Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2014

01-12-2014

Post-transcriptional regulation of MTA family by microRNAs in the context of cancer

Authors: Yun Zhang, Xiao-Fan Wang

Published in: Cancer and Metastasis Reviews | Issue 4/2014

Login to get access

Abstract

MicroRNAs (miRNAs) are a class of 20–24 nt small non-coding RNAs that regulate a wide range of biological processes through changing the stability and translation of their target messenger RNA (mRNA) genes. Shortly after their identification, many miRNA genes have been found dysregulated in a variety of human cancers, indicating a pathological function of this gene class in mediating cancer progression. Over the past decade, accumulated literature has shown that miRNAs participate in numerous cancer-relevant processes including cell proliferation, apoptosis, differentiation, metabolism, and importantly, metastasis, which accounts for the mortality of approximately 90 % of cancer patients. Several recent publications have linked miRNAs with metastasis-associated protein (MTA) family members. Given the fact that the MTA family members are widely overexpressed in human cancers and their nature of serving as both corepressor and coactivator in gene regulation, it is intriguing to study whether certain miRNAs regulate cancer progression through modulating the expression of MTA family members. In this review, we will focus on recent advances in understanding the regulatory relationship between certain miRNAs and MTA family members.
Literature
2.
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedCrossRef
10.
go back to reference Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer, 9(4), 293–302. doi:10.1038/nrc2619.PubMedCrossRef Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer, 9(4), 293–302. doi:10.​1038/​nrc2619.PubMedCrossRef
14.
16.
go back to reference Calin, G. A., Sevignani, C., Dan Dumitru, C., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999–3004. doi:10.1073/Pnas.0307323101.PubMedCentralPubMedCrossRef Calin, G. A., Sevignani, C., Dan Dumitru, C., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999–3004. doi:10.​1073/​Pnas.​0307323101.PubMedCentralPubMedCrossRef
17.
go back to reference Gaur, A., Jewell, D. A., Liang, Y., Ridzon, D., Moore, J. H., Chen, C. F., et al. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Research, 67(6), 2456–2468. doi:10.1158/0008-5472.Can-06-2698.PubMedCrossRef Gaur, A., Jewell, D. A., Liang, Y., Ridzon, D., Moore, J. H., Chen, C. F., et al. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Research, 67(6), 2456–2468. doi:10.​1158/​0008-5472.​Can-06-2698.PubMedCrossRef
18.
go back to reference Connolly, E., Melegari, M., Landgraf, P., Tchaikovskaya, T., Tennant, B. C., Slagle, B. L., et al. (2008). Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. American Journal of Pathology, 173(3), 856–864. doi:10.2353/ajpath.2008.080096.PubMedCentralPubMedCrossRef Connolly, E., Melegari, M., Landgraf, P., Tchaikovskaya, T., Tennant, B. C., Slagle, B. L., et al. (2008). Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. American Journal of Pathology, 173(3), 856–864. doi:10.​2353/​ajpath.​2008.​080096.PubMedCentralPubMedCrossRef
19.
go back to reference Diosdado, B., van de Wiel, M. A., Terhaar Sive Droste, J. S., Mongera, S., Postma, C., Meijerink, W. J., et al. (2009). MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. British Journal of Cancer, 101(4), 707–714. doi:10.1038/sj.bjc.6605037.PubMedCentralPubMedCrossRef Diosdado, B., van de Wiel, M. A., Terhaar Sive Droste, J. S., Mongera, S., Postma, C., Meijerink, W. J., et al. (2009). MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. British Journal of Cancer, 101(4), 707–714. doi:10.​1038/​sj.​bjc.​6605037.PubMedCentralPubMedCrossRef
20.
21.
go back to reference Mavrakis, K. J., Wolfe, A. L., Oricchio, E., Palomero, T., de Keersmaecker, K., McJunkin, K., et al. (2010). Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nature Cell Biology, 12(4), 372–379. doi:10.1038/ncb2037.PubMedCentralPubMedCrossRef Mavrakis, K. J., Wolfe, A. L., Oricchio, E., Palomero, T., de Keersmaecker, K., McJunkin, K., et al. (2010). Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nature Cell Biology, 12(4), 372–379. doi:10.​1038/​ncb2037.PubMedCentralPubMedCrossRef
24.
29.
go back to reference Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601. doi:10.1038/ncb1722.PubMedCrossRef Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601. doi:10.​1038/​ncb1722.PubMedCrossRef
33.
go back to reference Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: Molecular functions and clinical implications. Clinical & Experimental Metastasis, 26(3), 215–227. doi:10.1007/s10585-008-9233-8.CrossRef Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: Molecular functions and clinical implications. Clinical & Experimental Metastasis, 26(3), 215–227. doi:10.​1007/​s10585-008-9233-8.CrossRef
34.
go back to reference Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, MTA1, differentially expressed in highly metastatic mammary adenocarcinoma cell-lines—cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, MTA1, differentially expressed in highly metastatic mammary adenocarcinoma cell-lines—cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed
35.
go back to reference Xue, Y. T., Wong, J. M., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. D. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861. doi:10.1016/s1097-2765(00)80299-3.PubMedCrossRef Xue, Y. T., Wong, J. M., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. D. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861. doi:10.​1016/​s1097-2765(00)80299-3.PubMedCrossRef
36.
go back to reference Ng, H. H., & Bird, A. (2000). Histone deacetylases: silencers for hire. Trends in Biochemical Sciences, 25(3), 121–126.PubMedCrossRef Ng, H. H., & Bird, A. (2000). Histone deacetylases: silencers for hire. Trends in Biochemical Sciences, 25(3), 121–126.PubMedCrossRef
43.
go back to reference Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMedCrossRef Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMedCrossRef
44.
go back to reference Luo, J. Y., Su, F., Chen, D. L., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.PubMedCrossRef Luo, J. Y., Su, F., Chen, D. L., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.PubMedCrossRef
46.
go back to reference Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675. doi:10.1073/pnas.0601989103.PubMedCentralPubMedCrossRef Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675. doi:10.​1073/​pnas.​0601989103.PubMedCentralPubMedCrossRef
47.
48.
49.
go back to reference Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597. doi:10.1074/jbc.M110.139469.PubMedCentralPubMedCrossRef Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597. doi:10.​1074/​jbc.​M110.​139469.PubMedCentralPubMedCrossRef
54.
go back to reference Divijendra, S., Reddy, N., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBP alpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642. doi:10.1158/0008-5472.can-09-0898.CrossRef Divijendra, S., Reddy, N., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBP alpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Research, 69(14), 5639–5642. doi:10.​1158/​0008-5472.​can-09-0898.CrossRef
55.
go back to reference Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, D. R., Martin, E., Murad, F., & Kumar, R. (2010). Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. Journal of Biological Chemistry, 285(10), 6980–6986. doi:10.1074/jbc.M109.065987.PubMedCentralPubMedCrossRef Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, D. R., Martin, E., Murad, F., & Kumar, R. (2010). Stimulation of inducible nitric oxide by hepatitis B virus transactivator protein HBx requires MTA1 coregulator. Journal of Biological Chemistry, 285(10), 6980–6986. doi:10.​1074/​jbc.​M109.​065987.PubMedCentralPubMedCrossRef
57.
go back to reference Kaller, M., Liffers, S.-T., Oeljeklaus, S., Kuhlmann, K., Roeh, S., Hoffmann, R., et al. (2011). Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Molecular & Cellular Proteomics, 10(8), doi:10.1074/mcp.M111.010462. Kaller, M., Liffers, S.-T., Oeljeklaus, S., Kuhlmann, K., Roeh, S., Hoffmann, R., et al. (2011). Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Molecular & Cellular Proteomics, 10(8), doi:10.​1074/​mcp.​M111.​010462.
58.
go back to reference Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncology Reports, 27(3), 807–812. doi:10.3892/or.2011.1574.PubMed Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncology Reports, 27(3), 807–812. doi:10.​3892/​or.​2011.​1574.PubMed
59.
go back to reference Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476– 485. doi:10.1159/000354452. Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476– 485. doi:10.​1159/​000354452.
62.
go back to reference Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., & Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209), 58–63. doi:10.1038/nature07228.PubMedCrossRef Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., & Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209), 58–63. doi:10.​1038/​nature07228.PubMedCrossRef
63.
64.
go back to reference Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. Oncology Reports, 28(1), 218–224. doi:10.3892/or.2012.1770.PubMed Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. Oncology Reports, 28(1), 218–224. doi:10.​3892/​or.​2012.​1770.PubMed
65.
go back to reference Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. Journal of Experimental & Clinical Cancer Research, 32, doi:10.1186/1756-9966-32-33. Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. Journal of Experimental & Clinical Cancer Research, 32, doi:10.​1186/​1756-9966-32-33.
66.
go back to reference Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z. B., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657. doi:10.1038/nature00889.PubMedCrossRef Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z. B., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657. doi:10.​1038/​nature00889.PubMedCrossRef
Metadata
Title
Post-transcriptional regulation of MTA family by microRNAs in the context of cancer
Authors
Yun Zhang
Xiao-Fan Wang
Publication date
01-12-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9526-0

Other articles of this Issue 4/2014

Cancer and Metastasis Reviews 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine