Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2014

Open Access 01-12-2014

Towards an understanding of the structure and function of MTA1

Authors: Christopher J. Millard, Louise Fairall, John W. R. Schwabe

Published in: Cancer and Metastasis Reviews | Issue 4/2014

Login to get access

Abstract

Gene expression is controlled through the recruitment of large coregulator complexes to specific gene loci to regulate chromatin structure by modifying epigenetic marks on DNA and histones. Metastasis-associated protein 1 (MTA1) is an essential component of the nucleosome remodelling and deacetylase (NuRD) complex that acts as a scaffold protein to assemble enzymatic activity and nucleosome targeting proteins. MTA1 consists of four characterised domains, a number of interaction motifs, and regions that are predicted to be intrinsically disordered. The ELM2-SANT domain is one of the best-characterised regions of MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the presence of inositol phosphate. MTA1 is highly upregulated in several types of aggressive tumours and is therefore a possible target for cancer therapy. In this review, we summarise the structure and function of the four domains of MTA1 and discuss the possible functions of less well-characterised regions of the protein.
Literature
1.
go back to reference Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Côté, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMedCrossRef Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Côté, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMedCrossRef
2.
go back to reference Zhang, Y., Ng, H.-H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMedCrossRef Zhang, Y., Ng, H.-H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMedCrossRef
3.
go back to reference Humphrey, G. W., Wang, Y., Russanova, V. R., Hirai, T., Qin, J., Nakatani, Y., & Howard, B. H. (2001). Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. Journal of Biological Chemistry, 276(9), 6817–6824. doi:10.1074/jbc.M007372200.PubMedCrossRef Humphrey, G. W., Wang, Y., Russanova, V. R., Hirai, T., Qin, J., Nakatani, Y., & Howard, B. H. (2001). Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. Journal of Biological Chemistry, 276(9), 6817–6824. doi:10.​1074/​jbc.​M007372200.PubMedCrossRef
4.
go back to reference Wen, Y. D., Perissi, V., Staszewski, L. M., Yang, W. M., Krones, A., Glass, C. K., et al. (2000). The histone deacetylase-3 complex contains nuclear receptor corepressors. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7202–7207.PubMedCentralPubMedCrossRef Wen, Y. D., Perissi, V., Staszewski, L. M., Yang, W. M., Krones, A., Glass, C. K., et al. (2000). The histone deacetylase-3 complex contains nuclear receptor corepressors. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7202–7207.PubMedCentralPubMedCrossRef
5.
go back to reference Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., & Eisenman, R. N. (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 89(3), 349–356.PubMedCrossRef Laherty, C. D., Yang, W. M., Sun, J. M., Davie, J. R., Seto, E., & Eisenman, R. N. (1997). Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 89(3), 349–356.PubMedCrossRef
6.
go back to reference Bantscheff, M., Hopf, C., Savitski, M. M., Dittmann, A., Grandi, P., Michon, A.-M., et al. (2011). Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotechnology, 29(3), 255–265. doi:10.1038/nbt.1759.PubMedCrossRef Bantscheff, M., Hopf, C., Savitski, M. M., Dittmann, A., Grandi, P., Michon, A.-M., et al. (2011). Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotechnology, 29(3), 255–265. doi:10.​1038/​nbt.​1759.PubMedCrossRef
7.
go back to reference Guenther, M. G., Lane, W. S., Fischle, W., Verdin, E., Lazar, M. A., & Shiekhattar, R. (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes and Development, 14(9), 1048–1057.PubMedCentralPubMed Guenther, M. G., Lane, W. S., Fischle, W., Verdin, E., Lazar, M. A., & Shiekhattar, R. (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes and Development, 14(9), 1048–1057.PubMedCentralPubMed
11.
go back to reference Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed
12.
go back to reference Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227. doi:10.1007/s10585-008-9233-8.PubMedCrossRef Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227. doi:10.​1007/​s10585-008-9233-8.PubMedCrossRef
14.
go back to reference Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research an Official Journal of the American Association for Cancer Research, 12(5), 1479–1486. doi:10.1158/1078-0432.CCR-05-1519.PubMedCrossRef Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research an Official Journal of the American Association for Cancer Research, 12(5), 1479–1486. doi:10.​1158/​1078-0432.​CCR-05-1519.PubMedCrossRef
15.
18.
go back to reference Wade, P. A., Jones, P. L., Vermaak, D., & Wolffe, A. P. (1998). A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Current Biology, 8(14), 843–846.PubMedCrossRef Wade, P. A., Jones, P. L., Vermaak, D., & Wolffe, A. P. (1998). A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Current Biology, 8(14), 843–846.PubMedCrossRef
23.
go back to reference Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S., & Reinberg, D. (1998). The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell, 95(2), 279–289.PubMedCrossRef Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S., & Reinberg, D. (1998). The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell, 95(2), 279–289.PubMedCrossRef
24.
go back to reference Toh, Y., Kuninaka, S., Endo, K., Oshiro, T., Ikeda, Y., Nakashima, H., et al. (2000). Molecular analysis of a candidate metastasis-associated gene, MTA1: possible interaction with histone deacetylase 1. Journal of Experimental and Clinical Cancer Research, 19(1), 105–111.PubMed Toh, Y., Kuninaka, S., Endo, K., Oshiro, T., Ikeda, Y., Nakashima, H., et al. (2000). Molecular analysis of a candidate metastasis-associated gene, MTA1: possible interaction with histone deacetylase 1. Journal of Experimental and Clinical Cancer Research, 19(1), 105–111.PubMed
25.
28.
go back to reference Yaguchi, M., Wada, Y., Toh, Y., Iguchi, H., Kono, A., Matsusue, K., & Takiguchi, S. (2005). Identification and characterization of the variants of metastasis-associated protein 1 generated following alternative splicing. Biochimica et Biophysica Acta, 1732(1–3), 8–14. doi:10.1016/j.bbaexp.2005.12.001.PubMedCrossRef Yaguchi, M., Wada, Y., Toh, Y., Iguchi, H., Kono, A., Matsusue, K., & Takiguchi, S. (2005). Identification and characterization of the variants of metastasis-associated protein 1 generated following alternative splicing. Biochimica et Biophysica Acta, 1732(1–3), 8–14. doi:10.​1016/​j.​bbaexp.​2005.​12.​001.PubMedCrossRef
29.
go back to reference Kumar, R., Wang, R.-A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657. doi:10.1038/nature00889.PubMedCrossRef Kumar, R., Wang, R.-A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657. doi:10.​1038/​nature00889.PubMedCrossRef
30.
go back to reference Kleene, R., Zdzieblo, J., Wege, K., & Kern, H. F. (1999). A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat. Journal of Cell Science, 112(Pt 15), 2539–2548.PubMed Kleene, R., Zdzieblo, J., Wege, K., & Kern, H. F. (1999). A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat. Journal of Cell Science, 112(Pt 15), 2539–2548.PubMed
31.
go back to reference Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cellular Biochemistry, 79(2), 202–212.PubMedCrossRef Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cellular Biochemistry, 79(2), 202–212.PubMedCrossRef
32.
go back to reference Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development, 126(11), 2483–2494.PubMed Solari, F., Bateman, A., & Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development, 126(11), 2483–2494.PubMed
33.
go back to reference Nicolson, G. L., Nawa, A., Toh, Y., Taniguchi, S., Nishimori, K., & Moustafa, A. (2003). Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clinical and Experimental Metastasis, 20(1), 19–24.PubMedCrossRef Nicolson, G. L., Nawa, A., Toh, Y., Taniguchi, S., Nishimori, K., & Moustafa, A. (2003). Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clinical and Experimental Metastasis, 20(1), 19–24.PubMedCrossRef
34.
35.
go back to reference Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21(3), 87–88.PubMed Aasland, R., Stewart, A. F., & Gibson, T. (1996). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in Biochemical Sciences, 21(3), 87–88.PubMed
36.
go back to reference Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai, H., et al. (1994). Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 79(4), 639–648.PubMedCrossRef Ogata, K., Morikawa, S., Nakamura, H., Sekikawa, A., Inoue, T., Kanai, H., et al. (1994). Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 79(4), 639–648.PubMedCrossRef
37.
go back to reference Guenther, M. G., Barak, O., & Lazar, M. A. (2001). The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Molecular and Cellular Biology, 21(18), 6091–6101.PubMedCentralPubMedCrossRef Guenther, M. G., Barak, O., & Lazar, M. A. (2001). The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Molecular and Cellular Biology, 21(18), 6091–6101.PubMedCentralPubMedCrossRef
39.
40.
go back to reference Zhang, Y., Sun, Z. W., Iratni, R., Erdjument-Bromage, H., Tempst, P., Hampsey, M., & Reinberg, D. (1998). SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Molecular Cell, 1(7), 1021–1031.PubMedCrossRef Zhang, Y., Sun, Z. W., Iratni, R., Erdjument-Bromage, H., Tempst, P., Hampsey, M., & Reinberg, D. (1998). SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Molecular Cell, 1(7), 1021–1031.PubMedCrossRef
41.
go back to reference Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes and Development, 16(22), 2893–2905. doi:10.1101/gad.1035902.PubMedCentralPubMedCrossRef Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes and Development, 16(22), 2893–2905. doi:10.​1101/​gad.​1035902.PubMedCentralPubMedCrossRef
44.
go back to reference Lejon, S., Thong, S. Y., Murthy, A., AlQarni, S., Murzina, N. V., Blobel, G. A., et al. (2011). Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48 FOG-1 complex. Journal of Biological Chemistry, 286(2), 1196–1203. doi:10.1074/jbc.M110.195842.PubMedCentralPubMedCrossRef Lejon, S., Thong, S. Y., Murthy, A., AlQarni, S., Murzina, N. V., Blobel, G. A., et al. (2011). Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48 FOG-1 complex. Journal of Biological Chemistry, 286(2), 1196–1203. doi:10.​1074/​jbc.​M110.​195842.PubMedCentralPubMedCrossRef
45.
go back to reference Roche, A. E., Bassett, B. J., Samant, S. A., Hong, W., Blobel, G. A., & Svensson, E. C. (2008). The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. Journal of Molecular and Cellular Cardiology, 44(2), 352–360. doi:10.1016/j.yjmcc.2007.10.023.PubMedCentralPubMedCrossRef Roche, A. E., Bassett, B. J., Samant, S. A., Hong, W., Blobel, G. A., & Svensson, E. C. (2008). The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. Journal of Molecular and Cellular Cardiology, 44(2), 352–360. doi:10.​1016/​j.​yjmcc.​2007.​10.​023.PubMedCentralPubMedCrossRef
47.
go back to reference Callebaut, I., Courvalin, J. C., & Mornon, J. P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446(1), 189–193.PubMedCrossRef Callebaut, I., Courvalin, J. C., & Mornon, J. P. (1999). The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Letters, 446(1), 189–193.PubMedCrossRef
48.
go back to reference Nicolas, R. H., & Goodwin, G. H. (1996). Molecular cloning of polybromo, a nuclear protein containing multiple domains including five bromodomains, a truncated HMG-box, and two repeats of a novel domain. Gene, 175(1–2), 233–240.PubMedCrossRef Nicolas, R. H., & Goodwin, G. H. (1996). Molecular cloning of polybromo, a nuclear protein containing multiple domains including five bromodomains, a truncated HMG-box, and two repeats of a novel domain. Gene, 175(1–2), 233–240.PubMedCrossRef
49.
go back to reference Oliver, A. W., Jones, S. A., Roe, S. M., Matthews, S., Goodwin, G. H., & Pearl, L. H. (2005). Crystal structure of the proximal BAH domain of the polybromo protein. Biochemical Journal, 389(Pt 3), 657–664. doi:10.1042/BJ20050310.PubMedCentralPubMed Oliver, A. W., Jones, S. A., Roe, S. M., Matthews, S., Goodwin, G. H., & Pearl, L. H. (2005). Crystal structure of the proximal BAH domain of the polybromo protein. Biochemical Journal, 389(Pt 3), 657–664. doi:10.​1042/​BJ20050310.PubMedCentralPubMed
52.
go back to reference Wang, F., Li, G., Altaf, M., Lu, C., Currie, M. A., Johnson, A., & Moazed, D. (2013). Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 8495–8500. doi:10.1073/pnas.1300126110.PubMedCentralPubMedCrossRef Wang, F., Li, G., Altaf, M., Lu, C., Currie, M. A., Johnson, A., & Moazed, D. (2013). Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 8495–8500. doi:10.​1073/​pnas.​1300126110.PubMedCentralPubMedCrossRef
53.
go back to reference Arnaudo, N., Fernández, I. S., McLaughlin, S. H., Peak-Chew, S. Y., Rhodes, D., & Martino, F. (2013). The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle. Nature Structural & Molecular Biology, 20(9), 1119–1121. doi:10.1038/nsmb.2641.CrossRef Arnaudo, N., Fernández, I. S., McLaughlin, S. H., Peak-Chew, S. Y., Rhodes, D., & Martino, F. (2013). The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle. Nature Structural & Molecular Biology, 20(9), 1119–1121. doi:10.​1038/​nsmb.​2641.CrossRef
54.
go back to reference Yang, D., Fang, Q., Wang, M., Ren, R., Wang, H., He, M., et al. (2013). Nα-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain. Nature Structural and Molecular Biology, 20(9), 1116–1118. doi:10.1038/nsmb.2637.PubMedCrossRef Yang, D., Fang, Q., Wang, M., Ren, R., Wang, H., He, M., et al. (2013). Nα-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain. Nature Structural and Molecular Biology, 20(9), 1116–1118. doi:10.​1038/​nsmb.​2637.PubMedCrossRef
56.
58.
go back to reference Omichinski, J. G., Clore, G. M., Schaad, O., Felsenfeld, G., Trainor, C., Appella, E., et al. (1993). NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science, 261(5120), 438–446.PubMedCrossRef Omichinski, J. G., Clore, G. M., Schaad, O., Felsenfeld, G., Trainor, C., Appella, E., et al. (1993). NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science, 261(5120), 438–446.PubMedCrossRef
59.
go back to reference Ren, R., Mayer, B. J., Cicchetti, P., & Baltimore, D. (1993). Identification of a ten-amino acid proline-rich SH3 binding site. Science, 259(5098), 1157–1161.PubMedCrossRef Ren, R., Mayer, B. J., Cicchetti, P., & Baltimore, D. (1993). Identification of a ten-amino acid proline-rich SH3 binding site. Science, 259(5098), 1157–1161.PubMedCrossRef
60.
go back to reference Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W., & Schreiber, S. L. (1994). Structural basis for the binding of proline-rich peptides to SH3 domains. Cell, 76(5), 933–945.PubMedCrossRef Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W., & Schreiber, S. L. (1994). Structural basis for the binding of proline-rich peptides to SH3 domains. Cell, 76(5), 933–945.PubMedCrossRef
61.
go back to reference Rigbolt, K. T. G., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., et al. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signaling, 4(164), rs3. doi:10.1126/scisignal.2001570.PubMedCrossRef Rigbolt, K. T. G., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., et al. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signaling, 4(164), rs3. doi:10.​1126/​scisignal.​2001570.PubMedCrossRef
62.
go back to reference Mishra, S. K., Yang, Z., Mazumdar, A., Talukder, A. H., Larose, L., & Kumar, R. (2004). Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene, 23(25), 4422–4429. doi:10.1038/sj.onc.1207569.PubMedCrossRef Mishra, S. K., Yang, Z., Mazumdar, A., Talukder, A. H., Larose, L., & Kumar, R. (2004). Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene, 23(25), 4422–4429. doi:10.​1038/​sj.​onc.​1207569.PubMedCrossRef
63.
go back to reference Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.PubMedCrossRef Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.PubMedCrossRef
64.
go back to reference Zhang, J., Kalkum, M., Chait, B. T., & Roeder, R. G. (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Molecular Cell, 9(3), 611–623.PubMedCrossRef Zhang, J., Kalkum, M., Chait, B. T., & Roeder, R. G. (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Molecular Cell, 9(3), 611–623.PubMedCrossRef
65.
go back to reference McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16(4), 404–405.PubMedCrossRef McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16(4), 404–405.PubMedCrossRef
Metadata
Title
Towards an understanding of the structure and function of MTA1
Authors
Christopher J. Millard
Louise Fairall
John W. R. Schwabe
Publication date
01-12-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9513-5

Other articles of this Issue 4/2014

Cancer and Metastasis Reviews 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine