Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012

Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer

Authors: N. P. A. Devika Gunasinghe, Alan Wells, Erik W. Thompson, Honor J. Hugo

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

As yet, there is no cure for metastatic breast cancer. Historically, considerable research effort has been concentrated on understanding the processes of metastasis, how a primary tumour locally invades and systemically disseminates using the phenotypic switching mechanism of epithelial to mesenchymal transition (EMT); however, much less is understood about how metastases are then formed. Breast cancer metastases often look (and may even function) as ‘normal’ breast tissue, a bizarre observation against the backdrop of the organ structure of the lung, liver, bone or brain. Mesenchymal to epithelial transition (MET), the opposite of EMT, has been proposed as a mechanism for establishment of the metastatic neoplasm, leading to questions such as: Can MET be clearly demonstrated in vivo? What factors cause this phenotypic switch within the cancer cell? Are these signals/factors derived from the metastatic site (soil) or expressed by the cancer cells themselves (seed)? How do the cancer cells then grow into a detectable secondary tumour and further disseminate? And finally—Can we design and develop therapies that may combat this dissemination switch? This review aims to address these important questions by evaluating long-standing paradigms and novel emerging concepts in the field of epithelial mesencyhmal plasticity.
Literature
1.
go back to reference Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.CrossRef Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.CrossRef
2.
go back to reference Desantis, C., Siegel, R., Bandi, P., & Jemal, A. (2011). Breast cancer statistics, 2011. CA: A Cancer Journal for Clinicians, 61, 408–418.CrossRef Desantis, C., Siegel, R., Bandi, P., & Jemal, A. (2011). Breast cancer statistics, 2011. CA: A Cancer Journal for Clinicians, 61, 408–418.CrossRef
3.
go back to reference Jones, S. E. (2008). Metastatic breast cancer: the treatment challenge. Clinical Breast Cancer, 8, 224–233.PubMedCrossRef Jones, S. E. (2008). Metastatic breast cancer: the treatment challenge. Clinical Breast Cancer, 8, 224–233.PubMedCrossRef
4.
go back to reference Lopez-Tarruella, S., & Martin, M. (2009). Recent advances in systemic therapy: advances in adjuvant systemic chemotherapy of early breast cancer. Breast Cancer Research, 11, 204.PubMedCrossRef Lopez-Tarruella, S., & Martin, M. (2009). Recent advances in systemic therapy: advances in adjuvant systemic chemotherapy of early breast cancer. Breast Cancer Research, 11, 204.PubMedCrossRef
5.
go back to reference Fisher, B., Jeong, J. H., Bryant, J., et al. (2004). Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet, 364, 858–868.PubMedCrossRef Fisher, B., Jeong, J. H., Bryant, J., et al. (2004). Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet, 364, 858–868.PubMedCrossRef
6.
go back to reference Early Breast Cancer Trialists' Collaborative Group. (1998). Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet, 352, 930–942.CrossRef Early Breast Cancer Trialists' Collaborative Group. (1998). Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet, 352, 930–942.CrossRef
8.
go back to reference Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.PubMedCrossRef Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.PubMedCrossRef
9.
go back to reference Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.PubMedCrossRef Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.PubMedCrossRef
10.
go back to reference Weidner, N., Folkman, J., Pozza, F., et al. (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute, 84, 1875–1887.PubMedCrossRef Weidner, N., Folkman, J., Pozza, F., et al. (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute, 84, 1875–1887.PubMedCrossRef
11.
go back to reference Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267, 10931–10934.PubMed Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267, 10931–10934.PubMed
12.
go back to reference Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.PubMed Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.PubMed
13.
go back to reference Kiaris, H., Chatzistamou, I., Kalofoutis, C., Koutselini, H., Piperi, C., & Kalofoutis, A. (2004). Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Molecular and Cellular Biochemistry, 261, 117–122.PubMedCrossRef Kiaris, H., Chatzistamou, I., Kalofoutis, C., Koutselini, H., Piperi, C., & Kalofoutis, A. (2004). Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Molecular and Cellular Biochemistry, 261, 117–122.PubMedCrossRef
14.
go back to reference Pupa, S. M., Menard, S., Forti, S., & Tagliabue, E. (2002). New insights into the role of extracellular matrix during tumor onset and progression. Journal of Cellular Physiology, 192, 259–267.PubMedCrossRef Pupa, S. M., Menard, S., Forti, S., & Tagliabue, E. (2002). New insights into the role of extracellular matrix during tumor onset and progression. Journal of Cellular Physiology, 192, 259–267.PubMedCrossRef
15.
go back to reference Wells, A., Chao, Y. L., Grahovac, J., Wu, Q., & Lauffenburger, D. A. (2011). Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Frontiers in Bioscience, 16, 815–837.PubMedCrossRef Wells, A., Chao, Y. L., Grahovac, J., Wu, Q., & Lauffenburger, D. A. (2011). Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Frontiers in Bioscience, 16, 815–837.PubMedCrossRef
16.
go back to reference Kienast, Y., von Baumgarten, L., Fuhrmann, M., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16, 116–122.PubMedCrossRef Kienast, Y., von Baumgarten, L., Fuhrmann, M., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16, 116–122.PubMedCrossRef
17.
go back to reference Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., et al. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMedCrossRef Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., et al. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMedCrossRef
18.
go back to reference Howlett, A. R., & Bissell, M. J. (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biology, 2, 79–89.PubMed Howlett, A. R., & Bissell, M. J. (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biology, 2, 79–89.PubMed
19.
go back to reference Jechlinger, M., Grunert, S., & Beug, H. (2002). Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. Journal of Mammary Gland Biology and Neoplasia, 7, 415–432.PubMedCrossRef Jechlinger, M., Grunert, S., & Beug, H. (2002). Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. Journal of Mammary Gland Biology and Neoplasia, 7, 415–432.PubMedCrossRef
20.
go back to reference de Herreros, A. G., Peiro, S., Nassour, M., & Savagner, P. (2010). Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. Journal of Mammary Gland Biology and Neoplasia, 15, 135–147.PubMedCrossRef de Herreros, A. G., Peiro, S., Nassour, M., & Savagner, P. (2010). Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. Journal of Mammary Gland Biology and Neoplasia, 15, 135–147.PubMedCrossRef
21.
go back to reference Creighton, C. J., Chang, J. C., & Rosen, J. M. (2010). Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253–260.PubMedCrossRef Creighton, C. J., Chang, J. C., & Rosen, J. M. (2010). Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253–260.PubMedCrossRef
22.
go back to reference Wang, Y., & Zhou, B. P. (2011). Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese Journal of Cancer, 30, 603–611.PubMedCrossRef Wang, Y., & Zhou, B. P. (2011). Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese Journal of Cancer, 30, 603–611.PubMedCrossRef
23.
go back to reference Chao, Y. L., Shepard, C. R., & Wells, A. (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Molecular Cancer, 9, 179.PubMedCrossRef Chao, Y. L., Shepard, C. R., & Wells, A. (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Molecular Cancer, 9, 179.PubMedCrossRef
24.
go back to reference Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Research, 66, 11271–11278.PubMedCrossRef Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Research, 66, 11271–11278.PubMedCrossRef
25.
go back to reference Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185, 7–19.PubMedCrossRef Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185, 7–19.PubMedCrossRef
26.
go back to reference Hugo, H., Ackland, M. L., Blick, T., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMedCrossRef Hugo, H., Ackland, M. L., Blick, T., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMedCrossRef
28.
go back to reference Weinberg, R. A. (2008). Leaving home early: reexamination of the canonical models of tumor progression. Cancer Cell, 14, 283–284.PubMedCrossRef Weinberg, R. A. (2008). Leaving home early: reexamination of the canonical models of tumor progression. Cancer Cell, 14, 283–284.PubMedCrossRef
29.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMedCrossRef Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMedCrossRef
30.
go back to reference Blick, T., Hugo, H., Widodo, E., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 235–252.PubMedCrossRef Blick, T., Hugo, H., Widodo, E., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 235–252.PubMedCrossRef
31.
go back to reference Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef
32.
go back to reference Kowalski, P. J., Rubin, M. A., & Kleer, C. G. (2003). E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Research, 5, R217–R222.PubMedCrossRef Kowalski, P. J., Rubin, M. A., & Kleer, C. G. (2003). E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Research, 5, R217–R222.PubMedCrossRef
33.
go back to reference Stessels, F., Van den Eynden, G., Van der Auwera, I., et al. (2004). Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. British Journal of Cancer, 90, 1429–1436.PubMedCrossRef Stessels, F., Van den Eynden, G., Van der Auwera, I., et al. (2004). Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. British Journal of Cancer, 90, 1429–1436.PubMedCrossRef
34.
go back to reference Chao, Y., Wu, Q., Acquafondata, M., Dhir, R., & Wells, A. (2012). Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenvironment, 5, 19–28.PubMedCrossRef Chao, Y., Wu, Q., Acquafondata, M., Dhir, R., & Wells, A. (2012). Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenvironment, 5, 19–28.PubMedCrossRef
35.
go back to reference Korpal, M., Ell, B. J., Buffa, F. M., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17, 1101–1108.PubMedCrossRef Korpal, M., Ell, B. J., Buffa, F. M., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17, 1101–1108.PubMedCrossRef
36.
go back to reference Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67, 7972–7976.PubMedCrossRef Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67, 7972–7976.PubMedCrossRef
37.
go back to reference Bendoraite, A., Knouf, E. C., Garg, K. S., et al. (2010). Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecologic Oncology, 116, 117–125.PubMedCrossRef Bendoraite, A., Knouf, E. C., Garg, K. S., et al. (2010). Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecologic Oncology, 116, 117–125.PubMedCrossRef
38.
go back to reference Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Reports, 11, 670–677.PubMedCrossRef Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Reports, 11, 670–677.PubMedCrossRef
39.
go back to reference Gregory, P. A., Bracken, C. P., Smith, E., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22, 1686–1698.PubMedCrossRef Gregory, P. A., Bracken, C. P., Smith, E., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22, 1686–1698.PubMedCrossRef
40.
go back to reference Burk, U., Schubert, J., Wellner, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMedCrossRef Burk, U., Schubert, J., Wellner, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMedCrossRef
41.
go back to reference Bullock, M. D., Sayan, A. E., Packham, G. K., & Mirnezami, A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 104, 3–12.PubMedCrossRef Bullock, M. D., Sayan, A. E., Packham, G. K., & Mirnezami, A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 104, 3–12.PubMedCrossRef
42.
go back to reference Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., et al. (2012). Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122, 1849–1868.PubMedCrossRef Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., et al. (2012). Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122, 1849–1868.PubMedCrossRef
44.
go back to reference Mettlin, C. (1999). Global breast cancer mortality statistics. CA: A Cancer Journal for Clinicians, 49, 138–144.CrossRef Mettlin, C. (1999). Global breast cancer mortality statistics. CA: A Cancer Journal for Clinicians, 49, 138–144.CrossRef
45.
go back to reference No authors listed (2000). Breast cancer statistics. Journal of the National Cancer Institute, 92, 445. No authors listed (2000). Breast cancer statistics. Journal of the National Cancer Institute, 92, 445.
46.
go back to reference Kamo, K., & Sobue, T. (2004). Cancer statistics digest. Mortality trend of prostate, breast, uterus, ovary, bladder and “kidney and other urinary tract” cancer in Japan by birth cohort. Japanese Journal of Clinical Oncology, 34, 561–563.PubMedCrossRef Kamo, K., & Sobue, T. (2004). Cancer statistics digest. Mortality trend of prostate, breast, uterus, ovary, bladder and “kidney and other urinary tract” cancer in Japan by birth cohort. Japanese Journal of Clinical Oncology, 34, 561–563.PubMedCrossRef
47.
go back to reference Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.PubMed Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.PubMed
48.
go back to reference Berx, G., Staes, K., van Hengel, J., et al. (1995). Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics, 26, 281–289.PubMedCrossRef Berx, G., Staes, K., van Hengel, J., et al. (1995). Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics, 26, 281–289.PubMedCrossRef
49.
go back to reference Pecina-Slaus, N. (2003). Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell International, 3, 17.PubMedCrossRef Pecina-Slaus, N. (2003). Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell International, 3, 17.PubMedCrossRef
50.
go back to reference Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMedCrossRef Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMedCrossRef
51.
go back to reference Wells, A., Yates, C., & Shepard, C. R. (2008). E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clinical & Experimental Metastasis, 25, 621–628.CrossRef Wells, A., Yates, C., & Shepard, C. R. (2008). E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clinical & Experimental Metastasis, 25, 621–628.CrossRef
52.
go back to reference Saha, B., Chaiwun, B., Imam, S. S., et al. (2007). Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. Anticancer Research, 27, 3903–3908.PubMed Saha, B., Chaiwun, B., Imam, S. S., et al. (2007). Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. Anticancer Research, 27, 3903–3908.PubMed
53.
go back to reference Bastid, J. (2012). EMT in carcinoma progression and dissemination: facts, unanswered questions, and clinical considerations. Cancer and Metastasis Reviews, 31, 277–283.PubMedCrossRef Bastid, J. (2012). EMT in carcinoma progression and dissemination: facts, unanswered questions, and clinical considerations. Cancer and Metastasis Reviews, 31, 277–283.PubMedCrossRef
54.
go back to reference Wendt, M. K., Taylor, M. A., Schiemann, B. J., & Schiemann, W. P. (2011). Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Molecular Biology of the Cell, 22, 2423–2435.PubMedCrossRef Wendt, M. K., Taylor, M. A., Schiemann, B. J., & Schiemann, W. P. (2011). Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Molecular Biology of the Cell, 22, 2423–2435.PubMedCrossRef
55.
go back to reference Cailleau, R., Olive, M., & Cruciger, Q. V. (1978). Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro, 14, 911–915.PubMedCrossRef Cailleau, R., Olive, M., & Cruciger, Q. V. (1978). Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro, 14, 911–915.PubMedCrossRef
56.
go back to reference Brinkley, B. R., Beall, P. T., Wible, L. J., Mace, M. L., Turner, D. S., & Cailleau, R. M. (1980). Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Research, 40, 3118–3129.PubMed Brinkley, B. R., Beall, P. T., Wible, L. J., Mace, M. L., Turner, D. S., & Cailleau, R. M. (1980). Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Research, 40, 3118–3129.PubMed
57.
go back to reference Thompson, E. W., Paik, S., Brunner, N., et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. Journal of Cellular Physiology, 150, 534–544.PubMedCrossRef Thompson, E. W., Paik, S., Brunner, N., et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. Journal of Cellular Physiology, 150, 534–544.PubMedCrossRef
58.
go back to reference Sheikh, M. S., Shao, Z. M., Hussain, A., & Fontana, J. A. (1993). The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Research, 53, 3226–3228.PubMed Sheikh, M. S., Shao, Z. M., Hussain, A., & Fontana, J. A. (1993). The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Research, 53, 3226–3228.PubMed
59.
go back to reference Maemura, M., Akiyama, S. K., Woods, V. L., Jr., & Dickson, R. B. (1995). Expression and ligand binding of alpha 2 beta 1 integrin on breast carcinoma cells. Clinical & Experimental Metastasis, 13, 223–235.CrossRef Maemura, M., Akiyama, S. K., Woods, V. L., Jr., & Dickson, R. B. (1995). Expression and ligand binding of alpha 2 beta 1 integrin on breast carcinoma cells. Clinical & Experimental Metastasis, 13, 223–235.CrossRef
60.
go back to reference Hiraguri, S., Godfrey, T., Nakamura, H., et al. (1998). Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Research, 58, 1972–1977.PubMed Hiraguri, S., Godfrey, T., Nakamura, H., et al. (1998). Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Research, 58, 1972–1977.PubMed
61.
go back to reference Pishvaian, M. J., Feltes, C. M., Thompson, P., Bussemakers, M. J., Schalken, J. A., & Byers, S. W. (1999). Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Research, 59, 947–952.PubMed Pishvaian, M. J., Feltes, C. M., Thompson, P., Bussemakers, M. J., Schalken, J. A., & Byers, S. W. (1999). Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Research, 59, 947–952.PubMed
62.
go back to reference Jo, M., Lester, R. D., Montel, V., Eastman, B., Takimoto, S., & Gonias, S. L. (2009). Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. Journal of Biological Chemistry, 284, 22825–22833.PubMedCrossRef Jo, M., Lester, R. D., Montel, V., Eastman, B., Takimoto, S., & Gonias, S. L. (2009). Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. Journal of Biological Chemistry, 284, 22825–22833.PubMedCrossRef
63.
go back to reference Lester, R. D., Jo, M., Montel, V., Takimoto, S., & Gonias, S. L. (2007). uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. The Journal of Cell Biology, 178, 425–436.PubMedCrossRef Lester, R. D., Jo, M., Montel, V., Takimoto, S., & Gonias, S. L. (2007). uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. The Journal of Cell Biology, 178, 425–436.PubMedCrossRef
64.
go back to reference Lo, H. W., Hsu, S. C., Xia, W., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67, 9066–9076.PubMedCrossRef Lo, H. W., Hsu, S. C., Xia, W., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67, 9066–9076.PubMedCrossRef
65.
go back to reference Bonnomet, A., Syne, L., Brysse, A., et al. (2011). A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. (In press) Bonnomet, A., Syne, L., Brysse, A., et al. (2011). A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. (In press)
66.
go back to reference Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of Cell Biology, 172, 973–981.PubMedCrossRef Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of Cell Biology, 172, 973–981.PubMedCrossRef
67.
go back to reference Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. American Journal of Pathology, 174, 1588–1593.PubMedCrossRef Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. American Journal of Pathology, 174, 1588–1593.PubMedCrossRef
68.
go back to reference Martinez, V., & Azzopardi, J. G. (1979). Invasive lobular carcinoma of the breast: incidence and variants. Histopathology, 3, 467–488.PubMedCrossRef Martinez, V., & Azzopardi, J. G. (1979). Invasive lobular carcinoma of the breast: incidence and variants. Histopathology, 3, 467–488.PubMedCrossRef
69.
go back to reference DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S., & Lesser, M. (1990). Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. The American Journal of Surgical Pathology, 14, 12–23.PubMedCrossRef DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S., & Lesser, M. (1990). Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. The American Journal of Surgical Pathology, 14, 12–23.PubMedCrossRef
70.
go back to reference Da Silva, L., Parry, S., Reid, L., et al. (2008). Aberrant expression of E-cadherin in lobular carcinomas of the breast. The American Journal of Surgical Pathology, 32, 773–783.PubMedCrossRef Da Silva, L., Parry, S., Reid, L., et al. (2008). Aberrant expression of E-cadherin in lobular carcinomas of the breast. The American Journal of Surgical Pathology, 32, 773–783.PubMedCrossRef
71.
go back to reference Oltean, S., Sorg, B. S., Albrecht, T., et al. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14116–14121.PubMedCrossRef Oltean, S., Sorg, B. S., Albrecht, T., et al. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14116–14121.PubMedCrossRef
72.
go back to reference Oltean, S., Febbo, P. G., & Garcia-Blanco, M. A. (2008). Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo. Clinical & Experimental Metastasis, 25, 611–619.CrossRef Oltean, S., Febbo, P. G., & Garcia-Blanco, M. A. (2008). Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo. Clinical & Experimental Metastasis, 25, 611–619.CrossRef
73.
go back to reference Tsuji, T., Ibaragi, S., Shima, K., et al. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Research, 68, 10377–10386.PubMedCrossRef Tsuji, T., Ibaragi, S., Shima, K., et al. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Research, 68, 10377–10386.PubMedCrossRef
74.
go back to reference Martorana, A. M., Zheng, G., Crowe, T. C., O’Grady, R. L., & Lyons, J. G. (1998). Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Research, 58, 4970–4979.PubMed Martorana, A. M., Zheng, G., Crowe, T. C., O’Grady, R. L., & Lyons, J. G. (1998). Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Research, 58, 4970–4979.PubMed
75.
go back to reference Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistent E-cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.PubMedCrossRef Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistent E-cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.PubMedCrossRef
76.
go back to reference Lang, S. H., Sharrard, R. M., Stark, M., Villette, J. M., & Maitland, N. J. (2001). Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. British Journal of Cancer, 85, 590–599.PubMedCrossRef Lang, S. H., Sharrard, R. M., Stark, M., Villette, J. M., & Maitland, N. J. (2001). Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. British Journal of Cancer, 85, 590–599.PubMedCrossRef
77.
go back to reference Kurahara, H., Takao, S., Maemura, K., et al. (2012). Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. Journal of Surgical Oncology, 105, 655–61.PubMedCrossRef Kurahara, H., Takao, S., Maemura, K., et al. (2012). Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. Journal of Surgical Oncology, 105, 655–61.PubMedCrossRef
78.
go back to reference Chao, Y., Wu, Q., Shepard, C., & Wells, A. (2012). Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical & Experimental Metastasis, 29, 39–50.CrossRef Chao, Y., Wu, Q., Shepard, C., & Wells, A. (2012). Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical & Experimental Metastasis, 29, 39–50.CrossRef
79.
go back to reference Yates, C. C., Shepard, C. R., Stolz, D. B., & Wells, A. (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 96, 1246–1252.PubMedCrossRef Yates, C. C., Shepard, C. R., Stolz, D. B., & Wells, A. (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 96, 1246–1252.PubMedCrossRef
80.
go back to reference Lopes, N., Carvalho, J., Duraes, C., et al. (2012). 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Research, 32, 249–257.PubMed Lopes, N., Carvalho, J., Duraes, C., et al. (2012). 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Research, 32, 249–257.PubMed
81.
go back to reference Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28, 15–33.PubMedCrossRef Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28, 15–33.PubMedCrossRef
82.
go back to reference Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.PubMedCrossRef Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.PubMedCrossRef
83.
go back to reference Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.PubMedCrossRef Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.PubMedCrossRef
84.
go back to reference Jung, A., Schrauder, M., Oswald, U., et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. American Journal of Pathology, 159, 1613–1617.PubMedCrossRef Jung, A., Schrauder, M., Oswald, U., et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. American Journal of Pathology, 159, 1613–1617.PubMedCrossRef
85.
go back to reference Vega, S., Morales, A. V., Ocana, O. H., Valdes, F., Fabregat, I., & Nieto, M. A. (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes & Development, 18, 1131–1143.CrossRef Vega, S., Morales, A. V., Ocana, O. H., Valdes, F., Fabregat, I., & Nieto, M. A. (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes & Development, 18, 1131–1143.CrossRef
86.
go back to reference Mejlvang, J., Kriajevska, M., Vandewalle, C., et al. (2007). Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Molecular Biology of the Cell, 18, 4615–4624.PubMedCrossRef Mejlvang, J., Kriajevska, M., Vandewalle, C., et al. (2007). Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Molecular Biology of the Cell, 18, 4615–4624.PubMedCrossRef
87.
go back to reference Rubio, C. A. (2006). Cell proliferation at the leading invasive front of colonic carcinomas. Preliminary observations. Anticancer Research, 26, 2275–2278.PubMed Rubio, C. A. (2006). Cell proliferation at the leading invasive front of colonic carcinomas. Preliminary observations. Anticancer Research, 26, 2275–2278.PubMed
88.
go back to reference Rubio, C. A. (2007). Further studies on the arrest of cell proliferation in tumor cells at the invading front of colonic adenocarcinoma. Journal of Gastroenterology and Hepatology, 22, 1877–1881.PubMedCrossRef Rubio, C. A. (2007). Further studies on the arrest of cell proliferation in tumor cells at the invading front of colonic adenocarcinoma. Journal of Gastroenterology and Hepatology, 22, 1877–1881.PubMedCrossRef
89.
go back to reference Spaderna, S., Schmalhofer, O., Hlubek, F., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.PubMedCrossRef Spaderna, S., Schmalhofer, O., Hlubek, F., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.PubMedCrossRef
90.
go back to reference Gao, D., Joshi, N., Choi, H., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72, 1384–94.PubMedCrossRef Gao, D., Joshi, N., Choi, H., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72, 1384–94.PubMedCrossRef
91.
go back to reference Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.PubMedCrossRef Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.PubMedCrossRef
92.
go back to reference Thomson, S., Buck, E., Petti, F., et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Research, 65, 9455–9462.PubMedCrossRef Thomson, S., Buck, E., Petti, F., et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Research, 65, 9455–9462.PubMedCrossRef
93.
go back to reference Thomson, S., Petti, F., Sujka-Kwok, I., Epstein, D., & Haley, J. D. (2008). Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clinical & Experimental Metastasis, 25, 843–854.CrossRef Thomson, S., Petti, F., Sujka-Kwok, I., Epstein, D., & Haley, J. D. (2008). Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clinical & Experimental Metastasis, 25, 843–854.CrossRef
94.
go back to reference Yauch, R. L., Januario, T., Eberhard, D. A., et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clinical Cancer Research, 11, 8686–8698.PubMedCrossRef Yauch, R. L., Januario, T., Eberhard, D. A., et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clinical Cancer Research, 11, 8686–8698.PubMedCrossRef
95.
go back to reference Creighton, C. J., Reid, J. G., & Gunaratne, P. H. (2009). Expression profiling of microRNAs by deep sequencing. Briefings in Bioinformatics, 10, 490–497.PubMedCrossRef Creighton, C. J., Reid, J. G., & Gunaratne, P. H. (2009). Expression profiling of microRNAs by deep sequencing. Briefings in Bioinformatics, 10, 490–497.PubMedCrossRef
96.
go back to reference Cooke, V. G., LeBleu, V. S., Keskin, D., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by MET signaling pathway. Cancer Cell, 21, 66–81.PubMedCrossRef Cooke, V. G., LeBleu, V. S., Keskin, D., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by MET signaling pathway. Cancer Cell, 21, 66–81.PubMedCrossRef
97.
go back to reference Valdes, F., Alvarez, A. M., Locascio, A., et al. (2002). The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Molecular Cancer Research, 1, 68–78.PubMed Valdes, F., Alvarez, A. M., Locascio, A., et al. (2002). The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Molecular Cancer Research, 1, 68–78.PubMed
98.
go back to reference Ansieau, S., Bastid, J., Doreau, A., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14, 79–89.PubMedCrossRef Ansieau, S., Bastid, J., Doreau, A., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14, 79–89.PubMedCrossRef
99.
go back to reference Gal, A., Sjoblom, T., Fedorova, L., Imreh, S., Beug, H., & Moustakas, A. (2008). Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene, 27, 1218–1230.PubMedCrossRef Gal, A., Sjoblom, T., Fedorova, L., Imreh, S., Beug, H., & Moustakas, A. (2008). Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene, 27, 1218–1230.PubMedCrossRef
100.
go back to reference Sayan, A. E., Griffiths, T. R., Pal, R., et al. (2009). SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 14884–14889.PubMedCrossRef Sayan, A. E., Griffiths, T. R., Pal, R., et al. (2009). SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 14884–14889.PubMedCrossRef
101.
go back to reference Straub, B. K., Rickelt, S., Zimbelmann, R., et al. (2011). E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. The Journal of Cell Biology, 195, 873–887.PubMedCrossRef Straub, B. K., Rickelt, S., Zimbelmann, R., et al. (2011). E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. The Journal of Cell Biology, 195, 873–887.PubMedCrossRef
102.
go back to reference Thiery, J. P. (2002). Epithelial to mesenchymal transitions in tumour progression. Nature Cancer, 2, 442–454.CrossRef Thiery, J. P. (2002). Epithelial to mesenchymal transitions in tumour progression. Nature Cancer, 2, 442–454.CrossRef
Metadata
Title
Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer
Authors
N. P. A. Devika Gunasinghe
Alan Wells
Erik W. Thompson
Honor J. Hugo
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9377-5

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue

Announcement

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine