Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2013

01-12-2013 | NON-THEMATIC REVIEW

Stromal expression of SPARC in pancreatic adenocarcinoma

Authors: Cindy Neuzillet, Annemilaï Tijeras-Raballand, Jérôme Cros, Sandrine Faivre, Pascal Hammel, Eric Raymond

Published in: Cancer and Metastasis Reviews | Issue 3-4/2013

Login to get access

Abstract

Pancreatic ductal adenocarcinoma (PDAC) stands as the poorest prognostic tumor of the digestive tract, with a 5-year survival rate of less than 5 %. Therapeutic options for unresectable PDAC are extremely limited and there is a pressing need for expanded therapeutic approaches to improve current options available with gemcitabine-based regimens. With PDAC displaying one of the most prominent desmoplastic stromal reactions of all carcinomas, recent research has focused on the microenvironment surrounding PDAC cells. Secreted protein acid and rich in cysteine (SPARC), which is overexpressed in PDAC, may display tumor suppressor functions in several cancers (e.g., in colorectal, ovarian, prostate cancers, and acute myelogenous leukemia) but also appears to be overexpressed in other tumor types (e.g., breast cancer, melanoma, and glioblastoma). The apparent contradictory functions of SPARC may yield inhibition of angiogenesis via inhibition of vascular endothelial growth factor, while promoting epithelial-to-mesenchymal transition and invasion through matrix metalloprotease expression. This feature is of particular interest in PDAC where SPARC overexpression in the stroma stands along with inhibition of angiogenesis and promotion of cancer cell invasion and metastasis. Several therapeutic strategies to deplete stromal tissue have been developed. In this review, we focused on key preclinical and clinical data describing the role of SPARC in PDAC biology, the properties, and mechanisms of delivery of drugs that interact with SPARC and discuss the proof-of-concept clinical trials using nab-paclitaxel.
Literature
1.
2.
go back to reference Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 127(12), 2893–2917. doi:10.1002/ijc.25516. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 127(12), 2893–2917. doi:10.​1002/​ijc.​25516.
5.
go back to reference Burris, H. A., 3rd, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15(6), 2403–2413.PubMed Burris, H. A., 3rd, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15(6), 2403–2413.PubMed
6.
go back to reference Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25(15), 1960–1966. doi:10.1200/JCO.2006.07.9525.PubMed Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25(15), 1960–1966. doi:10.​1200/​JCO.​2006.​07.​9525.PubMed
7.
go back to reference Di Marco, M., Di Cicilia, R., Macchini, M., Nobili, E., Vecchiarelli, S., Brandi, G., et al. (2010). Metastatic pancreatic cancer: is gemcitabine still the best standard treatment? (Review). Oncology Reports, 23(5), 1183–1192.PubMed Di Marco, M., Di Cicilia, R., Macchini, M., Nobili, E., Vecchiarelli, S., Brandi, G., et al. (2010). Metastatic pancreatic cancer: is gemcitabine still the best standard treatment? (Review). Oncology Reports, 23(5), 1183–1192.PubMed
8.
go back to reference Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine, 364(19), 1817–1825. doi:10.1056/NEJMoa1011923.PubMed Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine, 364(19), 1817–1825. doi:10.​1056/​NEJMoa1011923.PubMed
9.
go back to reference Duner, S., Lopatko Lindman, J., Ansari, D., Gundewar, C., & Andersson, R. (2010). Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology, 10(6), 673–681. doi:10.1159/000320711.PubMed Duner, S., Lopatko Lindman, J., Ansari, D., Gundewar, C., & Andersson, R. (2010). Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology, 10(6), 673–681. doi:10.​1159/​000320711.PubMed
11.
go back to reference Von Hoff, D. D., Ervin, T. J., Arena, F. P., Chiorean, E. G., Infante, J. R., Moore, M. J., et al. (2012). Randomized phase III study of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic adenocarcinoma of the pancreas (MPACT). Journal of Clinical Oncology, 30(suppl 34), abstr LBA148. Von Hoff, D. D., Ervin, T. J., Arena, F. P., Chiorean, E. G., Infante, J. R., Moore, M. J., et al. (2012). Randomized phase III study of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic adenocarcinoma of the pancreas (MPACT). Journal of Clinical Oncology, 30(suppl 34), abstr LBA148.
12.
go back to reference Chiodoni, C., Colombo, M. P., & Sangaletti, S. (2010). Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer and Metastasis Reviews, 29(2), 295–307. doi:10.1007/s10555-010-9221-8.PubMed Chiodoni, C., Colombo, M. P., & Sangaletti, S. (2010). Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer and Metastasis Reviews, 29(2), 295–307. doi:10.​1007/​s10555-010-9221-8.PubMed
14.
go back to reference Bradshaw, A. D., & Sage, E. H. (2001). SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. The Journal of Clinical Investigation, 107(9), 1049–1054. doi:10.1172/JCI12939.PubMed Bradshaw, A. D., & Sage, E. H. (2001). SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. The Journal of Clinical Investigation, 107(9), 1049–1054. doi:10.​1172/​JCI12939.PubMed
16.
go back to reference Swaroop, A., Hogan, B. L., & Francke, U. (1988). Molecular analysis of the cDNA for human SPARC/osteonectin/BM-40: sequence, expression, and localization of the gene to chromosome 5q31-q33. Genomics, 2(1), 37–47.PubMed Swaroop, A., Hogan, B. L., & Francke, U. (1988). Molecular analysis of the cDNA for human SPARC/osteonectin/BM-40: sequence, expression, and localization of the gene to chromosome 5q31-q33. Genomics, 2(1), 37–47.PubMed
18.
go back to reference Kaufmann, B., Muller, S., Hanisch, F. G., Hartmann, U., Paulsson, M., Maurer, P., et al. (2004). Structural variability of BM-40/SPARC/osteonectin glycosylation: implications for collagen affinity. Glycobiology, 14(7), 609–619. doi:10.1093/glycob/cwh063 cwh063.PubMed Kaufmann, B., Muller, S., Hanisch, F. G., Hartmann, U., Paulsson, M., Maurer, P., et al. (2004). Structural variability of BM-40/SPARC/osteonectin glycosylation: implications for collagen affinity. Glycobiology, 14(7), 609–619. doi:10.​1093/​glycob/​cwh063 cwh063.PubMed
19.
go back to reference Motamed, K. (1999). SPARC (osteonectin/BM-40). The International Journal of Biochemistry & Cell Biology, 31(12), 1363–1366. Motamed, K. (1999). SPARC (osteonectin/BM-40). The International Journal of Biochemistry & Cell Biology, 31(12), 1363–1366.
23.
go back to reference Gilmour, D. T., Lyon, G. J., Carlton, M. B., Sanes, J. R., Cunningham, J. M., Anderson, J. R., et al. (1998). Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO Journal, 17(7), 1860–1870. doi:10.1093/emboj/17.7.1860.PubMed Gilmour, D. T., Lyon, G. J., Carlton, M. B., Sanes, J. R., Cunningham, J. M., Anderson, J. R., et al. (1998). Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO Journal, 17(7), 1860–1870. doi:10.​1093/​emboj/​17.​7.​1860.PubMed
24.
go back to reference Delany, A. M., Amling, M., Priemel, M., Howe, C., Baron, R., & Canalis, E. (2000). Osteopenia and decreased bone formation in osteonectin-deficient mice. The Journal of Clinical Investigation, 105(7), 915–923. doi:10.1172/JCI7039.PubMed Delany, A. M., Amling, M., Priemel, M., Howe, C., Baron, R., & Canalis, E. (2000). Osteopenia and decreased bone formation in osteonectin-deficient mice. The Journal of Clinical Investigation, 105(7), 915–923. doi:10.​1172/​JCI7039.PubMed
25.
go back to reference Bradshaw, A. D., Puolakkainen, P., Dasgupta, J., Davidson, J. M., Wight, T. N., & Helene Sage, E. (2003). SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. Journal of Investigative Dermatology, 120(6), 949–955. doi:10.1046/j.1523-1747.2003.12241.x.PubMed Bradshaw, A. D., Puolakkainen, P., Dasgupta, J., Davidson, J. M., Wight, T. N., & Helene Sage, E. (2003). SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. Journal of Investigative Dermatology, 120(6), 949–955. doi:10.​1046/​j.​1523-1747.​2003.​12241.​x.PubMed
26.
go back to reference Schellings, M. W., Vanhoutte, D., Swinnen, M., Cleutjens, J. P., Debets, J., van Leeuwen, R. E., et al. (2009). Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. The Journal of Experimental Medicine, 206(1), 113–123. doi:10.1084/jem.20081244 jem.20081244.PubMed Schellings, M. W., Vanhoutte, D., Swinnen, M., Cleutjens, J. P., Debets, J., van Leeuwen, R. E., et al. (2009). Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. The Journal of Experimental Medicine, 206(1), 113–123. doi:10.​1084/​jem.​20081244 jem.​20081244.PubMed
27.
go back to reference Bradshaw, A. D., Graves, D. C., Motamed, K., & Sage, E. H. (2003). SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 6045–6050. doi:10.1073/pnas.1030790100 1030790100.PubMed Bradshaw, A. D., Graves, D. C., Motamed, K., & Sage, E. H. (2003). SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 6045–6050. doi:10.​1073/​pnas.​1030790100 1030790100.PubMed
29.
go back to reference Tremble, P. M., Lane, T. F., Sage, E. H., & Werb, Z. (1993). SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. The Journal of Cell Biology, 121(6), 1433–1444.PubMed Tremble, P. M., Lane, T. F., Sage, E. H., & Werb, Z. (1993). SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. The Journal of Cell Biology, 121(6), 1433–1444.PubMed
30.
31.
go back to reference Kupprion, C., Motamed, K., & Sage, E. H. (1998). SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. Journal of Biological Chemistry, 273(45), 29635–29640.PubMed Kupprion, C., Motamed, K., & Sage, E. H. (1998). SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. Journal of Biological Chemistry, 273(45), 29635–29640.PubMed
32.
go back to reference Raines, E. W., Lane, T. F., Iruela-Arispe, M. L., Ross, R., & Sage, E. H. (1992). The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proceedings of the National Academy of Sciences of the United States of America, 89(4), 1281–1285.PubMed Raines, E. W., Lane, T. F., Iruela-Arispe, M. L., Ross, R., & Sage, E. H. (1992). The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proceedings of the National Academy of Sciences of the United States of America, 89(4), 1281–1285.PubMed
33.
go back to reference Motamed, K., Blake, D. J., Angello, J. C., Allen, B. L., Rapraeger, A. C., Hauschka, S. D., et al. (2003). Fibroblast growth factor receptor-1 mediates the inhibition of endothelial cell proliferation and the promotion of skeletal myoblast differentiation by SPARC: a role for protein kinase A. Journal of Cellular Biochemistry, 90(2), 408–423. doi:10.1002/jcb.10645.PubMed Motamed, K., Blake, D. J., Angello, J. C., Allen, B. L., Rapraeger, A. C., Hauschka, S. D., et al. (2003). Fibroblast growth factor receptor-1 mediates the inhibition of endothelial cell proliferation and the promotion of skeletal myoblast differentiation by SPARC: a role for protein kinase A. Journal of Cellular Biochemistry, 90(2), 408–423. doi:10.​1002/​jcb.​10645.PubMed
34.
go back to reference Hasselaar, P., & Sage, E. H. (1992). SPARC antagonizes the effect of basic fibroblast growth factor on the migration of bovine aortic endothelial cells. Journal of Cellular Biochemistry, 49(3), 272–283. doi:10.1002/jcb.240490310.PubMed Hasselaar, P., & Sage, E. H. (1992). SPARC antagonizes the effect of basic fibroblast growth factor on the migration of bovine aortic endothelial cells. Journal of Cellular Biochemistry, 49(3), 272–283. doi:10.​1002/​jcb.​240490310.PubMed
35.
go back to reference Chlenski, A., Liu, S., Guerrero, L. J., Yang, Q., Tian, Y., Salwen, H. R., et al. (2006). SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. International Journal of Cancer, 118(2), 310–316. doi:10.1002/ijc.21357. Chlenski, A., Liu, S., Guerrero, L. J., Yang, Q., Tian, Y., Salwen, H. R., et al. (2006). SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. International Journal of Cancer, 118(2), 310–316. doi:10.​1002/​ijc.​21357.
36.
go back to reference Wrana, J. L., Overall, C. M., & Sodek, J. (1991). Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. European Journal of Biochemistry, 197(2), 519–528.PubMed Wrana, J. L., Overall, C. M., & Sodek, J. (1991). Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. European Journal of Biochemistry, 197(2), 519–528.PubMed
37.
go back to reference Francki, A., Bradshaw, A. D., Bassuk, J. A., Howe, C. C., Couser, W. G., & Sage, E. H. (1999). SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. Journal of Biological Chemistry, 274(45), 32145–32152.PubMed Francki, A., Bradshaw, A. D., Bassuk, J. A., Howe, C. C., Couser, W. G., & Sage, E. H. (1999). SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. Journal of Biological Chemistry, 274(45), 32145–32152.PubMed
38.
go back to reference Francki, A., McClure, T. D., Brekken, R. A., Motamed, K., Murri, C., Wang, T., et al. (2004). SPARC regulates TGF-beta1-dependent signaling in primary glomerular mesangial cells. Journal of Cellular Biochemistry, 91(5), 915–925. doi:10.1002/jcb.20008.PubMed Francki, A., McClure, T. D., Brekken, R. A., Motamed, K., Murri, C., Wang, T., et al. (2004). SPARC regulates TGF-beta1-dependent signaling in primary glomerular mesangial cells. Journal of Cellular Biochemistry, 91(5), 915–925. doi:10.​1002/​jcb.​20008.PubMed
39.
go back to reference Schiemann, B. J., Neil, J. R., & Schiemann, W. P. (2003). SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Molecular Biology of the Cell, 14(10), 3977–3988. doi:10.1091/mbc.E03-01-0001 E03-01-0001.PubMed Schiemann, B. J., Neil, J. R., & Schiemann, W. P. (2003). SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Molecular Biology of the Cell, 14(10), 3977–3988. doi:10.​1091/​mbc.​E03-01-0001 E03-01-0001.PubMed
40.
go back to reference Chlenski, A., Guerrero, L. J., Yang, Q., Tian, Y., Peddinti, R., Salwen, H. R., et al. (2007). SPARC enhances tumor stroma formation and prevents fibroblast activation. Oncogene, 26(31), 4513–4522. doi:10.1038/sj.onc.1210247.PubMed Chlenski, A., Guerrero, L. J., Yang, Q., Tian, Y., Peddinti, R., Salwen, H. R., et al. (2007). SPARC enhances tumor stroma formation and prevents fibroblast activation. Oncogene, 26(31), 4513–4522. doi:10.​1038/​sj.​onc.​1210247.PubMed
41.
go back to reference Weaver, M. S., & Workman, G. (2008). The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. Journal of Biological Chemistry, 283(33), 22826–22837. doi:10.1074/jbc.M706563200 M706563200.PubMed Weaver, M. S., & Workman, G. (2008). The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. Journal of Biological Chemistry, 283(33), 22826–22837. doi:10.​1074/​jbc.​M706563200 M706563200.PubMed
42.
go back to reference Kelly, K. A., Allport, J. R., Yu, A. M., Sinh, S., Sage, E. H., Gerszten, R. E., et al. (2007). SPARC is a VCAM-1 counter-ligand that mediates leukocyte transmigration. Journal of Leukocyte Biology, 81(3), 748–756. doi:10.1189/jlb.1105664.PubMed Kelly, K. A., Allport, J. R., Yu, A. M., Sinh, S., Sage, E. H., Gerszten, R. E., et al. (2007). SPARC is a VCAM-1 counter-ligand that mediates leukocyte transmigration. Journal of Leukocyte Biology, 81(3), 748–756. doi:10.​1189/​jlb.​1105664.PubMed
44.
45.
go back to reference Barker, T. H., Baneyx, G., Cardo-Vila, M., Workman, G. A., Weaver, M., Menon, P. M., et al. (2005). SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. Journal of Biological Chemistry, 280(43), 36483–36493. doi:10.1074/jbc.M504663200.PubMed Barker, T. H., Baneyx, G., Cardo-Vila, M., Workman, G. A., Weaver, M., Menon, P. M., et al. (2005). SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. Journal of Biological Chemistry, 280(43), 36483–36493. doi:10.​1074/​jbc.​M504663200.PubMed
46.
go back to reference Podhajcer, O. L., Benedetti, L., Girotti, M. R., Prada, F., Salvatierra, E., & Llera, A. S. (2008). The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer and Metastasis Reviews, 27(3), 523–537. doi:10.1007/s10555-008-9135-x.PubMed Podhajcer, O. L., Benedetti, L., Girotti, M. R., Prada, F., Salvatierra, E., & Llera, A. S. (2008). The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer and Metastasis Reviews, 27(3), 523–537. doi:10.​1007/​s10555-008-9135-x.PubMed
48.
go back to reference Yang, E., Kang, H. J., Koh, K. H., Rhee, H., Kim, N. K., & Kim, H. (2007). Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. International Journal of Cancer, 121(3), 567–575. doi:10.1002/ijc.22706. Yang, E., Kang, H. J., Koh, K. H., Rhee, H., Kim, N. K., & Kim, H. (2007). Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. International Journal of Cancer, 121(3), 567–575. doi:10.​1002/​ijc.​22706.
49.
go back to reference Lussier, C., Sodek, J., & Beaulieu, J. F. (2001). Expression of SPARC/osteonectin/BM4O in the human gut: predominance in the stroma of the remodeling distal intestine. Journal of Cellular Biochemistry, 81(3), 463–476.PubMed Lussier, C., Sodek, J., & Beaulieu, J. F. (2001). Expression of SPARC/osteonectin/BM4O in the human gut: predominance in the stroma of the remodeling distal intestine. Journal of Cellular Biochemistry, 81(3), 463–476.PubMed
50.
go back to reference Tai, I. T., Dai, M., Owen, D. A., & Chen, L. B. (2005). Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. The Journal of Clinical Investigation, 115(6), 1492–1502. doi:10.1172/JCI23002.PubMed Tai, I. T., Dai, M., Owen, D. A., & Chen, L. B. (2005). Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. The Journal of Clinical Investigation, 115(6), 1492–1502. doi:10.​1172/​JCI23002.PubMed
51.
go back to reference Cheetham, S., Tang, M. J., Mesak, F., Kennecke, H., Owen, D., & Tai, I. T. (2008). SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2'deoxycytidine to increase SPARC expression and improve therapy response. British Journal of Cancer, 98(11), 1810–1819. doi:10.1038/sj.bjc.6604377.PubMed Cheetham, S., Tang, M. J., Mesak, F., Kennecke, H., Owen, D., & Tai, I. T. (2008). SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2'deoxycytidine to increase SPARC expression and improve therapy response. British Journal of Cancer, 98(11), 1810–1819. doi:10.​1038/​sj.​bjc.​6604377.PubMed
52.
go back to reference Tang, M. J., & Tai, I. T. (2007). A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. Journal of Biological Chemistry, 282(47), 34457–34467. doi:10.1074/jbc.M704459200.PubMed Tang, M. J., & Tai, I. T. (2007). A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. Journal of Biological Chemistry, 282(47), 34457–34467. doi:10.​1074/​jbc.​M704459200.PubMed
53.
go back to reference Chan, S. K., Griffith, O. L., Tai, I. T., & Jones, S. J. (2008). Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiology, Biomarkers & Prevention, 17(3), 543–552. doi:10.1158/1055-9965.EPI-07-2615. Chan, S. K., Griffith, O. L., Tai, I. T., & Jones, S. J. (2008). Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiology, Biomarkers & Prevention, 17(3), 543–552. doi:10.​1158/​1055-9965.​EPI-07-2615.
54.
go back to reference Socha, M. J., Said, N., Dai, Y., Kwong, J., Ramalingam, P., Trieu, V., et al. (2009). Aberrant promoter methylation of SPARC in ovarian cancer. Neoplasia, 11(2), 126–135.PubMed Socha, M. J., Said, N., Dai, Y., Kwong, J., Ramalingam, P., Trieu, V., et al. (2009). Aberrant promoter methylation of SPARC in ovarian cancer. Neoplasia, 11(2), 126–135.PubMed
55.
go back to reference Mok, S. C., Chan, W. Y., Wong, K. K., Muto, M. G., & Berkowitz, R. S. (1996). SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene, 12(9), 1895–1901.PubMed Mok, S. C., Chan, W. Y., Wong, K. K., Muto, M. G., & Berkowitz, R. S. (1996). SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene, 12(9), 1895–1901.PubMed
56.
go back to reference Yiu, G. K., Chan, W. Y., Ng, S. W., Chan, P. S., Cheung, K. K., Berkowitz, R. S., et al. (2001). SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. American Journal of Pathology, 159(2), 609–622. doi:10.1016/S0002-9440(10)61732-4.PubMed Yiu, G. K., Chan, W. Y., Ng, S. W., Chan, P. S., Cheung, K. K., Berkowitz, R. S., et al. (2001). SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. American Journal of Pathology, 159(2), 609–622. doi:10.​1016/​S0002-9440(10)61732-4.PubMed
57.
go back to reference Said, N., & Motamed, K. (2005). Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. American Journal of Pathology, 167(6), 1739–1752. doi:10.1016/S0002-9440(10)61255-2.PubMed Said, N., & Motamed, K. (2005). Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. American Journal of Pathology, 167(6), 1739–1752. doi:10.​1016/​S0002-9440(10)61255-2.PubMed
58.
go back to reference Said, N., Najwer, I., & Motamed, K. (2007). Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. American Journal of Pathology, 170(3), 1054–1063. doi:10.2353/ajpath.2007.060903.PubMed Said, N., Najwer, I., & Motamed, K. (2007). Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. American Journal of Pathology, 170(3), 1054–1063. doi:10.​2353/​ajpath.​2007.​060903.PubMed
59.
go back to reference Said, N. A., Elmarakby, A. A., Imig, J. D., Fulton, D. J., & Motamed, K. (2008). SPARC ameliorates ovarian cancer-associated inflammation. Neoplasia, 10(10), 1092–1104.PubMed Said, N. A., Elmarakby, A. A., Imig, J. D., Fulton, D. J., & Motamed, K. (2008). SPARC ameliorates ovarian cancer-associated inflammation. Neoplasia, 10(10), 1092–1104.PubMed
60.
go back to reference Said, N., Socha, M. J., Olearczyk, J. J., Elmarakby, A. A., Imig, J. D., & Motamed, K. (2007). Normalization of the ovarian cancer microenvironment by SPARC. Molecular Cancer Research, 5(10), 1015–1030. doi:10.1158/1541-7786.MCR-07-0001.PubMed Said, N., Socha, M. J., Olearczyk, J. J., Elmarakby, A. A., Imig, J. D., & Motamed, K. (2007). Normalization of the ovarian cancer microenvironment by SPARC. Molecular Cancer Research, 5(10), 1015–1030. doi:10.​1158/​1541-7786.​MCR-07-0001.PubMed
61.
go back to reference Brown, T. J., Shaw, P. A., Karp, X., Huynh, M. H., Begley, H., & Ringuette, M. J. (1999). Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecologic Oncology, 75(1), 25–33. doi:10.1006/gyno.1999.5552.PubMed Brown, T. J., Shaw, P. A., Karp, X., Huynh, M. H., Begley, H., & Ringuette, M. J. (1999). Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecologic Oncology, 75(1), 25–33. doi:10.​1006/​gyno.​1999.​5552.PubMed
62.
go back to reference Thomas, R., True, L. D., Bassuk, J. A., Lange, P. H., & Vessella, R. L. (2000). Differential expression of osteonectin/SPARC during human prostate cancer progression. Clinical Cancer Research, 6(3), 1140–1149.PubMed Thomas, R., True, L. D., Bassuk, J. A., Lange, P. H., & Vessella, R. L. (2000). Differential expression of osteonectin/SPARC during human prostate cancer progression. Clinical Cancer Research, 6(3), 1140–1149.PubMed
63.
go back to reference Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature, 412(6849), 822–826. doi:10.1038/35090585.PubMed Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature, 412(6849), 822–826. doi:10.​1038/​35090585.PubMed
64.
go back to reference Wong, S. Y., Crowley, D., Bronson, R. T., & Hynes, R. O. (2008). Analyses of the role of endogenous SPARC in mouse models of prostate and breast cancer. Clinical & Experimental Metastasis, 25(2), 109–118. doi:10.1007/s10585-007-9126-2. Wong, S. Y., Crowley, D., Bronson, R. T., & Hynes, R. O. (2008). Analyses of the role of endogenous SPARC in mouse models of prostate and breast cancer. Clinical & Experimental Metastasis, 25(2), 109–118. doi:10.​1007/​s10585-007-9126-2.
65.
go back to reference Said, N., Frierson, H. F., Jr., Chernauskas, D., Conaway, M., Motamed, K., & Theodorescu, D. (2009). The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene, 28(39), 3487–3498. doi:10.1038/onc.2009.205.PubMed Said, N., Frierson, H. F., Jr., Chernauskas, D., Conaway, M., Motamed, K., & Theodorescu, D. (2009). The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene, 28(39), 3487–3498. doi:10.​1038/​onc.​2009.​205.PubMed
66.
go back to reference Chlenski, A., Liu, S., Crawford, S. E., Volpert, O. V., DeVries, G. H., Evangelista, A., et al. (2002). SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Research, 62(24), 7357–7363.PubMed Chlenski, A., Liu, S., Crawford, S. E., Volpert, O. V., DeVries, G. H., Evangelista, A., et al. (2002). SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Research, 62(24), 7357–7363.PubMed
67.
go back to reference Chlenski, A., Liu, S., Baker, L. J., Yang, Q., Tian, Y., Salwen, H. R., et al. (2004). Neuroblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SPARC. Cancer Research, 64(20), 7420–7425. doi:10.1158/0008-5472.CAN-04-2141.PubMed Chlenski, A., Liu, S., Baker, L. J., Yang, Q., Tian, Y., Salwen, H. R., et al. (2004). Neuroblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SPARC. Cancer Research, 64(20), 7420–7425. doi:10.​1158/​0008-5472.​CAN-04-2141.PubMed
68.
go back to reference Smid, M., Dorssers, L. C., & Jenster, G. (2003). Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Bioinformatics, 19(16), 2065–2071.PubMed Smid, M., Dorssers, L. C., & Jenster, G. (2003). Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Bioinformatics, 19(16), 2065–2071.PubMed
69.
go back to reference Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., et al. (2008). Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. The Journal of Pathology, 214(3), 357–367. doi:10.1002/path.2278.PubMed Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., et al. (2008). Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. The Journal of Pathology, 214(3), 357–367. doi:10.​1002/​path.​2278.PubMed
70.
go back to reference Teschendorff, A. E., Miremadi, A., Pinder, S. E., Ellis, I. O., & Caldas, C. (2007). An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biology, 8(8), R157. doi:10.1186/gb-2007-8-8-r157.PubMed Teschendorff, A. E., Miremadi, A., Pinder, S. E., Ellis, I. O., & Caldas, C. (2007). An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biology, 8(8), R157. doi:10.​1186/​gb-2007-8-8-r157.PubMed
71.
go back to reference Dhanesuan, N., Sharp, J. A., Blick, T., Price, J. T., & Thompson, E. W. (2002). Doxycycline-inducible expression of SPARC/Osteonectin/BM40 in MDA-MB-231 human breast cancer cells results in growth inhibition. Breast Cancer Research and Treatment, 75(1), 73–85.PubMed Dhanesuan, N., Sharp, J. A., Blick, T., Price, J. T., & Thompson, E. W. (2002). Doxycycline-inducible expression of SPARC/Osteonectin/BM40 in MDA-MB-231 human breast cancer cells results in growth inhibition. Breast Cancer Research and Treatment, 75(1), 73–85.PubMed
72.
go back to reference Koblinski, J. E., Kaplan-Singer, B. R., VanOsdol, S. J., Wu, M., Engbring, J. A., Wang, S., et al. (2005). Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Research, 65(16), 7370–7377. doi:10.1158/0008-5472.CAN-05-0807.PubMed Koblinski, J. E., Kaplan-Singer, B. R., VanOsdol, S. J., Wu, M., Engbring, J. A., Wang, S., et al. (2005). Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Research, 65(16), 7370–7377. doi:10.​1158/​0008-5472.​CAN-05-0807.PubMed
73.
go back to reference Sangaletti, S., Stoppacciaro, A., Guiducci, C., Torrisi, M. R., & Colombo, M. P. (2003). Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. The Journal of Experimental Medicine, 198(10), 1475–1485. doi:10.1084/jem.20030202.PubMed Sangaletti, S., Stoppacciaro, A., Guiducci, C., Torrisi, M. R., & Colombo, M. P. (2003). Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. The Journal of Experimental Medicine, 198(10), 1475–1485. doi:10.​1084/​jem.​20030202.PubMed
74.
go back to reference Bellahcene, A., & Castronovo, V. (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. American Journal of Pathology, 146(1), 95–100.PubMed Bellahcene, A., & Castronovo, V. (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. American Journal of Pathology, 146(1), 95–100.PubMed
75.
go back to reference Barth, P. J., Moll, R., & Ramaswamy, A. (2005). Stromal remodeling and SPARC (secreted protein acid rich in cysteine) expression in invasive ductal carcinomas of the breast. Virchows Archiv, 446(5), 532–536. doi:10.1007/s00428-005-1256-9.PubMed Barth, P. J., Moll, R., & Ramaswamy, A. (2005). Stromal remodeling and SPARC (secreted protein acid rich in cysteine) expression in invasive ductal carcinomas of the breast. Virchows Archiv, 446(5), 532–536. doi:10.​1007/​s00428-005-1256-9.PubMed
76.
go back to reference Jones, C., Mackay, A., Grigoriadis, A., Cossu, A., Reis-Filho, J. S., Fulford, L., et al. (2004). Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Research, 64(9), 3037–3045.PubMed Jones, C., Mackay, A., Grigoriadis, A., Cossu, A., Reis-Filho, J. S., Fulford, L., et al. (2004). Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Research, 64(9), 3037–3045.PubMed
77.
go back to reference Campo McKnight, D. A., Sosnoski, D. M., Koblinski, J. E., & Gay, C. V. (2006). Roles of osteonectin in the migration of breast cancer cells into bone. Journal of Cellular Biochemistry, 97(2), 288–302. doi:10.1002/jcb.20644.PubMed Campo McKnight, D. A., Sosnoski, D. M., Koblinski, J. E., & Gay, C. V. (2006). Roles of osteonectin in the migration of breast cancer cells into bone. Journal of Cellular Biochemistry, 97(2), 288–302. doi:10.​1002/​jcb.​20644.PubMed
78.
go back to reference Briggs, J., Chamboredon, S., Castellazzi, M., Kerry, J. A., & Bos, T. J. (2002). Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. Oncogene, 21(46), 7077–7091. doi:10.1038/sj.onc.1205857.PubMed Briggs, J., Chamboredon, S., Castellazzi, M., Kerry, J. A., & Bos, T. J. (2002). Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. Oncogene, 21(46), 7077–7091. doi:10.​1038/​sj.​onc.​1205857.PubMed
79.
go back to reference Schultz, C., Lemke, N., Ge, S., Golembieski, W. A., & Rempel, S. A. (2002). Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer Research, 62(21), 6270–6277.PubMed Schultz, C., Lemke, N., Ge, S., Golembieski, W. A., & Rempel, S. A. (2002). Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer Research, 62(21), 6270–6277.PubMed
80.
go back to reference Yunker, C. K., Golembieski, W., Lemke, N., Schultz, C. R., Cazacu, S., Brodie, C., et al. (2008). SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. International Journal of Cancer, 122(12), 2735–2743. doi:10.1002/ijc.23450. Yunker, C. K., Golembieski, W., Lemke, N., Schultz, C. R., Cazacu, S., Brodie, C., et al. (2008). SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. International Journal of Cancer, 122(12), 2735–2743. doi:10.​1002/​ijc.​23450.
81.
go back to reference Rempel, S. A., Golembieski, W. A., Ge, S., Lemke, N., Elisevich, K., Mikkelsen, T., et al. (1998). SPARC: a signal of astrocytic neoplastic transformation and reactive response in human primary and xenograft gliomas. Journal of Neuropathology and Experimental Neurology, 57(12), 1112–1121.PubMed Rempel, S. A., Golembieski, W. A., Ge, S., Lemke, N., Elisevich, K., Mikkelsen, T., et al. (1998). SPARC: a signal of astrocytic neoplastic transformation and reactive response in human primary and xenograft gliomas. Journal of Neuropathology and Experimental Neurology, 57(12), 1112–1121.PubMed
82.
go back to reference Shi, Q., Bao, S., Maxwell, J. A., Reese, E. D., Friedman, H. S., Bigner, D. D., et al. (2004). Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. Journal of Biological Chemistry, 279(50), 52200–52209. doi:10.1074/jbc.M409630200.PubMed Shi, Q., Bao, S., Maxwell, J. A., Reese, E. D., Friedman, H. S., Bigner, D. D., et al. (2004). Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. Journal of Biological Chemistry, 279(50), 52200–52209. doi:10.​1074/​jbc.​M409630200.PubMed
83.
go back to reference Shi, Q., Bao, S., Song, L., Wu, Q., Bigner, D. D., Hjelmeland, A. B., et al. (2007). Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene, 26(28), 4084–4094. doi:10.1038/sj.onc.1210181.PubMed Shi, Q., Bao, S., Song, L., Wu, Q., Bigner, D. D., Hjelmeland, A. B., et al. (2007). Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene, 26(28), 4084–4094. doi:10.​1038/​sj.​onc.​1210181.PubMed
84.
go back to reference McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., et al. (2007). SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neuroscience Letters, 419(2), 172–177. doi:10.1016/j.neulet.2007.04.037.PubMed McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., et al. (2007). SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neuroscience Letters, 419(2), 172–177. doi:10.​1016/​j.​neulet.​2007.​04.​037.PubMed
85.
go back to reference Kunigal, S., Gondi, C. S., Gujrati, M., Lakka, S. S., Dinh, D. H., Olivero, W. C., et al. (2006). SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. International Journal of Oncology, 29(6), 1349–1357.PubMed Kunigal, S., Gondi, C. S., Gujrati, M., Lakka, S. S., Dinh, D. H., Olivero, W. C., et al. (2006). SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. International Journal of Oncology, 29(6), 1349–1357.PubMed
86.
go back to reference Golembieski, W. A., Thomas, S. L., Schultz, C. R., Yunker, C. K., McClung, H. M., Lemke, N., et al. (2008). HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. GLIA, 56(10), 1061–1075. doi:10.1002/glia.20679.PubMed Golembieski, W. A., Thomas, S. L., Schultz, C. R., Yunker, C. K., McClung, H. M., Lemke, N., et al. (2008). HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. GLIA, 56(10), 1061–1075. doi:10.​1002/​glia.​20679.PubMed
87.
go back to reference Prada, F., Benedetti, L. G., Bravo, A. I., Alvarez, M. J., Carbone, C., & Podhajcer, O. L. (2007). SPARC endogenous level, rather than fibroblast-produced SPARC or stroma reorganization induced by SPARC, is responsible for melanoma cell growth. The Journal of Investigative Dermatology, 127(11), 2618–2628. doi:10.1038/sj.jid.5700962.PubMed Prada, F., Benedetti, L. G., Bravo, A. I., Alvarez, M. J., Carbone, C., & Podhajcer, O. L. (2007). SPARC endogenous level, rather than fibroblast-produced SPARC or stroma reorganization induced by SPARC, is responsible for melanoma cell growth. The Journal of Investigative Dermatology, 127(11), 2618–2628. doi:10.​1038/​sj.​jid.​5700962.PubMed
88.
go back to reference Haber, C. L., Gottifredi, V., Llera, A. S., Salvatierra, E., Prada, F., Alonso, L., et al. (2008). SPARC modulates the proliferation of stromal but not melanoma cells unless endogenous SPARC expression is downregulated. International Journal of Cancer, 122(7), 1465–1475. doi:10.1002/ijc.23216. Haber, C. L., Gottifredi, V., Llera, A. S., Salvatierra, E., Prada, F., Alonso, L., et al. (2008). SPARC modulates the proliferation of stromal but not melanoma cells unless endogenous SPARC expression is downregulated. International Journal of Cancer, 122(7), 1465–1475. doi:10.​1002/​ijc.​23216.
89.
go back to reference Ledda, F., Bravo, A. I., Adris, S., Bover, L., Mordoh, J., & Podhajcer, O. L. (1997). The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. The Journal of Investigative Dermatology, 108(2), 210–214.PubMed Ledda, F., Bravo, A. I., Adris, S., Bover, L., Mordoh, J., & Podhajcer, O. L. (1997). The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. The Journal of Investigative Dermatology, 108(2), 210–214.PubMed
90.
go back to reference Massi, D., Franchi, A., Borgognoni, L., Reali, U. M., & Santucci, M. (1999). Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Human Pathology, 30(3), 339–344.PubMed Massi, D., Franchi, A., Borgognoni, L., Reali, U. M., & Santucci, M. (1999). Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Human Pathology, 30(3), 339–344.PubMed
91.
go back to reference Alonso, S. R., Tracey, L., Ortiz, P., Perez-Gomez, B., Palacios, J., Pollan, M., et al. (2007). A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Research, 67(7), 3450–3460. doi:10.1158/0008-5472.CAN-06-3481.PubMed Alonso, S. R., Tracey, L., Ortiz, P., Perez-Gomez, B., Palacios, J., Pollan, M., et al. (2007). A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Research, 67(7), 3450–3460. doi:10.​1158/​0008-5472.​CAN-06-3481.PubMed
92.
go back to reference Ledda, M. F., Adris, S., Bravo, A. I., Kairiyama, C., Bover, L., Chernajovsky, Y., et al. (1997). Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nature Medicine, 3(2), 171–176.PubMed Ledda, M. F., Adris, S., Bravo, A. I., Kairiyama, C., Bover, L., Chernajovsky, Y., et al. (1997). Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nature Medicine, 3(2), 171–176.PubMed
93.
go back to reference Alvarez, M. J., Prada, F., Salvatierra, E., Bravo, A. I., Lutzky, V. P., Carbone, C., et al. (2005). Secreted protein acidic and rich in cysteine produced by human melanoma cells modulates polymorphonuclear leukocyte recruitment and antitumor cytotoxic capacity. Cancer Research, 65(12), 5123–5132. doi:10.1158/0008-5472.CAN-04-1102.PubMed Alvarez, M. J., Prada, F., Salvatierra, E., Bravo, A. I., Lutzky, V. P., Carbone, C., et al. (2005). Secreted protein acidic and rich in cysteine produced by human melanoma cells modulates polymorphonuclear leukocyte recruitment and antitumor cytotoxic capacity. Cancer Research, 65(12), 5123–5132. doi:10.​1158/​0008-5472.​CAN-04-1102.PubMed
94.
go back to reference Von Hoff, D. D., Penny, R., Shack, S., Campbell, E., Taverna, D., Borad, M., et al. (2006). Frequency of potential therapeutic targets identified by immunochemistry (IHC) and DNA microarray (DMA) in tumors from patients who have progressed on multiple therapeutic agents. Journal of Clinical Oncology, 24(18S), abstr 3071. Von Hoff, D. D., Penny, R., Shack, S., Campbell, E., Taverna, D., Borad, M., et al. (2006). Frequency of potential therapeutic targets identified by immunochemistry (IHC) and DNA microarray (DMA) in tumors from patients who have progressed on multiple therapeutic agents. Journal of Clinical Oncology, 24(18S), abstr 3071.
95.
go back to reference Guweidhi, A., Kleeff, J., Adwan, H., Giese, N. A., Wente, M. N., Giese, T., et al. (2005). Osteonectin influences growth and invasion of pancreatic cancer cells. Annals of Surgery, 242(2), 224–234.PubMed Guweidhi, A., Kleeff, J., Adwan, H., Giese, N. A., Wente, M. N., Giese, T., et al. (2005). Osteonectin influences growth and invasion of pancreatic cancer cells. Annals of Surgery, 242(2), 224–234.PubMed
96.
go back to reference Miyoshi, K., Sato, N., Ohuchida, K., Mizumoto, K., & Tanaka, M. (2010). SPARC mRNA expression as a prognostic marker for pancreatic adenocarcinoma patients. Anticancer Research, 30(3), 867–871.PubMed Miyoshi, K., Sato, N., Ohuchida, K., Mizumoto, K., & Tanaka, M. (2010). SPARC mRNA expression as a prognostic marker for pancreatic adenocarcinoma patients. Anticancer Research, 30(3), 867–871.PubMed
97.
go back to reference Prenzel, K. L., Warnecke-Eberz, U., Xi, H., Brabender, J., Baldus, S. E., Bollschweiler, E., et al. (2006). Significant overexpression of SPARC/osteonectin mRNA in pancreatic cancer compared to cancer of the papilla of Vater. Oncology Reports, 15(5), 1397–1401.PubMed Prenzel, K. L., Warnecke-Eberz, U., Xi, H., Brabender, J., Baldus, S. E., Bollschweiler, E., et al. (2006). Significant overexpression of SPARC/osteonectin mRNA in pancreatic cancer compared to cancer of the papilla of Vater. Oncology Reports, 15(5), 1397–1401.PubMed
98.
go back to reference Infante, J. R., Matsubayashi, H., Sato, N., Tonascia, J., Klein, A. P., Riall, T. A., et al. (2007). Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. Journal of Clinical Oncology, 25(3), 319–325. doi:10.1200/JCO.2006.07.8824.PubMed Infante, J. R., Matsubayashi, H., Sato, N., Tonascia, J., Klein, A. P., Riall, T. A., et al. (2007). Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. Journal of Clinical Oncology, 25(3), 319–325. doi:10.​1200/​JCO.​2006.​07.​8824.PubMed
99.
go back to reference Mantoni, T. S., Schendel, R. R., Rodel, F., Niedobitek, G., Al-Assar, O., Masamune, A., et al. (2008). Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biology & Therapy, 7(11), 1806–1815. Mantoni, T. S., Schendel, R. R., Rodel, F., Niedobitek, G., Al-Assar, O., Masamune, A., et al. (2008). Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biology & Therapy, 7(11), 1806–1815.
100.
go back to reference Sato, N., Fukushima, N., Maehara, N., Matsubayashi, H., Koopmann, J., Su, G. H., et al. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene, 22(32), 5021–5030. doi:10.1038/sj.onc.1206807.PubMed Sato, N., Fukushima, N., Maehara, N., Matsubayashi, H., Koopmann, J., Su, G. H., et al. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene, 22(32), 5021–5030. doi:10.​1038/​sj.​onc.​1206807.PubMed
101.
go back to reference Gao, J., Song, J., Huang, H., Li, Z., Du, Y., Cao, J., et al. (2010). Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 29, 28. doi:10.1186/1756-9966-29-28. Gao, J., Song, J., Huang, H., Li, Z., Du, Y., Cao, J., et al. (2010). Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 29, 28. doi:10.​1186/​1756-9966-29-28.
103.
go back to reference Chen, G., Tian, X., Liu, Z., Zhou, S., Schmidt, B., Henne-Bruns, D., et al. (2010). Inhibition of endogenous SPARC enhances pancreatic cancer cell growth: modulation by FGFR1-III isoform expression. British Journal of Cancer, 102(1), 188–195. doi:10.1038/sj.bjc.66054406605440.PubMed Chen, G., Tian, X., Liu, Z., Zhou, S., Schmidt, B., Henne-Bruns, D., et al. (2010). Inhibition of endogenous SPARC enhances pancreatic cancer cell growth: modulation by FGFR1-III isoform expression. British Journal of Cancer, 102(1), 188–195. doi:10.​1038/​sj.​bjc.​66054406605440.PubMed
104.
go back to reference Zhivkova-Galunska, M., Adwan, H., Eyol, E., Kleeff, J., Kolb, A., Bergmann, F., et al. (2010). Osteopontin but not osteonectin favors the metastatic growth of pancreatic cancer cell lines. Cancer Biology & Therapy, 10(1), 54–64. Zhivkova-Galunska, M., Adwan, H., Eyol, E., Kleeff, J., Kolb, A., Bergmann, F., et al. (2010). Osteopontin but not osteonectin favors the metastatic growth of pancreatic cancer cell lines. Cancer Biology & Therapy, 10(1), 54–64.
105.
go back to reference Puolakkainen, P. A., Brekken, R. A., Muneer, S., & Sage, E. H. (2004). Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Molecular Cancer Research, 2(4), 215–224.PubMed Puolakkainen, P. A., Brekken, R. A., Muneer, S., & Sage, E. H. (2004). Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Molecular Cancer Research, 2(4), 215–224.PubMed
106.
go back to reference Arnold, S., Mira, E., Muneer, S., Korpanty, G., Beck, A. W., Holloway, S. E., et al. (2008). Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC. Experimental Biology and Medicine (Maywood, N.J.), 233(7), 860–873. doi:10.3181/0801-RM-12 0801-RM-12. Arnold, S., Mira, E., Muneer, S., Korpanty, G., Beck, A. W., Holloway, S. E., et al. (2008). Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC. Experimental Biology and Medicine (Maywood, N.J.), 233(7), 860–873. doi:10.​3181/​0801-RM-12 0801-RM-12.
107.
go back to reference Arnold, S. A., Rivera, L. B., Miller, A. F., Carbon, J. G., Dineen, S. P., Xie, Y., et al. (2010). Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Disease Models & Mechanisms, 3(1–2), 57–72. doi:10.1242/dmm.003228 dmm.003228. Arnold, S. A., Rivera, L. B., Miller, A. F., Carbon, J. G., Dineen, S. P., Xie, Y., et al. (2010). Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Disease Models & Mechanisms, 3(1–2), 57–72. doi:10.​1242/​dmm.​003228 dmm.​003228.
108.
go back to reference Rivera, L. B., & Brekken, R. A. (2011). SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-beta1 activity. The Journal of Cell Biology, 193(7), 1305–1319. doi:10.1083/jcb.201011143.PubMed Rivera, L. B., & Brekken, R. A. (2011). SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-beta1 activity. The Journal of Cell Biology, 193(7), 1305–1319. doi:10.​1083/​jcb.​201011143.PubMed
109.
110.
go back to reference Rempel, S. A., Hawley, R. C., Gutierrez, J. A., Mouzon, E., Bobbitt, K. R., Lemke, N., et al. (2007). Splenic and immune alterations of the Sparc-null mouse accompany a lack of immune response. Genes and Immunity, 8(3), 262–274. doi:10.1038/sj.gene.6364388.PubMed Rempel, S. A., Hawley, R. C., Gutierrez, J. A., Mouzon, E., Bobbitt, K. R., Lemke, N., et al. (2007). Splenic and immune alterations of the Sparc-null mouse accompany a lack of immune response. Genes and Immunity, 8(3), 262–274. doi:10.​1038/​sj.​gene.​6364388.PubMed
112.
go back to reference Guarneri, V., Dieci, M. V., & Conte, P. (2012). Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer. Expert Opinion on Pharmacotherapy, 13(3), 395–406. doi:10.1517/14656566.2012.651127.PubMed Guarneri, V., Dieci, M. V., & Conte, P. (2012). Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer. Expert Opinion on Pharmacotherapy, 13(3), 395–406. doi:10.​1517/​14656566.​2012.​651127.PubMed
113.
go back to reference Schilling, U., Friedrich, E. A., Sinn, H., Schrenk, H. H., Clorius, J. H., & Maier-Borst, W. (1992). Design of compounds having enhanced tumour uptake, using serum albumin as a carrier—part II. In vivo studies. International Journal of Radiation Applications and Instrumentation. Part B, 19(6), 685–695. Schilling, U., Friedrich, E. A., Sinn, H., Schrenk, H. H., Clorius, J. H., & Maier-Borst, W. (1992). Design of compounds having enhanced tumour uptake, using serum albumin as a carrier—part II. In vivo studies. International Journal of Radiation Applications and Instrumentation. Part B, 19(6), 685–695.
114.
go back to reference Minshall, R. D., Tiruppathi, C., Vogel, S. M., & Malik, A. B. (2002). Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochemistry and Cell Biology, 117(2), 105–112. doi:10.1007/s00418-001-0367-x.PubMed Minshall, R. D., Tiruppathi, C., Vogel, S. M., & Malik, A. B. (2002). Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochemistry and Cell Biology, 117(2), 105–112. doi:10.​1007/​s00418-001-0367-x.PubMed
115.
go back to reference Desai, N., Trieu, V., Damascelli, B., & Soon-Shiong, P. (2009). SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Translational Oncology, 2(2), 59–64.PubMed Desai, N., Trieu, V., Damascelli, B., & Soon-Shiong, P. (2009). SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Translational Oncology, 2(2), 59–64.PubMed
116.
go back to reference Ibrahim, N. K., Desai, N., Legha, S., Soon-Shiong, P., Theriault, R. L., Rivera, E., et al. (2002). Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clinical Cancer Research, 8(5), 1038–1044.PubMed Ibrahim, N. K., Desai, N., Legha, S., Soon-Shiong, P., Theriault, R. L., Rivera, E., et al. (2002). Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clinical Cancer Research, 8(5), 1038–1044.PubMed
118.
go back to reference Fine, R. L., Fogelman, D. R., Schreibman, S. M., Desai, M., Sherman, W., Strauss, J., et al. (2008). The gemcitabine, docetaxel, and capecitabine (GTX) regimen for metastatic pancreatic cancer: a retrospective analysis. Cancer Chemotherapy and Pharmacology, 61(1), 167–175. doi:10.1007/s00280-007-0473-0.PubMed Fine, R. L., Fogelman, D. R., Schreibman, S. M., Desai, M., Sherman, W., Strauss, J., et al. (2008). The gemcitabine, docetaxel, and capecitabine (GTX) regimen for metastatic pancreatic cancer: a retrospective analysis. Cancer Chemotherapy and Pharmacology, 61(1), 167–175. doi:10.​1007/​s00280-007-0473-0.PubMed
119.
go back to reference Reni, M., Cereda, S., Rognone, A., Belli, C., Ghidini, M., Longoni, S., et al. (2012). A randomized phase II trial of two different 4-drug combinations in advanced pancreatic adenocarcinoma: cisplatin, capecitabine, gemcitabine plus either epirubicin or docetaxel (PEXG or PDXG regimen). Cancer Chemotherapy and Pharmacology, 69(1), 115–123. doi:10.1007/s00280-011-1680-2.PubMed Reni, M., Cereda, S., Rognone, A., Belli, C., Ghidini, M., Longoni, S., et al. (2012). A randomized phase II trial of two different 4-drug combinations in advanced pancreatic adenocarcinoma: cisplatin, capecitabine, gemcitabine plus either epirubicin or docetaxel (PEXG or PDXG regimen). Cancer Chemotherapy and Pharmacology, 69(1), 115–123. doi:10.​1007/​s00280-011-1680-2.PubMed
120.
go back to reference Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., et al. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29(34), 4548–4554. doi:10.1200/JCO.2011.36.5742JCO.2011.36.5742. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., et al. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29(34), 4548–4554. doi:10.​1200/​JCO.​2011.​36.​5742JCO.​2011.​36.​5742.
121.
go back to reference Hosein, P. J., de Lima Lopes, G., Jr., Pastorini, V. H., Gomez, C., Macintyre, J., Zayas, G., et al. (2012). A phase II trial of nab-paclitaxel as second-line therapy in patients with advanced pancreatic cancer. American Journal of Clinical Oncology. doi:10.1097/COC.0b013e3182436e8c. Hosein, P. J., de Lima Lopes, G., Jr., Pastorini, V. H., Gomez, C., Macintyre, J., Zayas, G., et al. (2012). A phase II trial of nab-paclitaxel as second-line therapy in patients with advanced pancreatic cancer. American Journal of Clinical Oncology. doi:10.​1097/​COC.​0b013e3182436e8c​.
122.
go back to reference Awasthi, N., Ostapoff, K., Zhang, C., Schwarz, M. A., & Schwarz, R. E. (2012). Evaluation of combination treatment benefits of nab-paclitaxel in experimental pancreatic cancer. Journal of Clinical Oncology, 30(suppl 4), abstr 170. Awasthi, N., Ostapoff, K., Zhang, C., Schwarz, M. A., & Schwarz, R. E. (2012). Evaluation of combination treatment benefits of nab-paclitaxel in experimental pancreatic cancer. Journal of Clinical Oncology, 30(suppl 4), abstr 170.
123.
go back to reference Frese, K. K., Neesse, A., Cook, N., Bapiro, T. E., Lolkema, M. P., Jodrell, D. I., et al. (2012). nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discovery, 2(3), 260–269. doi:10.1158/2159-8290.CD-11-0242.PubMed Frese, K. K., Neesse, A., Cook, N., Bapiro, T. E., Lolkema, M. P., Jodrell, D. I., et al. (2012). nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discovery, 2(3), 260–269. doi:10.​1158/​2159-8290.​CD-11-0242.PubMed
Metadata
Title
Stromal expression of SPARC in pancreatic adenocarcinoma
Authors
Cindy Neuzillet
Annemilaï Tijeras-Raballand
Jérôme Cros
Sandrine Faivre
Pascal Hammel
Eric Raymond
Publication date
01-12-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9439-3

Other articles of this Issue 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine