Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2014

01-12-2014

MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities

Authors: Anait S. Levenson, Avinash Kumar, Xu Zhang

Published in: Cancer and Metastasis Reviews | Issue 4/2014

Login to get access

Abstract

This review summarizes our current understanding of the role of MTA family members, particularly MTA1, with a special emphasis on prostate cancer. The interest for the role of MTA1 in prostate cancer was boosted from our initial findings of MTA1 as a component of “vicious cycle” and a member of bone metastatic signature. Analysis of human prostate tissues, xenograft and transgenic mouse models of prostate cancer, and prostate cancer cell lines has provided support for the role of MTA1 in advanced disease and its potential role in initial stages of prostate tumor progression. Recent discoveries have highlighted a critical role for MTA1 in inflammation-triggered prostate tumorigenesis, epithelial-to-mesenchymal transition, prostate cancer survival pathways, and site metastasis. Evidence for MTA1 as an upstream negative regulator of tumor suppressor genes such as p53 and PTEN has also emerged. MTA1 is involved in prostate tumor angiogenesis by regulating several pro-angiogenic factors. Evidence for MTA1 as a prognostic marker for aggressive prostate cancer and disease recurrence has been described. Importantly, pharmacological dietary agents, namely resveratrol and its analogs, are potentially applicable to prostate cancer prevention, treatment, and control of cancer progression due to their potent inhibitory effects on MTA proteins.
Literature
1.
go back to reference Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Seminars in Oncology, 30(5 Suppl 16), 30–37.PubMed Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Seminars in Oncology, 30(5 Suppl 16), 30–37.PubMed
2.
go back to reference Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. [Review]. Clinical and Experimental Metastasis, 26(3), 215–227. doi:10.1007/s10585-008-9233-8.PubMed Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. [Review]. Clinical and Experimental Metastasis, 26(3), 215–227. doi:10.​1007/​s10585-008-9233-8.PubMed
3.
go back to reference Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMed Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMed
4.
go back to reference Reddy, S. D., Pakala, S. B., Molli, P. R., Sahni, N., Karanam, N. K., Mudvari, P., et al. (2012). Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(33), 27843–27850. doi:10.1074/jbc.M112.348474.PubMedCentralPubMed Reddy, S. D., Pakala, S. B., Molli, P. R., Sahni, N., Karanam, N. K., Mudvari, P., et al. (2012). Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(33), 27843–27850. doi:10.​1074/​jbc.​M112.​348474.PubMedCentralPubMed
5.
go back to reference Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Cell, 113(2), 207–219.PubMed Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Cell, 113(2), 207–219.PubMed
6.
go back to reference Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. [Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 278(43), 42560–42568. doi:10.1074/jbc.M302955200.PubMed Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. [Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 278(43), 42560–42568. doi:10.​1074/​jbc.​M302955200.PubMed
7.
go back to reference Simpson, A., Uitto, J., Rodeck, U., & Mahoney, M. G. (2001). Differential expression and subcellular distribution of the mouse metastasis-associated proteins Mta1 and Mta3. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Gene, 273(1), 29–39.PubMed Simpson, A., Uitto, J., Rodeck, U., & Mahoney, M. G. (2001). Differential expression and subcellular distribution of the mouse metastasis-associated proteins Mta1 and Mta3. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Gene, 273(1), 29–39.PubMed
8.
go back to reference Kai, L., Samuel, S. K., & Levenson, A. S. (2010). Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. [Research Support, Non-U.S. Gov’t]. International Journal of Cancer, 126(7), 1538–1548. doi:10.1002/ijc.24928. Kai, L., Samuel, S. K., & Levenson, A. S. (2010). Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. [Research Support, Non-U.S. Gov’t]. International Journal of Cancer, 126(7), 1538–1548. doi:10.​1002/​ijc.​24928.
9.
go back to reference Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 16(4), 929–935.PubMed Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., et al. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 16(4), 929–935.PubMed
10.
go back to reference Moon, H. E., Cheon, H., & Lee, M. S. (2007). Metastasis-associated protein 1 inhibits p53-induced apoptosis. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 18(5), 1311–1314.PubMed Moon, H. E., Cheon, H., & Lee, M. S. (2007). Metastasis-associated protein 1 inhibits p53-induced apoptosis. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 18(5), 1311–1314.PubMed
11.
go back to reference Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. [Research Support, Non-U.S. Gov′t]. EMBO Journal, 25(6), 1231–1241. doi:10.1038/sj.emboj.7601025.PubMedCentralPubMed Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. [Research Support, Non-U.S. Gov′t]. EMBO Journal, 25(6), 1231–1241. doi:10.​1038/​sj.​emboj.​7601025.PubMedCentralPubMed
12.
go back to reference Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., et al. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Molecular Endocrinology, 20(9), 2020–2035. doi:10.1210/me.2005-0063.PubMed Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., et al. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Molecular Endocrinology, 20(9), 2020–2035. doi:10.​1210/​me.​2005-0063.PubMed
13.
go back to reference Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. (2011). Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). [Research Support, Non-U.S. Gov′t]. Prostate, 71(3), 268–280. doi:10.1002/pros.21240.PubMed Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. (2011). Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). [Research Support, Non-U.S. Gov′t]. Prostate, 71(3), 268–280. doi:10.​1002/​pros.​21240.PubMed
14.
go back to reference Dias, S. J., Zhou, X., Ivanovic, M., Gailey, M. P., Dhar, S., Zhang, L., et al. (2013). Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in African Americans. [Multicenter Study]. Science Reports, 3, 2331. doi:10.1038/srep02331. Dias, S. J., Zhou, X., Ivanovic, M., Gailey, M. P., Dhar, S., Zhang, L., et al. (2013). Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in African Americans. [Multicenter Study]. Science Reports, 3, 2331. doi:10.​1038/​srep02331.
16.
go back to reference Martin, M. D., Hilsenbeck, S. G., Mohsin, S. K., Hopp, T. A., Clark, G. M., Osborne, C. K., et al. (2006). Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Breast Cancer Research and Treatment, 95(1), 7–12. doi:10.1007/s10549-005-9016-8.PubMed Martin, M. D., Hilsenbeck, S. G., Mohsin, S. K., Hopp, T. A., Clark, G. M., Osborne, C. K., et al. (2006). Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Breast Cancer Research and Treatment, 95(1), 7–12. doi:10.​1007/​s10549-005-9016-8.PubMed
17.
go back to reference Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. [Research Support, Non-U.S. Gov′t]. Cancer Science, 97(5), 374–379. doi:10.1111/j.1349-7006.2006.00186.x.PubMed Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. [Research Support, Non-U.S. Gov′t]. Cancer Science, 97(5), 374–379. doi:10.​1111/​j.​1349-7006.​2006.​00186.​x.PubMed
18.
go back to reference Kawasaki, G., Yanamoto, S., Yoshitomi, I., Yamada, S., & Mizuno, A. (2008). Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. [Comparative Study]. International Journal of Oral and Maxillofacial Surgery, 37(11), 1039–1046. doi:10.1016/j.ijom.2008.05.020.PubMed Kawasaki, G., Yanamoto, S., Yoshitomi, I., Yamada, S., & Mizuno, A. (2008). Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. [Comparative Study]. International Journal of Oral and Maxillofacial Surgery, 37(11), 1039–1046. doi:10.​1016/​j.​ijom.​2008.​05.​020.PubMed
19.
go back to reference Balasenthil, S., Broaddus, R. R., & Kumar, R. (2006). Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Human Pathology, 37(6), 656–661. doi:10.1016/j.humpath.2006.01.024.PubMed Balasenthil, S., Broaddus, R. R., & Kumar, R. (2006). Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Human Pathology, 37(6), 656–661. doi:10.​1016/​j.​humpath.​2006.​01.​024.PubMed
20.
go back to reference Prisco, M. G., Zannoni, G. F., De Stefano, I., Vellone, V. G., Tortorella, L., Fagotti, A., et al. (2012). Prognostic role of metastasis tumor antigen 1 in patients with ovarian cancer: a clinical study. Human Pathology, 43(2), 282–288. doi:10.1016/j.humpath.2011.05.002.PubMed Prisco, M. G., Zannoni, G. F., De Stefano, I., Vellone, V. G., Tortorella, L., Fagotti, A., et al. (2012). Prognostic role of metastasis tumor antigen 1 in patients with ovarian cancer: a clinical study. Human Pathology, 43(2), 282–288. doi:10.​1016/​j.​humpath.​2011.​05.​002.PubMed
21.
go back to reference Cheng, C. W., Liu, Y. F., Yu, J. C., Wang, H. W., Ding, S. L., Hsiung, C. N., et al. (2012). Prognostic significance of cyclin D1, beta-catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. [Research Support, Non-U.S. Gov′t]. Annals of Surgical Oncology, 19(13), 4129–4139. doi:10.1245/s10434-012-2541-x.PubMed Cheng, C. W., Liu, Y. F., Yu, J. C., Wang, H. W., Ding, S. L., Hsiung, C. N., et al. (2012). Prognostic significance of cyclin D1, beta-catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. [Research Support, Non-U.S. Gov′t]. Annals of Surgical Oncology, 19(13), 4129–4139. doi:10.​1245/​s10434-012-2541-x.PubMed
22.
go back to reference Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. [Research Support, U.S. Gov′t, Non-P.H.S. Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 64(3), 825–829.PubMed Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. [Research Support, U.S. Gov′t, Non-P.H.S. Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 64(3), 825–829.PubMed
23.
go back to reference Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., et al. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. [Research Support, N.I.H., Intramural]. PLoS ONE, 8(3), e57542. doi:10.1371/journal.pone.0057542.PubMedCentralPubMed Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., et al. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. [Research Support, N.I.H., Intramural]. PLoS ONE, 8(3), e57542. doi:10.​1371/​journal.​pone.​0057542.PubMedCentralPubMed
24.
go back to reference Wang, H., Fan, L., Wei, J., Weng, Y., Zhou, L., Shi, Y., et al. (2012). Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 7(12), e46888. doi:10.1371/journal.pone.0046888.PubMedCentralPubMed Wang, H., Fan, L., Wei, J., Weng, Y., Zhou, L., Shi, Y., et al. (2012). Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 7(12), e46888. doi:10.​1371/​journal.​pone.​0046888.PubMedCentralPubMed
25.
go back to reference Wallace, T. A., Prueitt, R. L., Yi, M., Howe, T. M., Gillespie, J. W., Yfantis, H. G., et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. [Research Support, N.I.H., Intramural]. Cancer Research, 68(3), 927–936. doi:10.1158/0008-5472.CAN-07-2608.PubMed Wallace, T. A., Prueitt, R. L., Yi, M., Howe, T. M., Gillespie, J. W., Yfantis, H. G., et al. (2008). Tumor immunobiological differences in prostate cancer between African-American and European-American men. [Research Support, N.I.H., Intramural]. Cancer Research, 68(3), 927–936. doi:10.​1158/​0008-5472.​CAN-07-2608.PubMed
26.
go back to reference Timofeeva, O. A., Zhang, X., Ressom, H. W., Varghese, R. S., Kallakury, B. V., Wang, K., et al. (2009). Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. [Comparative Study Research Support, N.I.H., Extramural]. International Journal of Oncology, 35(4), 751–760.PubMedCentralPubMed Timofeeva, O. A., Zhang, X., Ressom, H. W., Varghese, R. S., Kallakury, B. V., Wang, K., et al. (2009). Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. [Comparative Study Research Support, N.I.H., Extramural]. International Journal of Oncology, 35(4), 751–760.PubMedCentralPubMed
27.
go back to reference Irizarry, R. A., Ooi, S. L., Wu, Z., & Boeke, J. D. (2003). Use of mixture models in a microarray-based screening procedure for detecting differentially represented yeast mutants. Stat Appl Genet Mol Biol, 2, Article1, doi:10.2202/1544-6115.1002. Irizarry, R. A., Ooi, S. L., Wu, Z., & Boeke, J. D. (2003). Use of mixture models in a microarray-based screening procedure for detecting differentially represented yeast mutants. Stat Appl Genet Mol Biol, 2, Article1, doi:10.​2202/​1544-6115.​1002.
28.
go back to reference Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. [Research Support, Non-U.S. Gov′t]. Nature, 412(6849), 822–826. doi:10.1038/35090585.PubMed Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. [Research Support, Non-U.S. Gov′t]. Nature, 412(6849), 822–826. doi:10.​1038/​35090585.PubMed
29.
go back to reference Abbas, A., & Gupta, S. (2008). The role of histone deacetylases in prostate cancer. [Research Support, N.I.H., Extramural Review]. Epigenetics, 3(6), 300–309.PubMedCentralPubMed Abbas, A., & Gupta, S. (2008). The role of histone deacetylases in prostate cancer. [Research Support, N.I.H., Extramural Review]. Epigenetics, 3(6), 300–309.PubMedCentralPubMed
30.
go back to reference Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. [Review]. Nature Reviews Cancer, 6(1), 38–51. doi:10.1038/nrc1779.PubMed Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. [Review]. Nature Reviews Cancer, 6(1), 38–51. doi:10.​1038/​nrc1779.PubMed
31.
go back to reference Xu, W. S., Parmigiani, R. B., & Marks, P. A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Review]. Oncogene, 26(37), 5541–5552. doi:10.1038/sj.onc.1210620.PubMed Xu, W. S., Parmigiani, R. B., & Marks, P. A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Review]. Oncogene, 26(37), 5541–5552. doi:10.​1038/​sj.​onc.​1210620.PubMed
32.
go back to reference Nair, S. S., Li, D. Q., & Kumar, R. (2013). A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Molecular Cell, 49(4), 704–718. doi:10.1016/j.molcel.2012.12.016.PubMedCentralPubMed Nair, S. S., Li, D. Q., & Kumar, R. (2013). A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Molecular Cell, 49(4), 704–718. doi:10.​1016/​j.​molcel.​2012.​12.​016.PubMedCentralPubMed
33.
go back to reference Sankaran, D., Pakala, S. B., Nair, V. S., Sirigiri, D. N., Cyanam, D., Ha, N. H., et al. (2012). Mechanism of MTA1 protein overexpression-linked invasion: MTA1 regulation of hyaluronan-mediated motility receptor (HMMR) expression and function. [Research Support, N.I.H., Extramural Retracted Publication]. Journal of Biological Chemistry, 287(8), 5483–5491. doi:10.1074/jbc.M111.324632.PubMedCentralPubMed Sankaran, D., Pakala, S. B., Nair, V. S., Sirigiri, D. N., Cyanam, D., Ha, N. H., et al. (2012). Mechanism of MTA1 protein overexpression-linked invasion: MTA1 regulation of hyaluronan-mediated motility receptor (HMMR) expression and function. [Research Support, N.I.H., Extramural Retracted Publication]. Journal of Biological Chemistry, 287(8), 5483–5491. doi:10.​1074/​jbc.​M111.​324632.PubMedCentralPubMed
34.
go back to reference Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature Cell Biology, 3(1), 30–37. doi:10.1038/35050532.PubMed Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature Cell Biology, 3(1), 30–37. doi:10.​1038/​35050532.PubMed
35.
go back to reference Marzook, H., Li, D. Q., Nair, V. S., Mudvari, P., Reddy, S. D., Pakala, S. B., et al. (2012). Metastasis-associated protein 1 drives tumor cell migration and invasion through transcriptional repression of RING finger protein 144A. Journal of Biological Chemistry, 287(8), 5615–5626. doi:10.1074/jbc.M111.314088.PubMedCentralPubMed Marzook, H., Li, D. Q., Nair, V. S., Mudvari, P., Reddy, S. D., Pakala, S. B., et al. (2012). Metastasis-associated protein 1 drives tumor cell migration and invasion through transcriptional repression of RING finger protein 144A. Journal of Biological Chemistry, 287(8), 5615–5626. doi:10.​1074/​jbc.​M111.​314088.PubMedCentralPubMed
37.
go back to reference Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(13), 10044–10052. doi:10.1074/jbc.M109.079095.PubMedCentralPubMed Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(13), 10044–10052. doi:10.​1074/​jbc.​M109.​079095.PubMedCentralPubMed
38.
go back to reference Manavathi, B., Peng, S., Rayala, S. K., Talukder, A. H., Wang, M. H., Wang, R. A., et al. (2007). Repression of Six3 by a corepressor regulates rhodopsin expression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13128–13133. doi:10.1073/pnas.0705878104.PubMedCentralPubMed Manavathi, B., Peng, S., Rayala, S. K., Talukder, A. H., Wang, M. H., Wang, R. A., et al. (2007). Repression of Six3 by a corepressor regulates rhodopsin expression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13128–13133. doi:10.​1073/​pnas.​0705878104.PubMedCentralPubMed
39.
go back to reference Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 282(3), 1529–1533. doi:10.1074/jbc.R600029200.PubMed Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 282(3), 1529–1533. doi:10.​1074/​jbc.​R600029200.PubMed
40.
go back to reference Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. [Research Support, N.I.H., Extramural]. EMBO Reports, 11(9), 691–697. doi:10.1038/embor.2010.99.PubMedCentralPubMed Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. (2010). Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. [Research Support, N.I.H., Extramural]. EMBO Reports, 11(9), 691–697. doi:10.​1038/​embor.​2010.​99.PubMedCentralPubMed
41.
go back to reference Yan, C., Wang, H., Toh, Y., & Boyd, D. D. (2003). Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. [Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 278(4), 2309–2316. doi:10.1074/jbc.M210369200.PubMed Yan, C., Wang, H., Toh, Y., & Boyd, D. D. (2003). Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. [Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 278(4), 2309–2316. doi:10.​1074/​jbc.​M210369200.PubMed
42.
go back to reference Zhang, H., Singh, R. R., Talukder, A. H., & Kumar, R. (2006). Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Genes and Development, 20(21), 2943–2948. doi:10.1101/gad.1461706.PubMedCentralPubMed Zhang, H., Singh, R. R., Talukder, A. H., & Kumar, R. (2006). Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Genes and Development, 20(21), 2943–2948. doi:10.​1101/​gad.​1461706.PubMedCentralPubMed
43.
go back to reference Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. [Research Support, N.I.H., Extramural]. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675. doi:10.1073/pnas.0601989103.PubMedCentralPubMed Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. [Research Support, N.I.H., Extramural]. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675. doi:10.​1073/​pnas.​0601989103.PubMedCentralPubMed
44.
go back to reference Balasenthil, S., Gururaj, A. E., Talukder, A. H., Bagheri-Yarmand, R., Arrington, T., Haas, B. J., et al. (2007). Identification of Pax5 as a target of MTA1 in B-cell lymphomas. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 67(15), 7132–7138. doi:10.1158/0008-5472.CAN-07-0750.PubMed Balasenthil, S., Gururaj, A. E., Talukder, A. H., Bagheri-Yarmand, R., Arrington, T., Haas, B. J., et al. (2007). Identification of Pax5 as a target of MTA1 in B-cell lymphomas. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 67(15), 7132–7138. doi:10.​1158/​0008-5472.​CAN-07-0750.PubMed
45.
go back to reference Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 408(6810), 377–381. doi:10.1038/35042612.PubMed Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 408(6810), 377–381. doi:10.​1038/​35042612.PubMed
46.
go back to reference Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 66(3), 1277–1281. doi:10.1158/0008-5472.CAN-05-3632.PubMed Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., & Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 66(3), 1277–1281. doi:10.​1158/​0008-5472.​CAN-05-3632.PubMed
47.
go back to reference Saito, Y., Liang, G., Egger, G., Friedman, J. M., Chuang, J. C., Coetzee, G. A., et al. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 9(6), 435–443. doi:10.1016/j.ccr.2006.04.020.PubMed Saito, Y., Liang, G., Egger, G., Friedman, J. M., Chuang, J. C., Coetzee, G. A., et al. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 9(6), 435–443. doi:10.​1016/​j.​ccr.​2006.​04.​020.PubMed
48.
go back to reference Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. [Research Support, Non-U.S. Gov′t Review]. Nature Reviews Molecular Cell Biology, 10(2), 126–139. doi:10.1038/nrm2632.PubMed Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. [Research Support, Non-U.S. Gov′t Review]. Nature Reviews Molecular Cell Biology, 10(2), 126–139. doi:10.​1038/​nrm2632.PubMed
49.
go back to reference Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature Genetics, 38(2), 228–233. doi:10.1038/ng1725.PubMedCentralPubMed Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature Genetics, 38(2), 228–233. doi:10.​1038/​ng1725.PubMedCentralPubMed
50.
go back to reference Wang, H., Wu, J., Meng, X., Ying, X., Zuo, Y., Liu, R., et al. (2011). MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. [Research Support, Non-U.S. Gov′t]. Carcinogenesis, 32(7), 1033–1042. doi:10.1093/carcin/bgr081.PubMed Wang, H., Wu, J., Meng, X., Ying, X., Zuo, Y., Liu, R., et al. (2011). MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. [Research Support, Non-U.S. Gov′t]. Carcinogenesis, 32(7), 1033–1042. doi:10.​1093/​carcin/​bgr081.PubMed
51.
go back to reference Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. [Research Support, N.I.H., Extramural]. Cancer Research, 69(14), 5639–5642. doi:10.1158/0008-5472.CAN-09-0898.PubMedCentralPubMed Reddy, S. D., Pakala, S. B., Ohshiro, K., Rayala, S. K., & Kumar, R. (2009). MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. [Research Support, N.I.H., Extramural]. Cancer Research, 69(14), 5639–5642. doi:10.​1158/​0008-5472.​CAN-09-0898.PubMedCentralPubMed
52.
go back to reference Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 27(3), 807–812. doi:10.3892/or.2011.1574.PubMed Zhou, H., Xu, X., Xun, Q., Yu, D., Ling, J., Guo, F., et al. (2012). microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 27(3), 807–812. doi:10.​3892/​or.​2011.​1574.PubMed
53.
go back to reference Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476–485. doi:10.1159/000354452.PubMed Xia, Y., Chen, Q., Zhong, Z., Xu, C., Wu, C., Liu, B., et al. (2013). Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1. Cellular Physiology and Biochemistry, 32(2), 476–485. doi:10.​1159/​000354452.PubMed
54.
go back to reference Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. [Research Support, Non-U.S. Gov′t]. J Exp Clin Cancer Res, 32, 33. doi:10.1186/1756-9966-32–33.PubMedCentralPubMed Li, Y., Chao, Y., Fang, Y., Wang, J., Wang, M., Zhang, H., et al. (2013). MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b. [Research Support, Non-U.S. Gov′t]. J Exp Clin Cancer Res, 32, 33. doi:10.​1186/​1756-9966-32–33.PubMedCentralPubMed
55.
go back to reference Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 28(1), 218–224. doi:10.3892/or.2012.1770.PubMed Zhu, X., Zhang, X., Wang, H., Song, Q., Zhang, G., Yang, L., et al. (2012). MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells. [Research Support, Non-U.S. Gov′t]. Oncology Reports, 28(1), 218–224. doi:10.​3892/​or.​2012.​1770.PubMed
56.
go back to reference Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 70(4), 1486–1495. doi:10.1158/0008-5472.CAN-09-2792.PubMedCentralPubMed Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Cancer Research, 70(4), 1486–1495. doi:10.​1158/​0008-5472.​CAN-09-2792.PubMedCentralPubMed
57.
go back to reference Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2013). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biol, doi:10.1007/s13277-013-1460-1 Chu, H., Chen, X., Wang, H., Du, Y., Wang, Y., Zang, W., et al. (2013). MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biol, doi:10.​1007/​s13277-013-1460-1
58.
go back to reference Dhar, S., Hicks, C., & Levenson, A. S. (2011). Resveratrol and prostate cancer: promising role for microRNAs. [Research Support, Non-U.S. Gov′t]. Molecular Nutrition & Food Research, 55(8), 1219–1229. doi:10.1002/mnfr.201100141. Dhar, S., Hicks, C., & Levenson, A. S. (2011). Resveratrol and prostate cancer: promising role for microRNAs. [Research Support, Non-U.S. Gov′t]. Molecular Nutrition & Food Research, 55(8), 1219–1229. doi:10.​1002/​mnfr.​201100141.
59.
go back to reference Giri, D., & Ittmann, M. (1999). Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Human Pathology, 30(4), 419–424.PubMed Giri, D., & Ittmann, M. (1999). Inactivation of the PTEN tumor suppressor gene is associated with increased angiogenesis in clinically localized prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Human Pathology, 30(4), 419–424.PubMed
60.
go back to reference Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Genes and Development, 14(4), 391–396.PubMedCentralPubMed Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Genes and Development, 14(4), 391–396.PubMedCentralPubMed
61.
go back to reference Hsieh, A. C., Liu, Y., Edlind, M. P., Ingolia, N. T., Janes, M. R., Sher, A., et al. (2012). The translational landscape of mTOR signalling steers cancer initiation and metastasis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature, 485(7396), 55–61. doi:10.1038/nature10912.PubMedCentralPubMed Hsieh, A. C., Liu, Y., Edlind, M. P., Ingolia, N. T., Janes, M. R., Sher, A., et al. (2012). The translational landscape of mTOR signalling steers cancer initiation and metastasis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Nature, 485(7396), 55–61. doi:10.​1038/​nature10912.PubMedCentralPubMed
62.
go back to reference Li, W., Zhang, J., Liu, X., Xu, R., & Zhang, Y. (2007). Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. [Research Support, Non-U.S. Gov′t]. Cell and Tissue Research, 329(2), 351–362. doi:10.1007/s00441-007-0412-8.PubMed Li, W., Zhang, J., Liu, X., Xu, R., & Zhang, Y. (2007). Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. [Research Support, Non-U.S. Gov′t]. Cell and Tissue Research, 329(2), 351–362. doi:10.​1007/​s00441-007-0412-8.PubMed
63.
go back to reference Li, W., Liu, X. P., Xu, R. J., & Zhang, Y. Q. (2007). Immunolocalization assessment of metastasis-associated protein 1 in human and mouse mature testes and its association with spermatogenesis. [Comparative Study Research Support, Non-U.S. Gov′t]. Asian Journal of Andrology, 9(3), 345–352. doi:10.1111/j.1745-7262.2007.00245.x.PubMed Li, W., Liu, X. P., Xu, R. J., & Zhang, Y. Q. (2007). Immunolocalization assessment of metastasis-associated protein 1 in human and mouse mature testes and its association with spermatogenesis. [Comparative Study Research Support, Non-U.S. Gov′t]. Asian Journal of Andrology, 9(3), 345–352. doi:10.​1111/​j.​1745-7262.​2007.​00245.​x.PubMed
64.
go back to reference Thakur, M. K., & Ghosh, S. (2009). Interaction of estrogen receptor alpha transactivation domain with MTA1 decreases in old mouse brain. [Research Support, Non-U.S. Gov′t]. Journal of Molecular Neuroscience, 37(3), 269–273. doi:10.1007/s12031-008-9131-1.PubMed Thakur, M. K., & Ghosh, S. (2009). Interaction of estrogen receptor alpha transactivation domain with MTA1 decreases in old mouse brain. [Research Support, Non-U.S. Gov′t]. Journal of Molecular Neuroscience, 37(3), 269–273. doi:10.​1007/​s12031-008-9131-1.PubMed
65.
go back to reference Reddy, S. D., Rayala, S. K., Ohshiro, K., Pakala, S. B., Kobori, N., Dash, P., et al. (2011). Multiple coregulatory control of tyrosine hydroxylase gene transcription. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4200–4205. doi:10.1073/pnas.1101193108.PubMedCentralPubMed Reddy, S. D., Rayala, S. K., Ohshiro, K., Pakala, S. B., Kobori, N., Dash, P., et al. (2011). Multiple coregulatory control of tyrosine hydroxylase gene transcription. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4200–4205. doi:10.​1073/​pnas.​1101193108.PubMedCentralPubMed
66.
go back to reference Hung, H., Kohnken, R., & Svaren, J. (2012). The nucleosome remodeling and deacetylase chromatin remodeling (NuRD) complex is required for peripheral nerve myelination. [Comparative Study Research Support, N.I.H., Extramural]. Journal of Neuroscience, 32(5), 1517–1527. doi:10.1523/JNEUROSCI.2895-11.2012.PubMedCentralPubMed Hung, H., Kohnken, R., & Svaren, J. (2012). The nucleosome remodeling and deacetylase chromatin remodeling (NuRD) complex is required for peripheral nerve myelination. [Comparative Study Research Support, N.I.H., Extramural]. Journal of Neuroscience, 32(5), 1517–1527. doi:10.​1523/​JNEUROSCI.​2895-11.​2012.PubMedCentralPubMed
67.
go back to reference Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597. doi:10.1074/jbc.M110.139469.PubMedCentralPubMed Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., Li, D. Q., Peng, S., Rayala, S. K., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597. doi:10.​1074/​jbc.​M110.​139469.PubMedCentralPubMed
68.
go back to reference Li, W., Wu, Z. Q., Zhao, J., Guo, S. J., Li, Z., Feng, X., et al. (2011). Transient protection from heat-stress induced apoptotic stimulation by metastasis-associated protein 1 in pachytene spermatocytes. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 6(10), e26013. doi:10.1371/journal.pone.0026013.PubMedCentralPubMed Li, W., Wu, Z. Q., Zhao, J., Guo, S. J., Li, Z., Feng, X., et al. (2011). Transient protection from heat-stress induced apoptotic stimulation by metastasis-associated protein 1 in pachytene spermatocytes. [Research Support, Non-U.S. Gov′t]. PLoS ONE, 6(10), e26013. doi:10.​1371/​journal.​pone.​0026013.PubMedCentralPubMed
69.
go back to reference Li, W., Zhu, H., Bao, W., Fu, H., Li, Z., Liu, X., et al. (2008). Involvement of metastasis tumor antigen 1 in hepatic regeneration and proliferation. [Research Support, Non-U.S. Gov′t]. Cellular Physiology and Biochemistry, 22(1–4), 315–326. doi:10.1159/000149810.PubMed Li, W., Zhu, H., Bao, W., Fu, H., Li, Z., Liu, X., et al. (2008). Involvement of metastasis tumor antigen 1 in hepatic regeneration and proliferation. [Research Support, Non-U.S. Gov′t]. Cellular Physiology and Biochemistry, 22(1–4), 315–326. doi:10.​1159/​000149810.PubMed
70.
go back to reference Roche, A. E., Bassett, B. J., Samant, S. A., Hong, W., Blobel, G. A., & Svensson, E. C. (2008). The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. [Research Support, N.I.H., Extramural]. Journal of Molecular and Cellular Cardiology, 44(2), 352–360. doi:10.1016/j.yjmcc.2007.10.023.PubMedCentralPubMed Roche, A. E., Bassett, B. J., Samant, S. A., Hong, W., Blobel, G. A., & Svensson, E. C. (2008). The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. [Research Support, N.I.H., Extramural]. Journal of Molecular and Cellular Cardiology, 44(2), 352–360. doi:10.​1016/​j.​yjmcc.​2007.​10.​023.PubMedCentralPubMed
71.
go back to reference Karantanos, T., & Thompson, T. C. (2013). GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer. [Research Support, N.I.H., Extramural]. Cancer Cell, 24(1), 11–13. doi:10.1016/j.ccr.2013.06.007.PubMed Karantanos, T., & Thompson, T. C. (2013). GEMMs shine a light on resistance to androgen deprivation therapy for prostate cancer. [Research Support, N.I.H., Extramural]. Cancer Cell, 24(1), 11–13. doi:10.​1016/​j.​ccr.​2013.​06.​007.PubMed
72.
go back to reference Karantanos, T., Corn, P. G., & Thompson, T. C. (2013). Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. [Research Support, N.I.H., Extramural Review]. Oncogene, 32(49), 5501–5511. doi:10.1038/onc.2013.206.PubMed Karantanos, T., Corn, P. G., & Thompson, T. C. (2013). Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. [Research Support, N.I.H., Extramural Review]. Oncogene, 32(49), 5501–5511. doi:10.​1038/​onc.​2013.​206.PubMed
73.
go back to reference Fu, M., Wang, C., Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., et al. (2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 275(27), 20853–20860. doi:10.1074/jbc.M000660200.PubMed Fu, M., Wang, C., Reutens, A. T., Wang, J., Angeletti, R. H., Siconolfi-Baez, L., et al. (2000). p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 275(27), 20853–20860. doi:10.​1074/​jbc.​M000660200.PubMed
74.
go back to reference Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y. G., et al. (2002). Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. [In Vitro Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 22(10), 3373–3388. Fu, M., Wang, C., Wang, J., Zhang, X., Sakamaki, T., Yeung, Y. G., et al. (2002). Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. [In Vitro Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 22(10), 3373–3388.
75.
go back to reference Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., Kim, O., et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 10(4), 309–319. doi:10.1016/j.ccr.2006.08.021.PubMed Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., Kim, O., et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Cell, 10(4), 309–319. doi:10.​1016/​j.​ccr.​2006.​08.​021.PubMed
76.
go back to reference Dai, B., Chen, H., Guo, S., Yang, X., Linn, D. E., Sun, F., et al. (2010). Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 70(13), 5587–5596. doi:10.1158/0008-5472.CAN-09-4610.PubMedCentralPubMed Dai, B., Chen, H., Guo, S., Yang, X., Linn, D. E., Sun, F., et al. (2010). Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells. [Research Support, N.I.H., Extramural Research Support, U.S. Gov′t, Non-P.H.S.]. Cancer Research, 70(13), 5587–5596. doi:10.​1158/​0008-5472.​CAN-09-4610.PubMedCentralPubMed
77.
go back to reference Mahajan, K., Challa, S., Coppola, D., Lawrence, H., Luo, Y., Gevariya, H., et al. (2010). Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. [Research Support, Non-U.S. Gov′t]. Prostate, 70(12), 1274–1285. doi:10.1002/pros.21163.PubMedCentralPubMed Mahajan, K., Challa, S., Coppola, D., Lawrence, H., Luo, Y., Gevariya, H., et al. (2010). Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. [Research Support, Non-U.S. Gov′t]. Prostate, 70(12), 1274–1285. doi:10.​1002/​pros.​21163.PubMedCentralPubMed
78.
79.
go back to reference Montie, H. L., Pestell, R. G., & Merry, D. E. (2011). SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Neuroscience, 31(48), 17425–17436. doi:10.1523/JNEUROSCI.3958-11.2011.PubMed Montie, H. L., Pestell, R. G., & Merry, D. E. (2011). SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Journal of Neuroscience, 31(48), 17425–17436. doi:10.​1523/​JNEUROSCI.​3958-11.​2011.PubMed
80.
go back to reference Fu, M., Rao, M., Wang, C., Sakamaki, T., Wang, J., Di Vizio, D., et al. (2003). Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. [In Vitro Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 23(23), 8563–8575. Fu, M., Rao, M., Wang, C., Sakamaki, T., Wang, J., Di Vizio, D., et al. (2003). Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. [In Vitro Research Support, U.S. Gov′t, P.H.S.]. Molecular Cell. Biology, 23(23), 8563–8575.
81.
go back to reference Zhang, S., Li, W., Zhu, C., Wang, X., Li, Z., Zhang, J., et al. (2012). Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. [Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 287(48), 40471–40483. doi:10.1074/jbc.M112.383802.PubMedCentralPubMed Zhang, S., Li, W., Zhu, C., Wang, X., Li, Z., Zhang, J., et al. (2012). Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. [Research Support, Non-U.S. Gov′t]. Journal of Biological Chemistry, 287(48), 40471–40483. doi:10.​1074/​jbc.​M112.​383802.PubMedCentralPubMed
83.
go back to reference De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C. G., et al. (2007). Inflammation in prostate carcinogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S. Review]. Nature Reviews Cancer, 7(4), 256–269. doi:10.1038/nrc2090.PubMedCentralPubMed De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C. G., et al. (2007). Inflammation in prostate carcinogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, Non-P.H.S. Review]. Nature Reviews Cancer, 7(4), 256–269. doi:10.​1038/​nrc2090.PubMedCentralPubMed
85.
go back to reference Putzi, M. J., & De Marzo, A. M. (2001). Prostate pathology: histologic and molecular perspectives. [Research Support, U.S. Gov′t, P.H.S. Review]. Hematology/Oncology Clinics of North America, 15(3), 407–421.PubMed Putzi, M. J., & De Marzo, A. M. (2001). Prostate pathology: histologic and molecular perspectives. [Research Support, U.S. Gov′t, P.H.S. Review]. Hematology/Oncology Clinics of North America, 15(3), 407–421.PubMed
86.
go back to reference Bohonowych, J. E., Hance, M. W., Nolan, K. D., Defee, M., Parsons, C. H., & Isaacs, J. S. (2014). Extracellular Hsp90 mediates an NF-kappaB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Prostate, 74(4), 395–407. doi:10.1002/pros.22761.PubMed Bohonowych, J. E., Hance, M. W., Nolan, K. D., Defee, M., Parsons, C. H., & Isaacs, J. S. (2014). Extracellular Hsp90 mediates an NF-kappaB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t]. Prostate, 74(4), 395–407. doi:10.​1002/​pros.​22761.PubMed
87.
go back to reference Fujioka, T., Arakawa, T., Shimoyama, T., Yoshikawa, T., Itoh, M., Asaka, M., et al. (2003). Effects of rebamipide, a gastro-protective drug on the Helicobacter pylori status and inflammation in the gastric mucosa of patients with gastric ulcer: a randomized double-blind placebo-controlled multicentre trial. [Clinical Trial Multicenter Study Randomized Controlled Trial]. Alimentary Pharmacology & Therapeutics, 18(1), 146–152. Fujioka, T., Arakawa, T., Shimoyama, T., Yoshikawa, T., Itoh, M., Asaka, M., et al. (2003). Effects of rebamipide, a gastro-protective drug on the Helicobacter pylori status and inflammation in the gastric mucosa of patients with gastric ulcer: a randomized double-blind placebo-controlled multicentre trial. [Clinical Trial Multicenter Study Randomized Controlled Trial]. Alimentary Pharmacology & Therapeutics, 18(1), 146–152.
88.
go back to reference Saadi-Thiers, K., Huck, O., Simonis, P., Tilly, P., Fabre, J. E., Tenenbaum, H., et al. (2013). Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and Porphyromonas gingivalis infection. Journal of Periodontology, 84(3), 396–406. doi:10.1902/jop.2012.110540.PubMed Saadi-Thiers, K., Huck, O., Simonis, P., Tilly, P., Fabre, J. E., Tenenbaum, H., et al. (2013). Periodontal and systemic responses in various mice models of experimental periodontitis: respective roles of inflammation duration and Porphyromonas gingivalis infection. Journal of Periodontology, 84(3), 396–406. doi:10.​1902/​jop.​2012.​110540.PubMed
89.
go back to reference Senftleben, U., & Karin, M. (2002). The IKK/NF-kappa B pathway. [Review]. Critical Care Medicine, 30(1 Suppl), S18–S26. Senftleben, U., & Karin, M. (2002). The IKK/NF-kappa B pathway. [Review]. Critical Care Medicine, 30(1 Suppl), S18–S26.
90.
go back to reference Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(43), 32787–32792. doi:10.1074/jbc.M110.151340.PubMedCentralPubMed Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 285(43), 32787–32792. doi:10.​1074/​jbc.​M110.​151340.PubMedCentralPubMed
91.
go back to reference Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 286(9), 7132–7138. doi:10.1074/jbc.M110.199273.PubMedCentralPubMed Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 286(9), 7132–7138. doi:10.​1074/​jbc.​M110.​199273.PubMedCentralPubMed
92.
go back to reference Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, R. D., Xia, W., Hung, M. C., Sarin, S. K., et al. (2010). NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. [Research Support, N.I.H., Extramural]. Oncogene, 29(8), 1179–1189. doi:10.1038/onc.2009.404.PubMedCentralPubMed Bui-Nguyen, T. M., Pakala, S. B., Sirigiri, R. D., Xia, W., Hung, M. C., Sarin, S. K., et al. (2010). NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. [Research Support, N.I.H., Extramural]. Oncogene, 29(8), 1179–1189. doi:10.​1038/​onc.​2009.​404.PubMedCentralPubMed
93.
go back to reference Chen, L., Zhang, Q., Chang, W., Du, Y., Zhang, H., & Cao, G. (2012). Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. [Research Support, Non-U.S. Gov′t]. European Journal of Cancer, 48(13), 1977–1987. doi:10.1016/j.ejca.2012.01.015.PubMed Chen, L., Zhang, Q., Chang, W., Du, Y., Zhang, H., & Cao, G. (2012). Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. [Research Support, Non-U.S. Gov′t]. European Journal of Cancer, 48(13), 1977–1987. doi:10.​1016/​j.​ejca.​2012.​01.​015.PubMed
94.
go back to reference Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936. doi:10.1002/hep.22124.PubMed Ryu, S. H., Chung, Y. H., Lee, H., Kim, J. A., Shin, H. D., Min, H. J., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936. doi:10.​1002/​hep.​22124.PubMed
96.
go back to reference Nagakawa, O., Murakami, K., Yamaura, T., Fujiuchi, Y., Murata, J., Fuse, H., et al. (2000). Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. [Research Support, Non-U.S. Gov′t]. Cancer Letters, 155(2), 173–179.PubMed Nagakawa, O., Murakami, K., Yamaura, T., Fujiuchi, Y., Murata, J., Fuse, H., et al. (2000). Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. [Research Support, Non-U.S. Gov′t]. Cancer Letters, 155(2), 173–179.PubMed
97.
go back to reference Sehgal, I., & Thompson, T. C. (1999). Novel regulation of type IV collagenase (matrix metalloproteinase-9 and −2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. [Research Support, U.S. Gov′t, P.H.S.]. Molecular Biology of the Cell, 10(2), 407–416.PubMedCentralPubMed Sehgal, I., & Thompson, T. C. (1999). Novel regulation of type IV collagenase (matrix metalloproteinase-9 and −2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. [Research Support, U.S. Gov′t, P.H.S.]. Molecular Biology of the Cell, 10(2), 407–416.PubMedCentralPubMed
98.
go back to reference Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973. doi:10.1073/pnas.0502330102.PubMedCentralPubMed Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973. doi:10.​1073/​pnas.​0502330102.PubMedCentralPubMed
99.
go back to reference Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Bruning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. [Research Support, Non-U.S. Gov′t]. Cancer Biology and Therapy, 7(9), 1460–1467.PubMed Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Bruning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. [Research Support, Non-U.S. Gov′t]. Cancer Biology and Therapy, 7(9), 1460–1467.PubMed
100.
go back to reference Pakala, S. B., Singh, K., Reddy, S. D., Ohshiro, K., Li, D. Q., Mishra, L., et al. (2011). TGF-beta1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. [Research Support, N.I.H., Extramural]. Oncogene, 30(19), 2230–2241. doi:10.1038/onc.2010.608.PubMedCentralPubMed Pakala, S. B., Singh, K., Reddy, S. D., Ohshiro, K., Li, D. Q., Mishra, L., et al. (2011). TGF-beta1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. [Research Support, N.I.H., Extramural]. Oncogene, 30(19), 2230–2241. doi:10.​1038/​onc.​2010.​608.PubMedCentralPubMed
101.
go back to reference Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. (2013). MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. [Research Support, N.I.H., Extramural]. Cancer Research, 73(12), 3761–3770. doi:10.1158/0008-5472.CAN-12-3998.PubMedCentralPubMed Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. (2013). MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. [Research Support, N.I.H., Extramural]. Cancer Research, 73(12), 3761–3770. doi:10.​1158/​0008-5472.​CAN-12-3998.PubMedCentralPubMed
102.
go back to reference Seda Tuncay Cagatay, I. C., Savas, B., & Banerjee, S. (2013). MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumor Biology, 34, 1189–1204.PubMed Seda Tuncay Cagatay, I. C., Savas, B., & Banerjee, S. (2013). MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumor Biology, 34, 1189–1204.PubMed
103.
go back to reference Wei Zhu, M.-Y. C., Tong, Z.-T., Dong, S.-S., Mai, S.-J., Liao, Y.-J., Bian, X.-W., Marie, C., Lin, H.-F. K., Zeng, Y.-X., Guan, X.-Y., & Xie, D. (2012). Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial to mesenchymal transition. Gut, 61, 562–575.PubMed Wei Zhu, M.-Y. C., Tong, Z.-T., Dong, S.-S., Mai, S.-J., Liao, Y.-J., Bian, X.-W., Marie, C., Lin, H.-F. K., Zeng, Y.-X., Guan, X.-Y., & Xie, D. (2012). Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial to mesenchymal transition. Gut, 61, 562–575.PubMed
104.
go back to reference Yan, D., Avtanski, D., Saxena, N. K., & Sharma, D. (2012). Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(11), 8598–8612. doi:10.1074/jbc.M111.322800.PubMedCentralPubMed Yan, D., Avtanski, D., Saxena, N. K., & Sharma, D. (2012). Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires beta-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 287(11), 8598–8612. doi:10.​1074/​jbc.​M111.​322800.PubMedCentralPubMed
105.
go back to reference Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 339(6219), 58–61. doi:10.1038/339058a0.PubMed Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Nature, 339(6219), 58–61. doi:10.​1038/​339058a0.PubMed
106.
go back to reference Fidler, I. J., & Ellis, L. M. (1994). The implications of angiogenesis for the biology and therapy of cancer metastasis. [Comment Review]. Cell, 79(2), 185–188.PubMed Fidler, I. J., & Ellis, L. M. (1994). The implications of angiogenesis for the biology and therapy of cancer metastasis. [Comment Review]. Cell, 79(2), 185–188.PubMed
107.
go back to reference Brawer, M. K., Bigler, S. A., & Deering, R. E. (1992). Quantitative morphometric analysis of the microcirculation in prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Journal of Cellular Biochemistry Supplement, 16H, 62–64.PubMed Brawer, M. K., Bigler, S. A., & Deering, R. E. (1992). Quantitative morphometric analysis of the microcirculation in prostate carcinoma. [Research Support, U.S. Gov′t, Non-P.H.S.]. Journal of Cellular Biochemistry Supplement, 16H, 62–64.PubMed
108.
go back to reference Bostwick, D. G., Wheeler, T. M., Blute, M., Barrett, D. M., MacLennan, G. T., Sebo, T. J., et al. (1996). Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. [Multicenter Study Research Support, Non-U.S. Gov′t]. Urology, 48(1), 47–57.PubMed Bostwick, D. G., Wheeler, T. M., Blute, M., Barrett, D. M., MacLennan, G. T., Sebo, T. J., et al. (1996). Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. [Multicenter Study Research Support, Non-U.S. Gov′t]. Urology, 48(1), 47–57.PubMed
109.
go back to reference de la Taille, A., Katz, A. E., Bagiella, E., Buttyan, R., Sharir, S., Olsson, C. A., et al. (2000). Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. [Comparative Study Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. American Journal of Clinical Pathology, 113(4), 555–562. doi:10.1309/02W2-KE50-PKEF-G2G4.PubMed de la Taille, A., Katz, A. E., Bagiella, E., Buttyan, R., Sharir, S., Olsson, C. A., et al. (2000). Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. [Comparative Study Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. American Journal of Clinical Pathology, 113(4), 555–562. doi:10.​1309/​02W2-KE50-PKEF-G2G4.PubMed
110.
go back to reference Fidler, I. J. (2001). Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. [Comment Editorial Research Support, U.S. Gov′t, P.H.S.]. Journal of the National Cancer Institute, 93(14), 1040–1041.PubMed Fidler, I. J. (2001). Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. [Comment Editorial Research Support, U.S. Gov′t, P.H.S.]. Journal of the National Cancer Institute, 93(14), 1040–1041.PubMed
111.
go back to reference Nicholson, B., Schaefer, G., & Theodorescu, D. (2001). Angiogenesis in prostate cancer: biology and therapeutic opportunities. [Review]. Cancer and Metastasis Reviews, 20(3–4), 297–319.PubMed Nicholson, B., Schaefer, G., & Theodorescu, D. (2001). Angiogenesis in prostate cancer: biology and therapeutic opportunities. [Review]. Cancer and Metastasis Reviews, 20(3–4), 297–319.PubMed
112.
go back to reference Borgstrom, P., Bourdon, M. A., Hillan, K. J., Sriramarao, P., & Ferrara, N. (1998). Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. [Research Support, U.S. Gov′t, P.H.S.]. Prostate, 35(1), 1–10.PubMed Borgstrom, P., Bourdon, M. A., Hillan, K. J., Sriramarao, P., & Ferrara, N. (1998). Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. [Research Support, U.S. Gov′t, P.H.S.]. Prostate, 35(1), 1–10.PubMed
113.
go back to reference Noordzij, M. A., van der Kwast, T. H., van Steenbrugge, G. J., Hop, W. J., & Schroder, F. H. (1995). The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. [Comparative Study]. International Journal of Cancer, 62(3), 252–258. Noordzij, M. A., van der Kwast, T. H., van Steenbrugge, G. J., Hop, W. J., & Schroder, F. H. (1995). The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow-up study with patients treated by radical prostatectomy. [Comparative Study]. International Journal of Cancer, 62(3), 252–258.
114.
go back to reference Joseph, I. B., & Isaacs, J. T. (1997). Potentiation of the antiangiogenic ability of linomide by androgen ablation involves down-regulation of vascular endothelial growth factor in human androgen-responsive prostatic cancers. [Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 57(6), 1054–1057.PubMed Joseph, I. B., & Isaacs, J. T. (1997). Potentiation of the antiangiogenic ability of linomide by androgen ablation involves down-regulation of vascular endothelial growth factor in human androgen-responsive prostatic cancers. [Research Support, U.S. Gov′t, P.H.S.]. Cancer Research, 57(6), 1054–1057.PubMed
115.
go back to reference Li, J., Perrella, M. A., Tsai, J. C., Yet, S. F., Hsieh, C. M., Yoshizumi, M., et al. (1995). Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 270(1), 308–312.PubMed Li, J., Perrella, M. A., Tsai, J. C., Yet, S. F., Hsieh, C. M., Yoshizumi, M., et al. (1995). Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. [Research Support, Non-U.S. Gov′t Research Support, U.S. Gov′t, P.H.S.]. Journal of Biological Chemistry, 270(1), 308–312.PubMed
116.
go back to reference Du, B., Yang, Z. Y., Zhong, X. Y., Fang, M., Yan, Y. R., Qi, G. L., et al. (2011). Metastasis-associated protein 1 induces VEGF-C and facilitates lymphangiogenesis in colorectal cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Gastroenterology, 17(9), 1219–1226. doi:10.3748/wjg.v17.i9.1219.PubMedCentralPubMed Du, B., Yang, Z. Y., Zhong, X. Y., Fang, M., Yan, Y. R., Qi, G. L., et al. (2011). Metastasis-associated protein 1 induces VEGF-C and facilitates lymphangiogenesis in colorectal cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Gastroenterology, 17(9), 1219–1226. doi:10.​3748/​wjg.​v17.​i9.​1219.PubMedCentralPubMed
117.
go back to reference Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Surgery, 37(4), 792–798. doi:10.1007/s00268-012-1898-0.PubMed Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. [Research Support, Non-U.S. Gov′t]. World Journal of Surgery, 37(4), 792–798. doi:10.​1007/​s00268-012-1898-0.PubMed
118.
go back to reference Powell, I. J., & Meyskens, F. L., Jr. (2001). African American men and hereditary/familial prostate cancer: Intermediate-risk populations for chemoprevention trials. [Comparative Study]. Urology, 57(4 Suppl 1), 178–181.PubMed Powell, I. J., & Meyskens, F. L., Jr. (2001). African American men and hereditary/familial prostate cancer: Intermediate-risk populations for chemoprevention trials. [Comparative Study]. Urology, 57(4 Suppl 1), 178–181.PubMed
Metadata
Title
MTA family of proteins in prostate cancer: biology, significance, and therapeutic opportunities
Authors
Anait S. Levenson
Avinash Kumar
Xu Zhang
Publication date
01-12-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9519-z

Other articles of this Issue 4/2014

Cancer and Metastasis Reviews 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine