference McNeish, I. A., Ledermann, J. A., Webber, L. C., et al. (2013). A randomized placebo-controlled trial of saracatinib (AZD0530) plus weekly paclitaxel in platinum-resistant ovarian, fallopian-tube, or primary peritoneal cancer (SaPPrOC). Journal of Clinical Oncology, 31. McNeish, I. A., Ledermann, J. A., Webber, L. C., et al. (2013). A randomized placebo-controlled trial of saracatinib (AZD0530) plus weekly paclitaxel in platinum-resistant ovarian, fallopian-tube, or primary peritoneal cancer (SaPPrOC). Journal of Clinical Oncology, 31.
159.
go back to reference Hermann, C., Assmus, B., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2000). Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 402–409.PubMedCrossRef Hermann, C., Assmus, B., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2000). Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 402–409.PubMedCrossRef
160.
go back to reference Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12, 679–689.PubMedCrossRef Granville, C. A., Memmott, R. M., Gills, J. J., & Dennis, P. A. (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clinical Cancer Research, 12, 679–689.PubMedCrossRef
161.
go back to reference Frisch, S. M., & Ruoslahti, E. (1997). Integrins and anoikis. Current Opinion in Cell Biology, 9, 701–706.PubMedCrossRef Frisch, S. M., & Ruoslahti, E. (1997). Integrins and anoikis. Current Opinion in Cell Biology, 9, 701–706.PubMedCrossRef
162.
go back to reference Gerber, H. P., McMurtrey, A., Kowalski, J., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273, 30336–30343.PubMedCrossRef Gerber, H. P., McMurtrey, A., Kowalski, J., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273, 30336–30343.PubMedCrossRef
163.
go back to reference Brunet, A., Bonni, A., Zigmond, M. J., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.PubMedCrossRef Brunet, A., Bonni, A., Zigmond, M. J., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.PubMedCrossRef
164.
go back to reference Yang, D., Sun, Y., Hu, L., et al. (2013). Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 23, 186–199.PubMedPubMedCentralCrossRef Yang, D., Sun, Y., Hu, L., et al. (2013). Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 23, 186–199.PubMedPubMedCentralCrossRef
165.
go back to reference Bianco, R., Garofalo, S., Rosa, R., et al. (2008). Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. British Journal of Cancer, 98, 923–930.PubMedPubMedCentralCrossRef Bianco, R., Garofalo, S., Rosa, R., et al. (2008). Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. British Journal of Cancer, 98, 923–930.PubMedPubMedCentralCrossRef
166.
167.
go back to reference Ruegg, C., & Mariotti, A. (2003). Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cellular and Molecular Life Sciences, 60, 1135–1157.PubMed Ruegg, C., & Mariotti, A. (2003). Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cellular and Molecular Life Sciences, 60, 1135–1157.PubMed
168.
go back to reference da Silva, R. G., Tavora, B., Robinson, S. D., et al. (2010). Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. American Journal of Pathology, 177, 1534–1548.PubMedPubMedCentralCrossRef da Silva, R. G., Tavora, B., Robinson, S. D., et al. (2010). Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. American Journal of Pathology, 177, 1534–1548.PubMedPubMedCentralCrossRef
170.
go back to reference Urbich, C., Dernbach, E., Reissner, A., Vasa, M., Zeiher, A. M., & Dimmeler, S. (2002). Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 69–75.PubMedCrossRef Urbich, C., Dernbach, E., Reissner, A., Vasa, M., Zeiher, A. M., & Dimmeler, S. (2002). Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 69–75.PubMedCrossRef
171.
go back to reference Abedi, H., & Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry, 272, 15442–15451.PubMedCrossRef Abedi, H., & Zachary, I. (1997). Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. Journal of Biological Chemistry, 272, 15442–15451.PubMedCrossRef
172.
go back to reference Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.PubMedPubMedCentralCrossRef Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., & Cheresh, D. A. (1995). Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. Journal of Clinical Investigation, 96, 1815–1822.PubMedPubMedCentralCrossRef
173.
go back to reference Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research, 6, 3056–3061.PubMed Gutheil, J. C., Campbell, T. N., Pierce, P. R., et al. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research, 6, 3056–3061.PubMed
174.
go back to reference Stupp, R., & Ruegg, C. (2007). Integrin inhibitors reaching the clinic. Journal of Clinical Oncology, 25, 1637–1638.PubMedCrossRef Stupp, R., & Ruegg, C. (2007). Integrin inhibitors reaching the clinic. Journal of Clinical Oncology, 25, 1637–1638.PubMedCrossRef
175.
go back to reference Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., & Hamaguchi, M. (1997). Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Research, 57, 5416–5420.PubMed Shibata, K., Kikkawa, F., Nawa, A., Suganuma, N., & Hamaguchi, M. (1997). Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Research, 57, 5416–5420.PubMed
176.
go back to reference Sawada, K., Mitra, A. K., Radjabi, A. R., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Research, 68, 2329–2339.PubMedPubMedCentralCrossRef Sawada, K., Mitra, A. K., Radjabi, A. R., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Research, 68, 2329–2339.PubMedPubMedCentralCrossRef
177.
go back to reference Park, C. C., Zhang, H., Pallavicini, M., et al. (2006). Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Research, 66, 1526–1535.PubMedPubMedCentralCrossRef Park, C. C., Zhang, H., Pallavicini, M., et al. (2006). Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Research, 66, 1526–1535.PubMedPubMedCentralCrossRef
178.
go back to reference Bhaskar, V., Zhang, D., Fox, M., et al. (2007). A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. Journal of Translational Medicine, 5, 61.PubMedPubMedCentralCrossRef Bhaskar, V., Zhang, D., Fox, M., et al. (2007). A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. Journal of Translational Medicine, 5, 61.PubMedPubMedCentralCrossRef
179.
go back to reference Bhaskar, V., Fox, M., Breinberg, D., et al. (2008). Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Investigational New Drugs, 26, 7–12.PubMedCrossRef Bhaskar, V., Fox, M., Breinberg, D., et al. (2008). Volociximab, a chimeric integrin alpha5beta1 antibody, inhibits the growth of VX2 tumors in rabbits. Investigational New Drugs, 26, 7–12.PubMedCrossRef
180.
go back to reference Ramakrishnan, V., Bhaskar, V., Law, D. A., et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. Journal of Experimental Therapeutics and Oncology, 5, 273–286.PubMed Ramakrishnan, V., Bhaskar, V., Law, D. A., et al. (2006). Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. Journal of Experimental Therapeutics and Oncology, 5, 273–286.PubMed
181.
go back to reference Bell-McGuinn, K. M., Matthews, C. M., Ho, S. N., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic Oncology, 121, 273–279.PubMedPubMedCentralCrossRef Bell-McGuinn, K. M., Matthews, C. M., Ho, S. N., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic Oncology, 121, 273–279.PubMedPubMedCentralCrossRef
182.
go back to reference Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D., & Balkwill, F. R. (1993). Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. Journal of Clinical Investigation, 91, 2194–2206.PubMedPubMedCentralCrossRef Naylor, M. S., Stamp, G. W., Foulkes, W. D., Eccles, D., & Balkwill, F. R. (1993). Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. Journal of Clinical Investigation, 91, 2194–2206.PubMedPubMedCentralCrossRef
183.
go back to reference Wu, S., Boyer, C. M., Whitaker, R. S., et al. (1993). Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Research, 53, 1939–1944.PubMed Wu, S., Boyer, C. M., Whitaker, R. S., et al. (1993). Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Research, 53, 1939–1944.PubMed
184.
go back to reference Kulbe, H., Thompson, R., Wilson, J. L., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67, 585–592.PubMedPubMedCentralCrossRef Kulbe, H., Thompson, R., Wilson, J. L., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67, 585–592.PubMedPubMedCentralCrossRef
185.
go back to reference Jin, D. K., Shido, K., Kopp, H. G., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 12, 557–567.PubMedPubMedCentralCrossRef Jin, D. K., Shido, K., Kopp, H. G., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Medicine, 12, 557–567.PubMedPubMedCentralCrossRef
186.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedPubMedCentralCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.PubMedPubMedCentralCrossRef
187.
go back to reference Kryczek, I., Lange, A., Mottram, P., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65, 465–472.PubMed Kryczek, I., Lange, A., Mottram, P., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65, 465–472.PubMed
188.
go back to reference Aguayo, A., Kantarjian, H., Manshouri, T., et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–2245.PubMed Aguayo, A., Kantarjian, H., Manshouri, T., et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–2245.PubMed
189.
go back to reference Charles, K. A., Kulbe, H., Soper, R., et al. (2009). The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. Journal of Clinical Investigation, 119, 3011–3023.PubMedPubMedCentralCrossRef Charles, K. A., Kulbe, H., Soper, R., et al. (2009). The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. Journal of Clinical Investigation, 119, 3011–3023.PubMedPubMedCentralCrossRef
190.
go back to reference Kulbe, H., Chakravarty, P., Leinster, D. A., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75.PubMedPubMedCentralCrossRef Kulbe, H., Chakravarty, P., Leinster, D. A., et al. (2012). A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Research, 72, 66–75.PubMedPubMedCentralCrossRef
191.
go back to reference Madhusudan, S., Muthuramalingam, S. R., Braybrooke, J. P., et al. (2005). Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. Journal of Clinical Oncology, 23, 5950–5959.PubMedCrossRef Madhusudan, S., Muthuramalingam, S. R., Braybrooke, J. P., et al. (2005). Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. Journal of Clinical Oncology, 23, 5950–5959.PubMedCrossRef
192.
go back to reference Giuntoli, R. L., 2nd, Webb, T. J., Zoso, A., et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875–2884.PubMed Giuntoli, R. L., 2nd, Webb, T. J., Zoso, A., et al. (2009). Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Research, 29, 2875–2884.PubMed
193.
go back to reference Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210.PubMedPubMedCentralCrossRef Lane, D., Matte, I., Rancourt, C., & Piche, A. (2011). Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer, 11, 210.PubMedPubMedCentralCrossRef
194.
go back to reference Dankbar, B., Padro, T., Leo, R., et al. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, 95, 2630–2636.PubMed Dankbar, B., Padro, T., Leo, R., et al. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood, 95, 2630–2636.PubMed
195.
go back to reference Nilsson, M. B., Langley, R. R., & Fidler, I. J. (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Research, 65, 10794–10800.PubMedPubMedCentralCrossRef Nilsson, M. B., Langley, R. R., & Fidler, I. J. (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Research, 65, 10794–10800.PubMedPubMedCentralCrossRef
196.
go back to reference Rabinovich, A., Medina, L., Piura, B., Segal, S., & Huleihel, M. (2007). Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Research, 27, 267–272.PubMed Rabinovich, A., Medina, L., Piura, B., Segal, S., & Huleihel, M. (2007). Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Research, 27, 267–272.PubMed
197.
go back to reference Scambia, G., Testa, U., Benedetti Panici, P., et al. (1995). Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer, 71, 354–356.PubMedPubMedCentralCrossRef Scambia, G., Testa, U., Benedetti Panici, P., et al. (1995). Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. British Journal of Cancer, 71, 354–356.PubMedPubMedCentralCrossRef
198.
go back to reference Guo, Y., Nemeth, J., O’Brien, C., et al. (2010). Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clinical Cancer Research, 16, 5759–5769.PubMedCrossRef Guo, Y., Nemeth, J., O’Brien, C., et al. (2010). Effects of siltuximab on the IL-6-induced signaling pathway in ovarian cancer. Clinical Cancer Research, 16, 5759–5769.PubMedCrossRef
199.
go back to reference Coward, J., Kulbe, H., Chakravarty, P., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research, 17, 6083–6096.PubMedPubMedCentralCrossRef Coward, J., Kulbe, H., Chakravarty, P., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research, 17, 6083–6096.PubMedPubMedCentralCrossRef
200.
go back to reference Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedCrossRef Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.PubMedCrossRef
201.
go back to reference Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.PubMedCrossRef Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.PubMedCrossRef
202.
go back to reference Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.PubMedCrossRef Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.PubMedCrossRef
203.
go back to reference Fattal, E., & Bochot, A. (2006). Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews, 58, 1203–1223.PubMedCrossRef Fattal, E., & Bochot, A. (2006). Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews, 58, 1203–1223.PubMedCrossRef
204.
go back to reference Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.PubMedCrossRef Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.PubMedCrossRef
205.
go back to reference Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267, 44–53.PubMedCrossRef Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267, 44–53.PubMedCrossRef
206.
go back to reference Zhou, J., Shum, K. T., Burnett, J. C., & Rossi, J. J. (2013). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel), 6, 85–107.CrossRef Zhou, J., Shum, K. T., Burnett, J. C., & Rossi, J. J. (2013). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel), 6, 85–107.CrossRef
207.
go back to reference Tan, W. B., Jiang, S., & Zhang, Y. (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28, 1565–1571.PubMedCrossRef Tan, W. B., Jiang, S., & Zhang, Y. (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28, 1565–1571.PubMedCrossRef
208.
go back to reference Lee, J. H., Lee, K., Moon, S. H., Lee, Y., Park, T. G., & Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angewandte Chemie International Edition in English, 48, 4174–4179.CrossRef Lee, J. H., Lee, K., Moon, S. H., Lee, Y., Park, T. G., & Cheon, J. (2009). All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angewandte Chemie International Edition in English, 48, 4174–4179.CrossRef
209.
go back to reference Yu, D., Peng, P., Dharap, S. S., et al. (2005). Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. Journal of Controlled Release, 110, 90–102.PubMedCrossRef Yu, D., Peng, P., Dharap, S. S., et al. (2005). Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. Journal of Controlled Release, 110, 90–102.PubMedCrossRef
210.
go back to reference Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 189–207.PubMedCrossRef Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 189–207.PubMedCrossRef
211.
go back to reference Nikitenko, N. A., & Prassolov, V. S. (2013). Non-viral delivery and therapeutic application of small interfering RNAs. Acta Naturae, 5, 35–53.PubMedPubMedCentral Nikitenko, N. A., & Prassolov, V. S. (2013). Non-viral delivery and therapeutic application of small interfering RNAs. Acta Naturae, 5, 35–53.PubMedPubMedCentral
212.
go back to reference Davis, M. E., Zuckerman, J. E., Choi, C. H., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464, 1067–1070.PubMedPubMedCentralCrossRef Davis, M. E., Zuckerman, J. E., Choi, C. H., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464, 1067–1070.PubMedPubMedCentralCrossRef
213.
go back to reference Heidel, J. D., Yu, Z., Liu, J. Y., et al. (2007). Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proceedings of the National Academy of Sciences of the United States of America, 104, 5715–5721.PubMedPubMedCentralCrossRef Heidel, J. D., Yu, Z., Liu, J. Y., et al. (2007). Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proceedings of the National Academy of Sciences of the United States of America, 104, 5715–5721.PubMedPubMedCentralCrossRef
214.
go back to reference Matei, D., Emerson, R. E., Schilder, J., et al. (2008). Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer, 113, 723–732.PubMedCrossRef Matei, D., Emerson, R. E., Schilder, J., et al. (2008). Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis: a Hoosier Oncology Group trial. Cancer, 113, 723–732.PubMedCrossRef
215.
go back to reference Juretzka, M., Hensley, M. L., Tew, W., et al. (2008). A phase 2 trial of oral imatinib in patients with epithelial ovarian, fallopian tube, or peritoneal carcinoma in second or greater remission. European Journal of Gynaecological Oncology, 29, 568–572.PubMed Juretzka, M., Hensley, M. L., Tew, W., et al. (2008). A phase 2 trial of oral imatinib in patients with epithelial ovarian, fallopian tube, or peritoneal carcinoma in second or greater remission. European Journal of Gynaecological Oncology, 29, 568–572.PubMed
216.
go back to reference Liu, J. F., Tolaney, S. M., Birrer, M., et al. (2013). A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. European Journal of Cancer, 49, 2972–2978.PubMedPubMedCentralCrossRef Liu, J. F., Tolaney, S. M., Birrer, M., et al. (2013). A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. European Journal of Cancer, 49, 2972–2978.PubMedPubMedCentralCrossRef
217.
go back to reference Hjalmarson, A. (1990). Heart rate and beta-adrenergic mechanisms in acute myocardial infarction. Basic Research in Cardiology, 85(Suppl 1), 325–333.PubMed Hjalmarson, A. (1990). Heart rate and beta-adrenergic mechanisms in acute myocardial infarction. Basic Research in Cardiology, 85(Suppl 1), 325–333.PubMed
218.
go back to reference Bodnar, L., Gornas, M., & Szczylik, C. (2011). Sorafenib as a third line therapy in patients with epithelial ovarian cancer or primary peritoneal cancer: a phase II study. Gynecologic Oncology, 123, 33–36.PubMedCrossRef Bodnar, L., Gornas, M., & Szczylik, C. (2011). Sorafenib as a third line therapy in patients with epithelial ovarian cancer or primary peritoneal cancer: a phase II study. Gynecologic Oncology, 123, 33–36.PubMedCrossRef
219.
go back to reference Campos, S. M., Penson, R. T., Matulonis, U., et al. (2013). A phase II trial of sunitinib malate in recurrent and refractory ovarian, fallopian tube and peritoneal carcinoma. Gynecologic Oncology, 128, 215–220.PubMedCrossRef Campos, S. M., Penson, R. T., Matulonis, U., et al. (2013). A phase II trial of sunitinib malate in recurrent and refractory ovarian, fallopian tube and peritoneal carcinoma. Gynecologic Oncology, 128, 215–220.PubMedCrossRef
220.
go back to reference Baumann, K. H., du Bois, A., Meier, W., et al. (2012). A phase II trial (AGO 2.11) in platinum-resistant ovarian cancer: a randomized multicenter trial with sunitinib (SU11248) to evaluate dosage, schedule, tolerability, toxicity and effectiveness of a multitargeted receptor tyrosine kinase inhibitor monotherapy. Annals of Oncology, 23, 2265–2271.PubMedCrossRef Baumann, K. H., du Bois, A., Meier, W., et al. (2012). A phase II trial (AGO 2.11) in platinum-resistant ovarian cancer: a randomized multicenter trial with sunitinib (SU11248) to evaluate dosage, schedule, tolerability, toxicity and effectiveness of a multitargeted receptor tyrosine kinase inhibitor monotherapy. Annals of Oncology, 23, 2265–2271.PubMedCrossRef
221.
go back to reference Karlan, B. Y., Oza, A. M., Richardson, G. E., et al. (2012). Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. Journal of Clinical Oncology, 30, 362–371.PubMedCrossRef Karlan, B. Y., Oza, A. M., Richardson, G. E., et al. (2012). Randomized, double-blind, placebo-controlled phase II study of AMG 386 combined with weekly paclitaxel in patients with recurrent ovarian cancer. Journal of Clinical Oncology, 30, 362–371.PubMedCrossRef
222.
go back to reference Secord, A. A., Teoh, D. K., Barry, W. T., et al. (2012). A phase I trial of dasatinib, an SRC-family kinase inhibitor, in combination with paclitaxel and carboplatin in patients with advanced or recurrent ovarian cancer. Clinical Cancer Research, 18, 5489–5498.PubMedPubMedCentralCrossRef Secord, A. A., Teoh, D. K., Barry, W. T., et al. (2012). A phase I trial of dasatinib, an SRC-family kinase inhibitor, in combination with paclitaxel and carboplatin in patients with advanced or recurrent ovarian cancer. Clinical Cancer Research, 18, 5489–5498.PubMedPubMedCentralCrossRef
223.
go back to reference Schilder, R. J., Brady, W. E., Lankes, H. A., et al. (2012). Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 127, 70–74.PubMedPubMedCentralCrossRef Schilder, R. J., Brady, W. E., Lankes, H. A., et al. (2012). Phase II evaluation of dasatinib in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology, 127, 70–74.PubMedPubMedCentralCrossRef
224.
go back to reference Behbakht, K., Sill, M. W., Darcy, K. M., et al. (2011). Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecologic Oncology, 123, 19–26.PubMedPubMedCentralCrossRef Behbakht, K., Sill, M. W., Darcy, K. M., et al. (2011). Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecologic Oncology, 123, 19–26.PubMedPubMedCentralCrossRef
225.
go back to reference Temkin, S. M., Yamada, S. D., & Fleming, G. F. (2010). A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecologic Oncology, 117, 473–476.PubMedCrossRef Temkin, S. M., Yamada, S. D., & Fleming, G. F. (2010). A phase I study of weekly temsirolimus and topotecan in the treatment of advanced and/or recurrent gynecologic malignancies. Gynecologic Oncology, 117, 473–476.PubMedCrossRef
226.
go back to reference Kollmannsberger, C., Hirte, H., Siu, L. L., et al. (2012). Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179). Annals of Oncology, 23, 238–244.PubMedCrossRef Kollmannsberger, C., Hirte, H., Siu, L. L., et al. (2012). Temsirolimus in combination with carboplatin and paclitaxel in patients with advanced solid tumors: a NCIC-CTG, phase I, open-label dose-escalation study (IND 179). Annals of Oncology, 23, 238–244.PubMedCrossRef
Metadata
Title
Anti-vascular therapies in ovarian cancer: moving beyond anti-VEGF approaches
Authors
Hyun-Jin Choi
Guillermo N. Armaiz Pena
Sunila Pradeep
Min Soon Cho
Robert L. Coleman
Anil K. Sood
Publication date
01-03-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9538-9

Other articles of this Issue 1/2015

Cancer and Metastasis Reviews 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine