Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2014

01-12-2014

Identification and characterization of metastasis-associated gene/protein 1 (MTA1)

Authors: Yasushi Toh, Garth L. Nicolson

Published in: Cancer and Metastasis Reviews | Issue 4/2014

Login to get access

Abstract

Metastasis is a complex series of sequential events involving several gene products and the regulated expression of several tumor cell genes. Using rat mammary adenocarcinoma cell lines of differing metastatic potentials and a differential complementary DNA (cDNA) hybridization method, our laboratory embarked in 1992 on a project to identify candidate metastasis-associated genes. Among the genes that were found to be abundantly overexpressed in highly metastatic rat cell lines compared to poorly metastatic cell lines, we identified a completely novel gene without any homologous or related genes in the database in 1994. The full-length cDNA of this gene was cloned, sequenced, and named mta1 (metastasis-associated gene 1), and eventually, its human cDNA counterpart, MTA1, was also cloned and sequenced by our group. MTA1 has now been identified as one of the members of a gene family (MTA gene family). The products of the MTA genes, the MTA proteins, are transcriptional co-regulators that function in histone deacetylation and nucleosome remodeling. In this review, we will briefly discuss the researches for the identification and characterization of the mta1 gene, its human counterpart MTA1, and their protein products.
Literature
1.
go back to reference Liotta, L. A. (1986). Tumor invasion and metastases—role of the extracellular matrix: Rhoads memorial award lecture. Cancer Research, 46(1), 1–7.PubMed Liotta, L. A. (1986). Tumor invasion and metastases—role of the extracellular matrix: Rhoads memorial award lecture. Cancer Research, 46(1), 1–7.PubMed
2.
go back to reference Nicolson, G. L. (1988). Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et Biophysica Acta, 948(2), 175–224.PubMed Nicolson, G. L. (1988). Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et Biophysica Acta, 948(2), 175–224.PubMed
3.
go back to reference Chambers, A. F., & Tuck, A. B. (1993). Ras-responsive genes and tumor metastasis. Critical Review of Oncogenesis, 4(2), 95–114. Chambers, A. F., & Tuck, A. B. (1993). Ras-responsive genes and tumor metastasis. Critical Review of Oncogenesis, 4(2), 95–114.
4.
go back to reference Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed
5.
go back to reference Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cell Biochemistry, 79(2), 202–212.CrossRef Nawa, A., Nishimori, K., Lin, P., Maki, Y., Moue, K., Sawada, H., et al. (2000). Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. Journal of Cell Biochemistry, 79(2), 202–212.CrossRef
6.
go back to reference Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.CrossRef Toh, Y., Oki, E., Oda, S., Tokunaga, E., Ohno, S., Maehara, Y., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.CrossRef
7.
go back to reference Toh, Y., Kuwano, H., Mori, M., Nicolson, G. L., & Sugimachi, K. (1999). Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. British Journal of Cancer, 79(11–12), 1723–1726.PubMedCentralPubMedCrossRef Toh, Y., Kuwano, H., Mori, M., Nicolson, G. L., & Sugimachi, K. (1999). Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. British Journal of Cancer, 79(11–12), 1723–1726.PubMedCentralPubMedCrossRef
8.
go back to reference Neri, A., Welch, D., Kawaguchi, T., & Nicolson, G. L. (1982). Development and biologic properties of malignant cell sublines and clones of a spontaneously metastasizing rat mammary adenocarcinoma. Journal of National Cancer Institute, 68(3), 507–517. Neri, A., Welch, D., Kawaguchi, T., & Nicolson, G. L. (1982). Development and biologic properties of malignant cell sublines and clones of a spontaneously metastasizing rat mammary adenocarcinoma. Journal of National Cancer Institute, 68(3), 507–517.
9.
go back to reference Nicolson, G. L., Gallick, G. E., Spohn, W. H., Lembo, T. M., & Tainsky, M. A. (1992). Transfection of activated c-H-rasEJ/psv2neo or psv2neo genes into rat mammary cells: rapid stimulation of clonal diversification of spontaneous metastatic and cell-surface properties. Oncogene, 7(6), 1127–1135.PubMed Nicolson, G. L., Gallick, G. E., Spohn, W. H., Lembo, T. M., & Tainsky, M. A. (1992). Transfection of activated c-H-rasEJ/psv2neo or psv2neo genes into rat mammary cells: rapid stimulation of clonal diversification of spontaneous metastatic and cell-surface properties. Oncogene, 7(6), 1127–1135.PubMed
10.
go back to reference Pencil, S. D., Toh, Y., & Nicolson, G. L. (1993). Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma. Breast Cancer Research and Treatment, 25(2), 165–174.PubMedCrossRef Pencil, S. D., Toh, Y., & Nicolson, G. L. (1993). Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma. Breast Cancer Research and Treatment, 25(2), 165–174.PubMedCrossRef
11.
go back to reference Taniguchi, S., Miyamoto, S., Sadano, H., & Kobayashi, H. (1991). Rat elongation factor 1 alpha: sequence of cDNA from a highly metastatic fos-transferred cell line. Nucleic Acids Research, 19(24), 6949.PubMedCentralPubMedCrossRef Taniguchi, S., Miyamoto, S., Sadano, H., & Kobayashi, H. (1991). Rat elongation factor 1 alpha: sequence of cDNA from a highly metastatic fos-transferred cell line. Nucleic Acids Research, 19(24), 6949.PubMedCentralPubMedCrossRef
12.
go back to reference Thompson, E. W., Brunner, N., Torri, J., Johnson, M. D., Boulay, V., Wright, A., et al. (1993). The invasive and metastatic properties of hormone-independent but hormone-responsive variants of MCF-7 human breast cancer cells. Clinical and Experimental Metastasis, 11(1), 15–26.PubMedCrossRef Thompson, E. W., Brunner, N., Torri, J., Johnson, M. D., Boulay, V., Wright, A., et al. (1993). The invasive and metastatic properties of hormone-independent but hormone-responsive variants of MCF-7 human breast cancer cells. Clinical and Experimental Metastasis, 11(1), 15–26.PubMedCrossRef
13.
go back to reference Brunner, N., Frandsen, T. L., Holst-Hansen, C., Bei, M., Thompson, E. W., Wakeling, A. E., et al. (1993). MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Research, 53(14), 3229–3232.PubMed Brunner, N., Frandsen, T. L., Holst-Hansen, C., Bei, M., Thompson, E. W., Wakeling, A. E., et al. (1993). MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780. Cancer Research, 53(14), 3229–3232.PubMed
14.
go back to reference Zhang, R. D., Fidler, I. J., & Price, J. E. (1991). Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion and Metastasis, 11(4), 204–215.PubMed Zhang, R. D., Fidler, I. J., & Price, J. E. (1991). Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion and Metastasis, 11(4), 204–215.PubMed
15.
go back to reference Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.PubMedCrossRef Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.PubMedCrossRef
16.
go back to reference Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, 1–8.CrossRef Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, 1–8.CrossRef
17.
go back to reference Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.PubMedCrossRef Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.PubMedCrossRef
18.
go back to reference Toh, Y., & Nicolson, G. L. (2011). MTA1 of the MTA (metastasis-associated) gene family and its encoded proteins: molecular and regulatory functions and its role in human cancer progression. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 15(3), 303–315. Toh, Y., & Nicolson, G. L. (2011). MTA1 of the MTA (metastasis-associated) gene family and its encoded proteins: molecular and regulatory functions and its role in human cancer progression. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 15(3), 303–315.
19.
go back to reference Toh, Y., & Nicolson, G. L. (2013). Signaling pathways of MTA family proteins as regulators of cancer progression and metastasis. In R. R. Resende & H. Ulrich (Eds.), Trends in stem cell proliferation and cancer research (pp. 251–275). Dordrecht: Springer.CrossRef Toh, Y., & Nicolson, G. L. (2013). Signaling pathways of MTA family proteins as regulators of cancer progression and metastasis. In R. R. Resende & H. Ulrich (Eds.), Trends in stem cell proliferation and cancer research (pp. 251–275). Dordrecht: Springer.CrossRef
20.
go back to reference Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125.PubMedCrossRef Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125.PubMedCrossRef
21.
go back to reference Millard, C. J., Watson, P. J., Celardo, I., Gordiyenko, Y., Cowley, S. M., Robinson, C. V., et al. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Molecular Cell, 51(1), 57–67.PubMedCentralPubMedCrossRef Millard, C. J., Watson, P. J., Celardo, I., Gordiyenko, Y., Cowley, S. M., Robinson, C. V., et al. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Molecular Cell, 51(1), 57–67.PubMedCentralPubMedCrossRef
22.
go back to reference Alqarni, S. S., Murthy, A., Zhang, W., Przewloka, M. R., Silva, A. P., Watson, A. A., et al. (2014). Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex. Journal of Biological Chemistry, 289(32), 21844–21855.PubMedCentralPubMedCrossRef Alqarni, S. S., Murthy, A., Zhang, W., Przewloka, M. R., Silva, A. P., Watson, A. A., et al. (2014). Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex. Journal of Biological Chemistry, 289(32), 21844–21855.PubMedCentralPubMedCrossRef
23.
go back to reference Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.PubMedCrossRef Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.PubMedCrossRef
24.
go back to reference Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., & Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 395(6705), 917–921.PubMedCrossRef Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., & Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature, 395(6705), 917–921.PubMedCrossRef
25.
go back to reference Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NuRD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMedCrossRef Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NuRD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMedCrossRef
26.
go back to reference Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMedCrossRef Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMedCrossRef
27.
go back to reference Wade, P. A., Gegonne, A., Jones, P. L., Ballesta, R. E., Aubry, F., & Wolffe, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23(1), 62–66.PubMedCrossRef Wade, P. A., Gegonne, A., Jones, P. L., Ballesta, R. E., Aubry, F., & Wolffe, A. P. (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genetics, 23(1), 62–66.PubMedCrossRef
28.
go back to reference Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMedCrossRef Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMedCrossRef
Metadata
Title
Identification and characterization of metastasis-associated gene/protein 1 (MTA1)
Authors
Yasushi Toh
Garth L. Nicolson
Publication date
01-12-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9510-8

Other articles of this Issue 4/2014

Cancer and Metastasis Reviews 4/2014 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine